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Abstract: In this study formal derivation of mode coupling equations in underwater acoustics is
revisited. This derivation is based on the method of multiple scales from which modal expansion
of the field emerges, and the vectorized WKBJ equation for the coefficients in this expansion are
obtained in an automatic way. Asymptotic analysis accomplished in this work also establishes a
connection between coupled mode parabolic equations in three-dimensional case and the generalized
WKBJ solution that emerges as its two-dimensional counterpart. Despite the fact that similar mode
coupling equations can be found in literature, in our study a new systematic and formalized approach
to their derivation is proposed. A theorem that guarantees asymptotic conservation of the energy
flux in the considered two-dimensional waveguide is also proven.

Keywords: underwater acoustics; normal modes; mode couling; method of multiple scales; WKBJ;
range-dependent waveguide

1. Introduction

The normal mode representation of acoustic field is often used in underwater acoustics.
This representation is obtained by local separation of variables in the original boundary
value problem for the Helmholtz equation for acoustic pressure. Within any cross-section
of the waveguide the vertical distribution of sound pressure is represented in the form of a
series over eigenfunctions of certain Sturm-Liouville problem [1,2]. These eigenfunctions
are often called normal modes, while the coefficients of the field expansion over a basis
formed by them are called mode amplitudes.

The standard textbook approach to the derivation of equations for mode ampli-
tudes [1,3–5] consists of the staircase approximation and matching of field expansions at
two range-independent sections of the waveguide. This matching eventually results in a
large system of linear equations where unknowns are expansion coefficients at all sections
(steps) of the staircase. Other approaches reported in some studies [2,6–8] are free from
the staircase approximation and result in “continuously coupled” systems of ordinary
differential equations for mode amplitudes.

In this study we revisit the derivation of such equations using two different asymptotic
approximations, namely the method of multiple scales [9,10] and the vectorized WKBJ
approach [11,12] (the abbreviation stands for Wentzel–Kramers–Brillouin-Jeffrys method
emerging from quantum mechanics, see [13]). It can be seen from this article that in fact a
very formal multi-scale derivation implicitly incorporates both the modal expansion of the
field and the WKBJ approximation for the mode amplitudes. The latter fact is in interesting
observation per se, as it allows to resolve various issues arising throughout the derivation
with greater flexibility. For example, in this study we show that the attenuation can be taken
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into account by including additional terms into the coupling equations instead of more
straightforward way of handling it via the imaginary parts of the horizontal wavenumbers.
Similar techniques can be used, e.g., also to tackle weak elasticity effects in the bottom [14]
and many other possible complications [15].

For the obtained equations an important property of the asymptotic acoustic energy
flux [6,8] conservation is proved (see the definition and discussion in Section 5). The respec-
tive theorem guarantees that energy flux is conserved within the considered asymptotic
solutions modulo the terms of higher order with respect to the small parameter used in
the derivation (by contrast to acoustic Helmholtz equation that satisfies the property of the
energy flux conservation exactly).

Furthermore, the use of asymptotic methods outlined here allows to establish a bridge
between the mode coupling equations in a 2D waveguide and the 3D solutions obtained
in the framework of the so-called mode parabolic equations theory [10,16] (in fact, the
latter equations reduce to the mode coupling equations derived here if the derivatives with
respect to the transverse horizontal variable vanish).

2. Problem Formulation

Let us consider time-harmonic sound propagation in an axially symmetric three-
dimensional waveguide Ω = {(r, θ, z)|0 ≤ r < ∞, 0 ≤ θ < 2π, 0 ≤ z ≤ H} (where z-axis is
directed downwards) that is described by the acoustic Helmholtz equation

(γPr)r +
1
r

γPr + (γPz)z + γκ2P =
−γδ(z− zs)δ(r)

2πr
, (1)

where γ = 1/ρ is inverse to the density ρ = ρ(r, z), κ(r, z) = ω
c(r,z) is the medium wavenum-

ber (here ω is the cyclic frequency, and c = c(r, z) is the sound speed). Throughout this
study subscripts r, z denote partial derivatives with respect to these variables.

We also assume that suitable radiation conditions are imposed at infinity in the r, θ
plane [17,18]. At the sea surface z = 0 a pressure-release boundary condition

P = 0 at z = 0 , (2)

is set up, while a rigid-wall boundary condition

∂P/∂z = 0 at z = H , (3)

is imposed at a subbottom (i.e., H is a sufficiently large value of depth at which the
computational domain is truncated). The parameters of the media may exhibit finite-jump
discontinuities at the non-intersecting smooth interfaces z = h1(r), . . . , hm(r), where the
usual continuity conditions

P+ = P− ,

γ+(Pz − hrPr)+ = γ−(Pz − hrPr)−
(4)

for acoustic pressure and particle velocity are imposed. Hereinafter we use the notations
f (z0, r)+ = limz↓z0 f (z, r) and f (z0, r)− = limz↑z0 f (z, r) for the quantities just below and
above such interfaces.

Without loss of generality we can consider the case m = 1 and denote h1 by h (dropping
the subscript).
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It is well known that for any given r the solution of Equation (1) can be represented in
the form of a series over eigenfunctions φj(z, r) of the following Sturm-Liouville problem [1]

(γφz)z + γ ω2

c2 φ = γk2φ = 0 ,
φ(0) = 0 ,
φz(H) = 0 ,
φ+ = φ− ,
γ+(φz)+ = γ−(φz)− ,

(5)

where k j(r) are their respective horizontal wavenumbers (note that the eigenvalues are
k2

j ). Note that the term problem is usually used in this study to refer to some equation
complemented by initial or boundary conditions.

Hereafter we always assume that the mode functions are normalized, i.e., that∫
γ(z)φj(z)φ`(z)dz = δj`

(the integration with respect to z withing this study is always performed over the interval
[0, H]). It is known that all eigenfunctions {φj(z, r)} form an orthogonal basis for a given
value of r, i.e., in a given vertical cross-section of the waveguide. We also assume that they
are ordered in such a way that k2

j > k2
j+1.

While the set of eigenfunctions is countable due to Dirichlet and Neuman boundary
conditions at the ends of the interval [0, H], only finite number of them have positive
eigenvalues k2

j . All other eigenvalues k2
j (starting at sufficiently large j) are negative, and

their respective horizontal wavenumbers k j are imaginary (in fact, the set of eigenvalues
k2

j has −∞ as a single accumulation point [19]). The series over φj is usually truncated in
practical applications at some sufficiently large j = N.

Note that k j can be also considered complex. Their imaginary parts result from
attenuation of sound waves in the bottom that is taken into account by introducing a
small imaginary component of ω/c. Since it is often convenient to keep the problem
(5) self-adjoint, one can compute imaginary corrections to the real wavenumbers using
perturbation theory after the solution of (5) with real ω/c.

The goal of the present study is to derive an approximate solution of the boundary-
value problem (BVP) for the Helmholtz Equation (1) with the boundary conditions given
by Equations (2)–(4) (and the radiation conditions at infinity) in terms of a truncated series

P(r, z) =
N

∑
j=1

Aj(r)φj(z, r) , (6)

over eigenfunctions of the Sturm-Liouville problem (5). More precisely, the objective is
to obtain convenient equations for the coefficients Aj(r) in Equation (6) that can be easily
solved numerically.

It can be shown (see Appendix A) that mode amplitudes Aj(r) satisfy the following
coupled system of equations

Aj,rr +
1
r

Aj,r + k2
j Aj +

n

∑
l=1

Ul j Al +
n

∑
l=1

(Vl j −Vjl)Al,r = −
1

2πr
γ(zs)φj(zs)δ(r) , (7)

where Ul j =
∫

γ
(

φl,rr +
1
r φl,r

)
φjdz and Vl j =

∫
γφl,rφjdz are elements of the square N×N

matrices U and V , respectively. It is widely accepted that in realistic propagation scenarios
the coupling terms containing Ul j can be neglected (hereafter we drop them).
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In a range-independent waveguide when the coupling terms Vl j also vanish the
solutions of Equation (7) have the form [1]

Aj,0(r) =
iγ(zs)

4
φj(zs)H(1)

0 (k jr) . (8)

3. The Derivation of the Mode Coupling Equations Using the Vectorized
WKBJ Approximation

Since (7) is a coupled system of 2D elliptic equations that should be complemented by
radiation boundary conditions (that follow from the respective conditions for Equation (1)), it
is not convenient for numerical solution. Indeed, mesh size for any sort of discretization must
be such that all waves forming its solution are resolved sufficiently well (e.g., 10–15 points per
wavelength) which is often too restrictive. Moreover, such system cannot be solved by a
marching schemes that are usually the most convenient and robust. In this section, we use
the vectorized form of WKBJ ansatz in order to reduce Equation (7) to an evolutionary-type
system of equations that can be solved by a marching scheme on a very coarse grid.

3.1. Vectorized Equations for Mode Amplitudes

The set of N scalar equations (7) can be replaced by a single equation(
d2

dr2 +
1
r

d
dr

+ Γ(r)
d
dr

)
a(r) +

1
ε2 (K̄(r))2a(r) = 0 , (9)

for the unknown vector function a(r) = (A1(r), A2(r), . . . , An(r))T (superscript T denotes
transposition), where Γ = V − V T , and K(r) = 1

ε K̄(r) = diag(k1(r), . . . , kn(r)) (i.e., K(r)
is a diagonal matrix with eigenvalues k j(r) on the main diagonal). Note that we formally
introduced a small parameter into the vectorized form Equation (9) of mode coupling
equations. Physically it means that typical horizontal wavelength associated with mode
amplitudes is much smaller than “horizontal” size of media inhomogeneities.

The BVP for Equation (9) is set in the following way. At certain small range from the
source r = r0 we impose the condition Aj(r0) = Aj,0(r0) that represents the wavefield
excited by a point source (as if the waveguide in a small vicinity of the source is range-
independent).

At r → ∞ we require that partial Sveshnikov-type radiation boundary condition
√

r
( dAj

dr − k j,∞ Aj

)∣∣∣
r→∞

= 0 is fulfilled (it is assumed that waveguide properties such
as h, c, etc. do not depend on r outside sufficiently large cylinder r ≤ rmax, and that
k j(r) = k j,∞ for r > rmax, i.e., the medium becomes range-independent).

3.2. Vectorized WKBJ Approximation for the Mode Amplitudes

Following [11,12], we introduce into Equation (9) the vectorized WKBJ-ansatz of the form

a(r) =


B1(r)eiΦ1(r)/ε

B2(r)eiΦ2(r)/ε

...
BN(r)eiΦN(r)/ε

 = exp
(

i
Φ̄(r)

ε

)
b(r) , (10)

where Φ(r) = Φ̄(r)/ε = diag(Φ1(r)/ε, . . . , ΦN(r)/ε), and b(r) = (B1(r), . . . , BN(r))T .
Let us now substitute the ansatz (10) into Equation (9)

eiΦ̄/ε

(
− (Φ̄r)2

ε2 b + i
Φ̄rr

ε
b + 2i

Φ̄r

ε
br + brr

)
+

1
r

eiΦ̄/ε

(
i
Φ̄r

ε
b + br

)
+ ΓeiΦ̄/ε

(
i
Φ̄r

ε
b + br

)
+

K̄2

ε2 eiΦ̄/εb = 0 . (11)
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Now we combine terms of the same order in ε (starting with ε−2) and obtain a series of
equations similar to the one in the standard WKBJ method (see [11,13]).

For the lowest power of the small parameter we obtain a matrix Hamilton-Jacobi
equation of the form

(Φ̄r(r))2 = (K̄(r))2 , (12)

and therefore Φr(r) = ±K(r). We choose Φr = K thus neglecting back scattering and
retaining only waves propagating in outward direction from the source. This assumption
is known to be reasonable in underwater acoustics and geophysics, and it leads to sub-
stantial simplification of the solution procedure. Collecting the terms of the order ε−1 in
Equation (11), we obtain the following equation for the vector-function b(r)

2Kbr +
1
r

Kb + Krb + e−iΦΓeiΦKb = 0 . (13)

Since backward propagation is suppressed, we now have a first-order ODE system for
envelopes b(r) of mode amplitudes a(r). Thus, the original BVP for Equation (9) was
replaced by an initial-value problem for Equation (13) with the initial condition Bj(r0) =

Ajr0e−ikj(0)r0 . Within this approach the horizontal wavenumbers k j(r) can be complex,
that is, contain small imaginary component corresponding to the sound attenuation in the
propagation media.

Note that the matrix Ξ = e−iΦ(r)Γ(r)eiΦ(r) consists of elements of the form

Ξij = (Vij −Vji)e
Φj(r)/ε−Φi(r)/ε .

4. The Derivation of the Mode Coupling Equations by the Method of Multiple Scales

In this section we perform the derivation of a coupled mode model of sound propaga-
tion by the method of multiple scales [9]. Within this approach modal expansion emerges
automatically due to our scaling of the independent variables. However, it will be shown
that the final represenation of the acoustic field will be identical to (6), where the mode
amplitudes will be obtained from the equations equivalent to (13).

Let us introduce a small parameter ε (the ratio of the typical wavelength to the typical
size of medium inhomogeneities) and the slow variable R = εr. We now assume the
following expansions for the parameters κ2, γ and h:

κ2 = κ2
0(R, z) + εν(R, z) , γ = γ(R, z) , h = h(R) .

Within this approach we include the attenuation effects by allowing ν to be complex. More
precisely, we take Im ν = 2ηβκ0, where η = (40π log10 e)−1 and β is the attenuation in
decibels per wavelength. This implies that Im ν ≥ 0.

Consider a solution to the Helmholtz Equation (1) in the form of the WKBJ-ansatz
with two spatial scales

P =
N

∑
j=1

(u(j)
0 (R, z) + εu(j)

1 (R, z) + . . .)eiΦj/ε . (14)

where {Φj|j = 1, . . . , N} is a set of phases (fast variables). In fact, we even have three
variability scales: fast oscillatory phases Φ, “normal” variable z and “slow” variable R.

Introducing this ansatz into Equation (1), boundary condition (2) and interface condi-
tions (4) (all rewritten in the slow variable), we obtain a sequence of the boundary value
problems for the terms of each order of ε.

4.1. The Problem at O(ε0)

To obtain the normal modes we first consider the ansatz of the form of a zero-order
approximation P = u(j)

0 (R, z)eiΦj(R,z)/ε (we omit the mode number j where it does not
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lead to confusion). From the equations at O(ε−2) and O(ε−1) we can conclude that Φ is
independent on z.

At O(ε0) now we have

(γu0z)z + γn2
0 − γ(ΦR)

2u0 = 0 , (15)

with the interface conditions of the order ε0

u0+ = u0− ,(
γ

∂u0

∂z

)
+
=

(
γ

∂u0

∂z

)
−

at z = h ,
(16)

and boundary conditions u = 0 at z = 0 and ∂u/∂z = 0 at z = H. We seek a solution
to problem (15) and (16) in the form u0 = B(R)φ(R, z) . From Equations (15) and (16) we
obtain precisely the spectral problem (5) for the function φ with the spectral parameter
k2 = (ΦR)

2.

4.2. The Derivatives of Eigenfunctions and Wavenumbers with Respect to R

Before considering the equality for the terms of the order O(ε1) we should discuss the
calculation of the derivatives of the eigenfunctions and wavenumbers with respect to R.
Perturbation theory for acoustic modes in the case of water depth variations was developed
in [20,21]. Equivalent but somewhat different first-order formulae we also derived in [6,10].
Here we obtain them in yet another way more consistent with the coupled mode theory.

Differentiating spectral problem (5) with respect to R, we obtain the boundary value
problem for φjR (

γφjRz
)

z + γκ2
0φjR − γk2

j φjR = −
(
γRφjz

)
z−

(γκ2
0)Rφj + 2k jRk jγφj + γRk2

j φj ,

φjR(0) = 0 , φjRz(H) = 0 ,

(17)

with interface conditions at z = h

φjR+ − φjR− = −hR(φjz+ − φjz−) ,

γ+φjRz+ − γ−φjRz− = −
(
γR+φjz+−

γR−φjz−
)
− hR

((
(γφjz)z

)
+
−
(
(γφjz)z

)
−

)
.

(18)

The solution to the problem (17) and (18) is sought in the form

φjR =
∞

∑
l=0

V̄jlφl , where V̄jl = Vjl/ε =
∫ H

0
γφjRφl dz .

Multiplying (17) by φl and then integrating resulting equation from 0 to H by parts twice
with the use of interface conditions (18), we obtain(

k2
l − k2

j

)
V̄jl =

∫ H

0
γRφjzφlz dz + 2k jRk jδjl−

−
∫ H

0

(
γκ2

0

)
R

φjφl dz + k2
j

∫ H

0
γRφjφl dz+{

hR(γ
2φjzφlz)+

[(
1
γ

)
+
−
(

1
γ

)
−

]
−

hRφjφl

[(
γ
(

k2
j − κ2

0

))
+
−
(

γ
(

k2
j − κ2

0

))
−

]}∣∣∣∣
z=h

,
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where δjl is the Kronecker delta. From the latter equality the coefficients Vjl can be easily
obtained for j 6= l. Note that (γ2φjzφlz)+ = (γ2φjzφlz)−.

The formula for coefficients Vjj can be obtained by differentiating the normalization
condition for the modes(∫ H

0
γφ2

j dz
)

R
=

(∫ H

h
γφ2

j dz +
∫ h

0
γφ2

j dz
)

R
=

=
∫ H

0
γRφ2

j dz + 2
∫ H

0
γφjRφj dz + hRφ2

j [γ− − γ+]|z=h = 0 .

(19)

From the latter equality we find that

2V̄jj = −
∫ H

0
γRφ2

j dz + hRφ2
j [γ+ − γ−]|z=h . (20)

4.3. The Problem at O(ε1)

We now represent a solution to the Helmholtz Equation (1) in the form of ansatz (14).
At O(ε1) we obtain

N

∑
j=1

((
γu(j)

1z

)
z
+ γκ2

0u(j)
1 − γk2

j u(j)
1

)
eiΦj/ε =

N

∑
j=1

(
−iγRk ju

(j)
0 − 2iγk ju

(j)
0R − iγk jRu(j)

0 − iγk j
1
R

u(j)
0 − νγu(j)

0

)
eiΦj/ε ,

(21)

with the boundary conditions u(j)
1 = 0 at z = 0, ∂u(j)

1 /∂z = 0 at z = H, and the interface
conditions at z = h(R):

N

∑
j=1

(u(j)
1+ − u(j)

1−)e
iΦj/ε = 0 ,

N

∑
j=1

[γ+u(j)
1z+ − γ−u(j)

1z− + ik jhRu(j)
0 (γ− − γ+)]eiΦj/ε = 0 .

(22)

We seek a solution to problem (21) and (22) in the form

u(j)
1 =

∞

∑
l=0

Qjl(X, Y)φl(z, X) , where Qjl =
∫ H

0
γu(j)

1 φl dz .

Multiplying (21) by φl and then integrating resulting equation from 0 to H by parts twice
with the use of interface conditions (22), we obtain

N

∑
j=1

(
(k2

l − k2
j )Qjl − Bjik jhRφjφl [γ+ − γ−]

∣∣
z=h

)
eiΦj/ε

=
N

∑
j=1

(
−ik jBj

∫ H

0
γRφjφl dz− 2ik jBj

∫ H

0
γφjRφl dz− 2ik jBj,R

∫ H

0
γφjφl dz

−ik j,RBj

∫ H

0
γφjφl dz− ik j

1
R

Bj

∫ H

0
γφjφl dz− Bj

∫ H

0
νγφjφl dz

)
eiΦj/ε .

The terms (k2
l − k2

j )Qjl in these expressions can be omitted because of the resonant condition
|kl − k j| = O(ε). Since

−ik jBj

∫ H

0
γRφjφl dz− 2ik jBj

∫ H

0
γφjRφl dz = ik jBj

(
V̄l j − V̄jl

)
− ik jBjhRφjφl [γ+ − γ−]|z=h ,
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we get, after some algebra,

N

∑
j=1

(
ik jBj

(
V̄l j − V̄jl

)
− 2ik jBj,Rδjl − ik jRBjδjl

−ik j
1
R

Bjδjl − Bj

∫ H

0
νγφjφl dz

)
eiΦj/ε = 0 .

The results obtained so far can be summarized as follows.

Proposition 1. The solvability condition for the problem at O(ε1) is expressed by the system of
equations for l = 1, . . . , N

2ikl Bl,R + ikl,RBl + ikl
1
R

Bl +
N

∑
j=1

αl jBje
Φl j = 0 , (23)

where αl j and Φl j are given by the following formulas

αl j =
∫ H

0
γνφjφl dz− ik j

(
V̄l j − V̄jl

)
,

Φl j =
i
ε
(Φj −Φl) .

(24)

Rewriting Equations (23) and (24) in physical variables (r instead of R) and combining
them into one equation for a vector-function b(r) we obtain Equation (13) from the previous
section (modulo the attenuation-related term in Equation (24)).

5. Energy Flux Conservation in Approximate Solution Obtained by Integrating the
Equations for Mode Amplitudes

Energy flux conservation is widely considered an important property for various
propagation models in underwater acoustics [22]. It indicated the consistency of various
approximations used in the derivation with basic physical laws. Indeed, the Helmholtz
equation enjoys this property, and in fact it follows from the energy conservation law for
the wave equation [23].

For time-harmonic waves of the angular frequency ω acoustic energy flux averaged
over the period is defined as

J(r, z) =
1

2ω
γ Im((grad P(r, z))P∗(r, z)) .

From now on we drop the inessential factor 1/2ω. As it is well known, if P is a solution
of the Helmholtz Equation (1) then the corresponding energy flux is conserved, that is
div J(r, z) = 0 . With our boundary conditions we have also the conservation property

div
∫ H

0
J(r, z) dz = 0 .

Proposition 2. Assume that Im ν̄ = 0. Let {Bj|j = 1, . . . N} be a solution to Equation (23). Then

for P =
N

∑
j=1

Bjφje
iΦj/ε we have div

∫ H

0
J(r, z) dz = O(ε2) .

Proof. First calculate the divergence in the general form for the used representation of
the field
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div
∫ H

0
J(r, z) dz

=
1
r

∂

∂r

{
r

[
N

∑
l=1

kl |Bl |2 + ε
N

∑
l=1

N

∑
j=1

Im
(

V̄l jBl B∗j ei(Φl−Φj)/ε)
)
+ε

N

∑
l=1

Im(Bl,RB∗l )

]}

= ε
N

∑
l=1

N

∑
j=1

(kl − k j)V̄l j Re
(

BjB∗l ei(Φj−Φl)/ε
)
+ ε

N

∑
l=1

(kl |Bl |2)R + ε
1
R

N

∑
l=1

kl |Bl |2 + O(ε2) .

(25)

Consider now the sum on l of Equation (23) multiplied by B∗l minus the conjugate equations
multiplied by Bl

N

∑
l=1

[(
2ikl Bl,R + ikl,RBl + ikl

1
R

Bl +
N

∑
j=1

αl jBje
Φl j

)
B∗l −(

−2ikl B∗l,R − ikl,RB∗l − ikl
1
R

B∗l +
N

∑
j=1

α∗l jB
∗
j eΦ∗l j

)
Bl

]
= 0 .

After some transformation we have:

N

∑
l=1

N

∑
j=1

(αl jBje
Φl j B∗l − α∗l jB

∗
j eΦ∗l j Bl) +

N

∑
l=1

2i
[
(kl |Bl |2)R + kl

1
R
|Bl |2

]
= 0 ,

then substitute for αl j its expression (24)

N

∑
l=1

N

∑
j=1

(
−ik j(V̄l j − V̄jl)Bje

i(Φj−Φl)/εB∗l − ik j(V̄l j − V̄jl)B∗j ei(Φl−Φj)/εBl

)
+

N

∑
l=1

2i
[
(kl |Bl |2)R + kl

1
R
|Bl |2

]
= 0 ,

and collect terms

N

∑
l=1

N

∑
j=1

(
−ik j(V̄l j − V̄jl)2 Re(Bje

i(Φj−Φl)/εB∗l )
)
+

N

∑
l=1

2i
[
(kl |Bl |2)R + kl

1
R
|Bl |2

]
= 0 ,

write double sums separately for terms with V̄l j and V̄jl

N

∑
l=1

N

∑
j=1

(
−ik jV̄l j2 Re(Bje

i(Φj−Φl)/εB∗l )
)
+

N

∑
l=1

N

∑
j=1

(
ik jV̄jl2 Re(Bje

i(Φj−Φl)/εB∗l )
)

+
N

∑
l=1

2i
[
(kl |Bl |2)R + kl

1
R
|Bl |2

]
= 0 ,

exchange indexes l and j in the second double sum and finally get

N

∑
l=1

N

∑
j=1

(
i(kl − k j)V̄l j2 Re(Bje

i(Φj−Φl)/εB∗l )
)
+

N

∑
l=1

2i
[
(kl |Bl |2)R + kl

1
R
|Bl |2

]
= 0 .

The last equation coincides modulo 2i with the O(ε)-part of (25).
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6. Numerical Examples

In this section we validate approximate solution of Equation (1) obtained by solving
coupled equations for mode amplitudes (13) and (23) derived in this study. For this
purpose, we solve the standard benchmark problem of sound propagation in a coastal
wedge-like shallow-water waveguide [1] with penetrable bottom that has the slope angle of
approximately 2.86◦. The bottom depth decreases linearly from 200 m at r = 0 (the source
position) to zero at r = 4 km. This scenario is always used to check if a sound propagation
modelling method allows to accurately handle mode coupling effects, as it is known that
resonant mode interaction occurs at the cut-off depth of the waterborne modes excited by
the source.

The sound speed in the water column is 1500 m/s, while the respective value in the
bottom (considered liquid) is 1700 m/s. The water density is 1000 kg/m3, while the density
of bottom sediments is 1500 kg/m3. We neglect the attenuation in the water column, and set
its rate to 0.5 dB/λ in the bottom. For the calculation purposes we truncate the domain at
H = 1500 m and assume that in the bottom the absorption increases linearly from 0.5 dB/λ
at the depth 1000 m to 2.5 dB/λ at the depth 1500 m.

The point source of frequency 25 Hz deployed at the depth of 100 m at r = 0 excites
3 waterborne modes, while in total we take into account N = 44 propagating modes. We
solve systems of Equations (13) and (23) numerically by a fourth-order Runge-Kutta (RK)
scheme with the step ∆r = 30 m (only half-wavelength!). Both solutions coincide exactly,
and in the figures for this paper we used only the results obtained by integrating (23). Note
that it is not even necessary to use RK scheme, and the results presented below can be also
obtained by a trivial forward-Euler method.

Figure 1 illustrates the dependence of the transmission loss on r for the receiver
depth of 30 m obtained by solving coupled equations for mode amplitudes (23) and its
adiabatic counterpart. With use a numerical solution obtained by using widely accepted
COUPLE code [24] as a reference. It can be seen from Figure 1 that coupled mode solution
exhibits excellent agreement with the field computed by COUPLE. By contrast, the adiabatic
solution substantially differs from them. Indeed, it is known that in the upslope propagation
scenario the waterborne modes excited by the source undergo cut-off one by one, until only
bottom modes are left. Note that root mean square difference between the two coupled
mode solution and the solution by couple in this case is about 0.15 dB. Similar results can
be seen for the receiver depth of 150 m (usually these two depth are used in validation
of various sound propagation models). The transmission loss curves are shown for this
case in Figure 2. The root mean square difference between the solution obtained by solving
Equation (23) and by COUPLE code in this case is about 0.4 dB.

It is no wonder that coupled mode models discussed here allow to obtain highly
accurate solutions for the propagation scenarios with strong mode coupling by solving the
equations for mode amplitudes on a relative coarse grid with the meshsize of about λ/2.
Indeed, as it was shown above, we actually deal with a WKBJ-type approximation where
the principal oscillation is cancelled (see Equation (10)), and the new unknown functions
Bj(r) are actually smooth envelopes for mode amplitudes.
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Figure 1. Transmission loss for the propagation along the bottom slope as a function of distance r
from the source in ASA wedge benchmark computed by solving equations for mode amplitudes (23).
The reference solution is obtained by the COUPLE program [24]. Adiabatic solution is shown for
comparison. The source is deployed at the depth of 100 m, and the depth of the receiver is 30 m.
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Figure 2. Transmission loss for the propagation along the bottom slope as a function of distance r
from the source in ASA wedge benchmark computed by solving equations for mode amplitudes (23).
The reference solution is obtained by the COUPLE program [24]. Adiabatic solution is shown for
comparison. The source is deployed at the depth of 100 m, and the depth of the receiver is 150 m.

7. Conclusions

In this study we present two different rigorous derivations of one-way coupled equa-
tions for mode amplitudes in the sea. Although similar equations have already appeared
in the literature [2,12], the derivations above are, in our opinion, somewhat more clear, and
within the asymptotic framework of this study the role of each of the involved approxi-
mations is very clearly seen. By contrast to other known equations for mode amplitudes
(see, e.g., [6,22]), the ones presented here are obtained by a WKBJ-type asymptotic methods,
and, consequently, admit relatively large steps in range when solved numerically. In this
respect, the presented coupled equations are similar to parabolic equations theory, where
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the principal oscillation is also cancelled out. In fact, it can be shown that Equation (13) can
be obtained from coupled mode parabolic equations by neglecting derivatives with respect
to y (or to polar angle θ in the horizontal plane).

It is also shown that the derived coupled equations asymptotically preserve energy
flux conservation property of the Helmholtz equation. We rigorously proved a theorem
that guarantees energy flux conservation modulo high-order infinitesimal quantities. These
quantities are small as long as the assumptions under which the equations are derived
hold true.

The test calculations were done for the penetrable wedge benchmark scenario and
proved excellent agreement of the field obtained by solving mode coupling equations
presented in this work with the solution of the Helmholtz Equation (1) computed by the
COUPLE program [24].

Our study also highlights the multiscale nature of the modal representation of acoustic
field. In the framework of the normal mode theory its spatial variations involve three
different scales, the slowest of which is described by a stretched range coordinate R and
corresponds to the envelope that modulates the fastest spatial variations associated with
modal phases that actually work as carrier waves. The variations in depth z described
by the modes are of some intermediate scale. This insight can be fully exploited when
constructing mode parabolic approximations for solving 3D sound propagation problems.
On the other hand, this somehow reveals the physical nature of low- and mid-frequency
acoustic fields in shallow water that has not been discussed in the literature until now.
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Appendix A. Coupled Horizontal Refraction Equations

In this appendix we derive coupled equations for mode amplitudes (7) in an acoustic
waveguide in the sea in general case. Note that although similar derivation is given, e.g., in
a classical textbook [1], it contains certain inaccuracy related to the treatment of the scalar
product for the acoustic modes. It is important to take into account the fact that not only
modes φj(z, x, y) vary with horizontal coordinates, but also that the functions γ(x, y, z) is
in fact a function of horizontal variables, even if it is constant within the water and the
bottom. The derivation below is accomplished in the Cartesian coordinates, but it is easy to
transform the final result to any other coordinate system.

The homogeneous 3D Helmholtz equation for acoustic pressure has the form

(γPx)x + (γPy)y + (γPz)z + γκ2
0P = 0 . (A1)

where γ(x, y, z) = 1/ρ(x, y, z) is inverse density and κ2
0(x, y, z) = ω2/c2(x, y, z). Introduce

mode decomposition of the pressure P(x, y, z)

P(x, y, z) =
N

∑
j=1

Aj(x, y)φj(z, x, y) , (A2)

https://rscf.ru/en/project/22-11-00171
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where φj(z, x, y) are eigenfunctions of the Sturm-Liouville problem (5). The solutions of
this problem satisfy orthogonality and normalization conditions∫ H

0
φm(z, x, y)φn(z, x, y)γ(x, y, z) dz = δmn .

Differentiating these expressions with respect to x and y we obtain two valuable relations

Vmn + Vnm +
∫ H

0
φmφnγx dz = 0 , (A3)

and

Wmn + Wnm +
∫ H

0
φmφnγy dz = 0 , (A4)

where the mode coupling coefficients are

Vmn =
∫ H

0
φm,xφnγ dz ,

and

Wmn =
∫ H

0
φm,yφnγ dz .

Note that Vmn here are the same as in Equation (7) (the only difference is that derivatives
with respect to x are replaced by those with respect to r).

Substituting (A2) into the Helmholtz Equation (A1) and applying the operator∫ H

0
(·)φnγ dz

we obtain

An,xx + An,yy + kn(x, y)An +
N

∑
m=1

Umn Am +
N

∑
m=1

2Vmn Am,x +
N

∑
m=1

2Wmn Am,y

+

[
N

∑
m=1

Am,x

∫ H

0
φmφnγx dz +

N

∑
m=1

Am,y

∫ H

0
φmφnγy dz

]
= 0 .

Here

Umn =
∫ H

0

[
(γφm,x)x + (γφm,y)y

]
φn dz ,

and terms in the square brackets can be transformed with the help of expressions (A3) and (A4).
Finally we arrive at

An,xx + An,yy + kn An +
N

∑
m=1

Umn Am +
N

∑
m=1

(Vmn −Vnm)Am,x +
N

∑
m=1

(Wmn −Wnm)Am,y = 0 ,

which can be rewritten as Equation (7) in polar coordinates (see also [12]).
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