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Abstract: Container terminal automation offers many potential benefits, such as increased produc-
tivity, reduced cost, and improved safety. Autonomous trucks can lead to more efficient container
transport. A novel lane detection method is proposed using score-based generative modeling through
stochastic differential equations for image-to-image translation. Image processing techniques are
combined with Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Genetic
Algorithm (GA) to ensure fast and accurate lane positioning. A robust lane detection method can deal
with complicated detection problems in realistic road scenarios. The proposed method is validated
by a dataset collected from the port terminals under different environmental conditions; in addition,
the robustness of the lane detection method with stochastic noise is tested.

Keywords: container terminal; lane detection; image processing; stochastic differential equation;
deep learning

1. Introduction

The global trade carried by sea transportation accounted for around 80% of the total
volume, with a handling capacity of approximately 160 million Twenty-foot Equivalent
Units (TEUs), in the maritime containerization market in the year 2021 [1]. As sea freight
is highly cost-effective for any cargo size, maritime shipping remains the backbone of
global trade and economy. Container terminals must be effectively constructed to meet
the increasing expectations and demands of shipping companies for the reliability of port
services. Seaports are critical nodes in the network for economic and social development
as they empower trade and support supply chain networks. They have recently evolved
into comprehensive transportation hubs that are essential for connecting railways, roads,
and airports. Transforming a port into a smart port has become one of the most practical
strategies for offering today’s intelligent port platform. Three primary target areas charac-
terize smart port automation, sustainability, and collaboration, in which automation has
exploded with the implementation of 4.0 technology such as big data, Artificial Intelligence
(AI), Internet of Things (IoT), etc. [2]. The increased digitization can help port authorities
prepare for volatility. One major operation in the terminals is handling various containers
transported by yard trucks. Automating Container Trucks (ACT) can bring significant
benefits and is crucial to port automation. In this field, a whole automated container
transport system via a roll-on/roll-off method was proposed for connecting a seaport and
a hinterland port [3]. While hybrid technology significantly enhances the port performance
and productivity, optimal design methods offer the considerable potential of automated
technology to the fullest. In addition, the possible options for employing advanced tech-
nology include driver assistance, remote control, and autonomous driving in automated
terminals. In particular, improving lane marking detection and classification is a crucial
technology in developing autonomous logistics or Intelligent Transportation Systems (ITS).
This technology enables the precise estimation of a vehicle’s lateral position and provides
valuable traffic information to the ACT, making more informed driving possible. As a
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result, it has garnered significant interest and concerns among numerous researchers. For
example, Bosch is working on creating cost-effective yet practical products for autonomous
driving in structured environments. Bosch technology combines a camera and mmW-radar
to provide Forward Collision Warning (FCW) or Lane Departure Warning (LDW) [4]. Ad-
vanced Driver-Assistance Systems (ADAS) focus on realizing lane detection and transverse
obstacle recognition. These systems aim to enhance safety during the operation of forklifts
or other industrial trucks [5,6].

Through real-time lane detection and a tracking system, the position and azimuth
deviation of an ACT are generated to provide inputs to its control system. Compared with
magnetic nails and LiDAR-based positioning and navigation techniques [7], vision-based
lane deviation detection offers great potential due to its high accuracy, low cost, and strong
visual content. To date, the vision-based method has been extensively studied and validated
in urban road scenarios [8–10]. The core of lane detection study includes detection accuracy
and robust tracking with efficiency. In addition to image processing techniques, deep
learning-based lane detection and tracking methods have received considerable attention
as a result of their promising applications [11]. Two Convolution Neural Networks (CNNs)
have been developed in complex traffic scenes [10]. The first CNN was utilized for detecting
the existence of road markings and determining their geometric characteristics, while the
other was employed for structural prediction. Another study introduced a dual-view CNN
for lane detection and claimed that the method was more reliable than the current state-
of-the-art methods [12]. Unfortunately, most studies required large-scale datasets, such as
the CULane or TuSimple dataset, to train their network models [13–15]. The open-source
datasets are mostly related to urban road scenarios and might not help detect lanes on the
roads for the ACT in container ports. It can be a costly business to collect a lane dataset
containing numerous samples with accuracy in realistic road scenarios. However, lane
detection and tracking methods based on image processing combinations do not require
large-scale datasets [16,17]. Moreover, strong structural constraints of lanes in container
yard scenes can help achieve better detection and tracking effects in the vision methods.

In this study, a robust lane detection method can deal with complicated detection prob-
lems in realistic road scenarios. A generative model utilizing image processing, machine
learning, and optimization techniques is implemented to locate and reconstruct the lanes
on the roads in the seaport terminals. The proposed strategy efficiently supports driver
assistance, remote monitoring, and self-driving vehicles in the port terminals for handling
containers.

The remainder of this study is organized as follows. Section 2 discusses the related
works, and the problem description in the port terminal will be presented in Section 3.
Section 4 offers the details of the lane detection method to be realized. Finally, Sections 5
and 6 express the experiment results and conclusion of the paper, respectively.

2. Related Work

Over the past few years, many researchers have proposed various techniques for
detecting and tracking lanes in images and videos employing computer vision to assist
autonomous driving. One of the earlier approaches to implementing lane detection was
based on a combination of the Generalized Hough Transform (GHT) and the Kalman Filter.
This approach was first proposed by [18], providing resilience to noise and reducing the
computational load. While this method might best fit straight-line detection, it is less
effective in detecting curved lanes. Researchers have proposed methods based on curve
fitting techniques to address the problem of curved lane detection. For example, a popular
approach is to fit a polynomial curve to the lane markings using techniques such as least
squares curve fitting or Random Sample Consensus (RANSAC) [19]. While this method
effectively detects curved lanes, it might still be sensitive to noise and does not work well in
complex scenarios. Another popular approach to lane detection is based on deep learning
algorithms. In this method, a lightweight UNet is trained to classify pixels or regions in
an image as either belonging to a lane or not [20]. This approach is effective in achieving



J. Mar. Sci. Eng. 2023, 11, 731 3 of 14

state-of-the-art results on various benchmark datasets. In addition, researchers have also
proposed methods based on lane structural analysis and CNNs [21]. The characteristics
of local waveforms were employed to overcome the detection issues related to changing
or curved lanes. The studies mentioned above share a common focus on addressing lane
detection for any public or private road. Rubber-tired Gantry Cranes (RTG) [22] were
proposed for a lane detection and tracking method to deal with the specific lanes in the
port terminals. Instead of a deep learning model, the RTG approach employed traditional
image process techniques for autonomous driving in a container yard.

Based on the above analysis, lane detection is an active research topic, and various
approaches have recently been proposed for advanced driver assistant systems. Each
approach has advantages and limitations, and the choice of method depends on the specific
requirements for a particular system or application. This study presents a novel lane
detection scheme integrating traditional image processing and Score-based Generative
Modeling with Differential Equation (SGMDE). In addition, various road conditions in the
container terminals might be considered to upgrade the detection ability and performance.

3. Problem Description

Figure 1 illustrates the practical setting of the lanes on the road conditions in various
environments. Facilities have been constructed for port operations over the years; the
degradation is evident in the infrastructures and maintenance activities rarely occur at the
terminals. Most seaports are likely to be operated throughout the day, without stopping in
any period, in order to meet global demand and improve the supply chain productivity.
The maintenance of lanes and roads forces a stop to operating port terminals for a certain
period, resulting in a decline in the port throughput and handling volume. In the case of
infrastructure maintenance, port authorities must also guarantee the shipping time, order
schedule, and throughput to meet the strategic goals. In addition, other port operations
may be hindered due to the blockade for maintenance activities, thus disrupting the port
operations smooth running. As a result, the color vision may become washed out or faded
throughout the port operations, as shown in Figure 1. This has the potential to cause many
challenges and issues for the container truck drivers and for capturing images to be used
for lane identification processing, which will support the ACT framework moving towards
higher levels of port automation. Therefore, it is essential to reconstruct the lanes and roads
on the monitor screen of the container trucks to assist the driver or to support the remote-
control system of ACT operations. The autonomous trucks must perform flawlessly in
realistic road scenarios (sunny, rainy, smog, etc.) in any climate. However, shade on sunny
days could also cause potential incidents during cargo handling operations. With all the
challenges in terms of the environmental conditions, this study proposes optimal solutions
using a generative model based on a deep learning neural network. Moreover, stochastic
noise is injected into every training process to increase the accuracy of the generation model.
Then, this proposed model can efficiently deal with many scenarios of the environment
during cargo handling operations in the terminals.
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4. Robust Lane Detection Model

This study uses a stochastic generative model and image processing techniques to
realize a robust lane detection model. A machine learning and optimization technique is
employed to implement lane detection and tracking for autonomous trucks in a container
yard. In particular, the generative model is introduced to solve the complex detection
problems of lanes with smudges, occlusions, and breakages. The whole process of the
lane detection model contains two main stages: pre-processing and lane positioning. In
image pre-processing, the model should deal with various environmental conditions of
terminal images. The SGMDE technique is used to transfer bad images to better images to
enhance the accuracy of the lane detection model. Finally, the lane positioning method is
demonstrated using DBSCAN clustering and GA optimization.

4.1. Transforming Images

As illustrated in Figure 2, the generative model has several advantages over the
existing models in image processing. The SGMDE is developed to transfer image-to-image
information based on the innovation idea [23]. The diffusion model contains a forward
process (data→ noise) and a reverse process (noise→ data).
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Figure 2. Workflow of the generative model.

This model is one of the most sophisticated generative models that creates high-
resolution images. In the forward process, an image is perturbed with multiple scales of
Gaussian noise. A stochastic differential equation is employed to inject noises into the
images in each iteration, moving from x0 to xT . As illustrated in Figure 3, x0 corresponds to
a complex data distribution sampled from the original data distribution and xT describes
purely noises. xT will eventually be an isotropic Gaussian distribution ( T → ∞ ). In the
reverse process, a stochastic differential equation transforms the prior distribution back
into the data distribution by removing noises, moving from xT to x0.
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The image conversion from xt−1 to xt in the forward process is expressed in the
following distribution:

q(xt|xt−1) = N
(

xt;
√

1− βtxt−1, βt I
)

(1)

where xt is a new latent variable representing an image at the period of t;
√

1− βtxt−1
represents the mean of the normal distribution for each time step; βt I indicates a diagonal
matrix of covariance for the multi-dimensional scenarios with the identity matrix I. The
normal distribution (or a Gaussian) is used for understanding the distributions of the
factors in the images. The reparametrized process is described using Taylor expansion,
as follows:

xt =
√

1− βtxt−1 +
√

βtN(0, I)
=
√

1− β(t)∆txt−1 +
√

β(t)∆tN(0, I) (βt := β(t)∆t)
≈ xt−1 − β(t)∆t

2 xt−1 +
√

β(t)∆tN(0, I)
(2)

where ∆t is the time step. The stochastic differential equation models are developed for
randomly varying systems. The Ito stochastic differential equation is given by:

dxt = −
1
2

β(t)xtdt +
√

β(t)dωt (3)
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where ωt describes the standard Winer process as a random variable; dωt can be regarded
as infinitesimal white noise;

√
β(t) is the diffusion coefficient. The solution of a stochastic

differential equation is a collection of random variables {xt}t∈[0,T], in which the step sizes
are controlled by a variance schedule. Any diffusion process can be described as being
the solution of a stochastic differential equation. Injecting stochastic noise into the image
is intended to consider various conditions of input images to enhance the robustness of
the lane detection method. In the reverse process, the image conversion from xt to xt−1 is
expressed as follows:

p(xt−1|xt) = N(xt−1; µθ(xt, t), βI) (4)

dxt =

[
−1

2
β(t)xt − β(t)∇xt log qt(xt)

]
dt +

√
β(t)dωt (5)

where ∇xt is the gradient with respect to xt. Denoising score matching for a model to learn
for the score function can be realized by:

min
θ

Et∼u(0,T)Ex0∼q0(x0)
Ext∼qt(xt |x0)‖sθ(xt, t)−∇xt log qt(xt|x0)‖2

2 (6)

where ‖·‖2 denotes the L2 norm (Euclidean distance); u(0, T) describes a uniform distri-
bution over the time interval. The score-based model sθ estimates the score function by
training a neural network. Reparametrized sampling is given by:

xt = γtx0 + σtε ε ∼ N(0, I) (7)

To compute the reverse differential equation, one needs to estimate the score functions
that describe the log probability density function gradients. The score function of a data
distribution qt is calculated as follows:

∇xt log qt(xt|x0) = −∇xt

(xt − γtx0)
2

2σ2
t

= − xt − γtx0

σ2
t

= −γtx0 + σtε− γtx0

σ2
t

= − ε

σt
(8)

In the reverse process, the Neural Ordinary Differential Equation (NODE) [24] approx-
imates the time-dependent score-based model. The NODE is a subset of deep learning
models that uses a neural network to parameterize the derivative of the hidden state
(Figure 4). This process follows the solution of an ordinary differential equation:

dx =

[
f (x, t)− 1

2
g(t)2∇x log pt(x)

]
dt (9)J. Mar. Sci. Eng. 2023, 11, 731 7 of 15 
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The loss function of the reverse process is given by:

min
θ

Et∼u(0,T)Ex0∼q0(x0)
Ext∼qt(xt |x0)

1
σ2

t
‖ε− εθ(xt, t)‖2

2 (10)

The test setup of the pre-processing stage is illustrated in Figure 5.
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4.2. Lane Positioning

The lane positioning accuracy can be improved by utilizing a color-based comparison
principle and extracting a Region of Interest (RoI) in the image that focuses on the lane
area, while disregarding the areas outside the lane. A sliding value of the image method
is then employed to enhance the accuracy of the straight-line detection. Subsequently,
noise-removing models, such as DBSCAN and GA, are utilized to determine the lane
positioning. Figure 6 shows the flowchart demonstrating the vision-based lane positioning.
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4.2.1. Extract the Region of Interest and Slide of a Grayscale Image

The pre-processing is intended to provide a better input image for the lane positioning
stage. The original image is translated from the noise images with shaded or wet roads
inside the RoI segmentation. This information is employed to extract the area that the lane
locates from an original image to reduce the interference of the background environment
and improve the detection efficiency. To meet this requirement, the lanes must remain
within the RoI image, even as the distance between lanes changes during the operation.
The RoI is narrowed down to focus primarily on the lanes. Given that the captured images
from the container yard truck include numerous non-essential elements (such as container
blocks and cranes), it is crucial to eliminate these to improve the speed and accuracy of
the lane detection method. This is followed by converting the cut-off image to a grayscale
format, and the test results are presented in Figure 7.
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The sliding of a grayscale image method is proposed to find the threshold for the
binary image conversion process. After the RoI is extracted from the image, a horizontal line
is used to slide each vertical pixel, following the ascending, and retrieve its grayscale value.
An example of five lines in the sliding process is illustrated in Figure 8. As shown in Figure 9,
the scale values obtained from the five sample lines are plotted in the graphs. Among these,
the fourth and fifth lines exhibit some similarities, resulting in the determination of the
threshold value for converting the image into a binary format.
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4.2.2. Noise Removing

After converting to the binary image, the images might contain more noise. As shown
in Figure 10, these noises will disturb the performance of the lane positioning method.
Erosion, followed by dilation, is employed to remove the noises. The noise removing
process is essential for the easier positioning of the lane location. After applying the
filtering technique, there is an almost 30% cut-off from the binary image to the image. The
process will hide the noise, and then the following steps will express the straight line.
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4.2.3. DBSCAN Clustering

The clustering algorithms are used to find similarities or dissimilarities among the
data points. When representing the data points in space, the regions of high density will
be typically interspersed by regions of low density. Based on this property, the DBSCAN
clustering algorithm is implemented using unsupervised clustering machine learning
models [25]. This algorithm considers clusters as high-density regions separated by low-
density regions and can detect clusters and noises of arbitrary shapes in the location data.
In lane positioning, a DBSCAN algorithm supports the clustering of the noise and the lane
from the binary image after filtering. Although every parameter influences the algorithm
in specific ways, two main parameters play essential roles in the DBSCAN algorithm,
which is a base algorithm for density-based clustering. The first parameter is Min_point,
which describes a threshold of the minimum number of data points grouped to define a
high-density epsilon neighborhood. The Min_point does not include the center point. The
other parameter ε describes the distance used to determine the neighborhood point with
the core point P. The set of neighboring points N is given by:

Nε(P) = {Q ∈ D : d(P, Q) ≤ ε} (11)

where D is the set of all the data points, and Q is a point belonging to D.
Figure 11 illustrates an example of employing the DBSCAN clustering with the

Min_point = 3 and the distance parameter ε. After applying the clustering technique,
five clusters are found from the binary data point. The clusters represented in blue, orange,
and green denote the lane locations, which will be optimized using an algorithm to im-
prove the lane positioning. The remaining clusters, indicated by white and flamingo colors,
correspond to roadside containers. The optimization algorithm guarantees convergence
when all data points have been visited, ensuring optimal lane positioning.
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4.2.4. Genetic Algorithm

A Genetic Algorithm (GA) is a metaheuristic optimization technique motivated by the
evolutionary process of natural selection and natural genetics [26]. The adaptive method
is used to offer the best solutions to the optimization problems. The GA generates an
initial set of solutions and uses the rules of genetics and natural selection to create different
solutions until an optimal solution is found or a stopping condition is met. For the lane
reconstruction in the container terminals, the GA algorithm is implemented to find the
optimal lane for each cluster from the result of DBSCAN. The target is to find out the
parameters of the straight lines in the terminal scene, as follows:

The gene structure consists of three chromosomes, the parameters (a, b, and c) in
Figure 12. For evaluating the optimal result, the Ordinary Least Square Method (OLSM)
is employed to formulate the objective function of the GA. The OLSM is an optimization
method for selecting the best fit for a range of data. The objective function is expressed
as follows:

minJ =
n

∑
i=1

(axi + byi + c)2

a2 + b2 (12)

The pseudo-code is presented in Algorithm 1 for finding the optimal lane. In the first
step, a new method to select an initial pair of geneses is proposed to reduce the number
of iterations and to enhance the test results. From the cluster data, choosing four random
points combined with the formula is given in Figure 13. Then, there are two gene sequences
(a, b, c) to prepare for the first generation.

J. Mar. Sci. Eng. 2023, 11, 731 11 of 15 
 

 

 

Figure 11. Schematic illustration of DBSCAN clustering. 

4.2.4. Genetic Algorithm 

A Genetic Algorithm (GA) is a metaheuristic optimization technique motivated by 

the evolutionary process of natural selection and natural genetics [26]. The adaptive 

method is used to offer the best solutions to the optimization problems. The GA generates 

an initial set of solutions and uses the rules of genetics and natural selection to create dif-

ferent solutions until an optimal solution is found or a stopping condition is met. For the 

lane reconstruction in the container terminals, the GA algorithm is implemented to find 

the optimal lane for each cluster from the result of DBSCAN. The target is to find out the 

parameters of the straight lines in the terminal scene, as follows: 

The gene structure consists of three chromosomes, the parameters (a, b, and c) in 

Figure 12. For evaluating the optimal result, the Ordinary Least Square Method (OLSM) 

is employed to formulate the objective function of the GA. The OLSM is an optimization 

method for selecting the best fit for a range of data. The objective function is expressed as 

follows: 

 

Figure 12. Genetic operations of GA application. 

( )
2

2 2
1

min
n

i i

i

ax by c
J

a b=

+ +
=

+
   (12) 

The pseudo-code is presented in Algorithm 1 for finding the optimal lane. In the first 

step, a new method to select an initial pair of geneses is proposed to reduce the number 

of iterations and to enhance the test results. From the cluster data, choosing four random 

points combined with the formula is given in Figure 13. Then, there are two gene se-

quences ( , , )a b c  to prepare for the first generation. 

Figure 12. Genetic operations of GA application.



J. Mar. Sci. Eng. 2023, 11, 731 11 of 14

Algorithm 1. Lane positioning based on Genetic Algorithm

Input: Clusters data from the DBSCAN clustering.
For cluster data in range (Num_clusters):

Select four random points in the cluster
Based on the four random points, find out two gene sequences (a,b,c)
For i in range (Max_iteration):

Selection of a pair of parent genes—Roulette Wheel Selection
Crossover the two genes
Mutation
Evaluation of the objective function using the Formula (12)

Output: Optimal gene (a,b,c) for each cluster.
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5. Test Results and Discussion

The experiments were conducted using a Python program running on a PC with
a Window 10 operating system, AMD Ryzen 5 5600G (12 cores), a base clock speed of
3.9 GHz, RAM of 16 GB, and a supported NVIDIA GeForce RTX 3060 graphics card. The
effectiveness is evaluated in various scenarios and compared to a range of lane detection
techniques. For training the SGMDE algorithm, over 1100 lane images on the roads under
different environmental conditions are used, as shown in Figure 14. The dataset is divided
into three portions, with 70% of the data serving as the input for training, 20% used as the
reference data, and the remaining 10% for testing purposes. After the SGMDE is trained,
the image will be used to test the performance by applying the lane positioning method to
other images. Many image sequences are obtained under various environmental conditions,
such as breakage, sunshine, shade, and a wet lane. Various image formats can be used
for image processing. Sometimes, JPEGs might be an ideal choice; JPEG images have a
resolution of 1366 × 720 pixels. The test results are recorded as colored lines superimposed
on the input images. The number of frames with successful recognition is then counted,
and the recognition rate is calculated, as shown in Table 1.

Table 1. Experimental results of the proposed model.

Lane Type No. Images Failed Proportion of Lane
Detection (%)

Average Processing
Time (s)

Sunshine 220 8 96.4% 0.063
Breakage 407 28 93.1% 0.058

Shade 297 23 92.3% 0.061
Wet 176 15 91.5% 0.082

Average 93.3% 0.066
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Figure 14. Dataset images in container terminals.

Various testing conditions in the python program are applied to assess the suitability
of low-resolution images and evaluate the performance of the detection method. These
conditions include scenarios such as breakage, sunlight, shade, and wet scenes. The batch
size of 16 and 100 epochs is set in the training process. The DBSCAN clustering and GA
parameters are set to their values: Min_point = 5, ε = 20 and Max_iteration = 500. The
final results of the reconstruction lanes in the terminals are shown in Figure 15. With
various environmental conditions, the experiments prove the reliability and robustness of
the proposed algorithm in lane detection.
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Figure 15. The test results of the proposed lane detection method.

Based on the test results listed in Table 1, the overall accuracy is obtained at over 93%,
partly showing the recognition ability of the proposed model. This detection method can
be employed in the automated port application. There are some failure cases during the
testing, and these errors come from the poor environmental conditions in the dataset when
training the SGMDE algorithm.

6. Conclusions

This study proposes AI-based image generation schemes using generative diffusion
methods for lane detection in autonomous yard trucks. The robust recognition of lanes
has become a hot topic in industry and academia. The diffusion model considers the
effects of stochastic injection noise on image processing to implement the generative
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model. This article employs machine learning and optimization techniques to improve
the performance and accuracy of the lane detection approach. An SGMDE is used for
image-to-image translation and image-processing techniques in combination with DBSCAN
clustering and GA optimization for lane reconstruction. The proposed method is introduced
for reconstructing road lanes with smudges and breakages over operating time. The
experimental results show that the proposed method efficiently detects the lanes on the
roads in various environments using a real terminal dataset. The detection results are
obtained by 93%, illustrating that the model meets the requirement of ACT in the port
terminal. Robust lane detection aids drivers and autonomous container vehicles to operate
in the terminals more efficiently.

Nevertheless, every study has limitations to some extent. A limitation of this study is
that the ability to detect will decrease when one of two lanes is entirely in the shadow. In
addition, the methodologies should be refined to comprise curved lanes and recognize the
road instruction signs in the seaport terminals. More sophisticated techniques should be
devised to detect obstacles, humans, or containers, thus enhancing the safety and efficiency
in terminal operations. Instead of using an RGB camera, a stereo camera can be employed
to collect the depth data in real-time for measuring the distance to the objects to improve
the reliability of the autonomous system.
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