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Abstract: Shipping networks face natural or man-made port emergencies, and the failure of a port
affects the network’s connectivity and efficiency. It is very necessary to give priority to the selection
of ports that should be maintained or ensure service capacity in case of port failure. The importance
evaluation of ports is of great significance to improve the efficiency of maritime transport. In view of
this, this paper proposed a port importance evaluation method in shipping networks integrating the
centrality index and vulnerability index. The indexes are, respectively, degree centrality, weighted
degree centrality, betweenness centrality, closeness centrality, change rate of network efficiency, and
connectivity. The weight of each index is calculated by the projection pursuit model. The results
show that the proposed method integrates the different performances of each index. The importance
of Singapore port, Colombo port, and Port Klang rank as the top three. They are the hub ports of the
main lines of Asia, Europe, and Africa and occupy extremely important core positions in the network.
Finally, the ports are classified based on importance value, and the shipping network after the failure
of some ports is compared. This research can provide a scientific basis for ensuring the efficiency,
connectivity, and stability of shipping networks.

Keywords: port importance evaluation; shipping network; centrality; vulnerability; projection
pursuit model

1. Introduction

Since the 21st century, the degree of economic globalization and regional integration
has been deepening. An important feature of economic globalization is the rapid devel-
opment of international trade. More than 80% of the goods transported in international
trade are transported by sea, accounting for 70% of the total international trade [1]. In
October 2013, China put forward the concept of the Maritime Silk Road (MSR) for the first
time, and proposed strengthening connectivity construction to achieve common devel-
opment and prosperity. As strategic infrastructure and important fulcrum points, ports
increasingly become the nerve center of the global integrated transport network and the
core of resource allocation in the international market [2].

At present, trade between ports along the MSR has become increasingly frequent,
and a relatively complete route network has been basically formed. However, due to the
complexity of the countries and regions along the MSR, there are political, environmental,
religious, cultural, economic, and other problems. And natural disasters such as earth-
quakes, tsunamis, typhoons, etc., sometimes pose a fatal threat to the ports, thus affecting
normal operations [3]. If core ports are unable to realize their own port functions due
to certain emergencies, the network efficiency of the container transport network will be
reduced, affecting the trade exchanges between countries and regions along the MSR [4].

The role played by ports has changed from traditional regional gateways to locations
of important value-added and complex logical-related activities [5]. Therefore, studies on
the importance of ports have attracted wide attention from countries all over the world.
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The different positions and topologies of port nodes in the network result in their different
importance [6]. For example, Ducruet et al., 2010, used betweenness centrality to study the
changes in the location of hub ports in Northeast Asia and revealed the changing trend of
shipping routes in this region [7]. Li et al., 2015, divided the global shipping network into
25 regions from a geographical perspective and analyzed the status of each shipping region
in global shipping based on the proposed multi-center index [8]. Wan et al., 2021, proposed
a measurement method for port importance. Their study not only considered the network
centrality index, but also integrated the economic index [9]. Yang et al., 2022, proposed
a method to analyze the importance of ports along the MSR by considering both local
propagation and global centrality. The SIS model and the Kendall correlation coefficient
were used to verify the superiority of their method [10].

Indexes based on centrality have been widely used to evaluate and determine the
importance of ports, but the use of centrality measures alone only reflects one aspect of
the role of ports in shipping networks, and vulnerability indexes also reflect the impact of
ports on the network in different aspects. In order to evaluate the importance of ports more
comprehensively, this paper synthesizes the centrality index and vulnerability index, using
the projection pursuit model to calculate the weight. Then the importance of ports along
the MSR is evaluated. These research results can provide useful insights for identifying
influential ports in the shipping network. The obtained ranking of port importance also pro-
vides a theoretical basis for the selection of ports that should be prioritized for maintaining
or guaranteeing service capability under actual emergencies, which is of great significance
for ensuring the connectivity, stability, and reliability of the network and promoting trade
cooperation among countries along the MSR.

The paper is structured as follows. Section 2 provides a review of related literature.
Section 3 introduces the research methods, including the indexes and the projection pursuit
model. In Section 4, we construct the MSR shipping network and combine the centrality
indexes and vulnerability indexes to calculate the importance of all ports. Finally, the
conclusions are provided in Section 5.

2. Literature Review

A shipping network can be abstracted into a complex network composed of ports,
routes, ships, and other major elements [11]. Based on complex network theory, current
research transforms the real maritime system into an abstract complex network and ana-
lyzes the topology structure of the network, including node degree, clustering coefficient,
average path length, and node strength. These topologies help us better understand the
maritime network. The degree distribution reveals the scale-free characteristics of the
maritime network [12]. A few ports have high node degree, and the rest have low node
degree, which follows the power-law distribution. The smaller average shortest path length
and larger agglomeration coefficient also illustrate the small-world characteristics and
accessibility of the maritime transport network [13].

Centrality is an important reflection of the position of port nodes in the network and
plays an important role in revealing the spatial structure characteristics of the shipping
network. Tovar et al., 2015, analyzed the connectivity of ports in the Canary Islands by
selecting the degree, betweenness, and port accessibility index [14]. Based on the core
area of the MSR shipping network in the 21st century, Li et al., 2018, selected 34 major
container ports in the target area and analyzed the central position of ports in the MSR
container shipping network based on five indicators. The results show that Hong Kong
port, Shenzhen port, Dalian port, Singapore port and Shanghai port occupy relatively
more important hubs in the network [15]. Wang et al., 2016, expanded the application of
three basic centrality measures (degree centrality, betweenness centrality, and closeness
centrality) in the directional weighted container shipping network. The factors of cargo
flow and transportation capacity are considered, which better reflect the characteristics of
the actual situation [16].
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In addition, researchers have also found some rules in combination with the space–
time characteristics of the centrality index. Xu et al., 2015, studied the centrality characteris-
tics of the global shipping network from 2001 to 2012, and analyzed the uneven evolution
process of the region [17]. This evolution process also proved that the shipping network has
heterogeneity in space and structure [18]. At the same time, due to the different economic
backgrounds of each region, the evolution process of the global shipping network is also
unstable [19]. Ducruet and Notteboom, 2012, analyzed the global liner transport network
in 1996 and 2006, and studied the relative position of ports in the global network through
centrality indexes [20].

The concept of vulnerability was first proposed in the field of natural disasters and
is used to indicate the possibility and degree of damage to the system when it is affected
by adverse factors such as disasters. The study of maritime network vulnerability mainly
refers to the impact degree of network connectivity when the network is attacked or par-
tially failed, focusing on the impact on the whole system when some nodes, paths, and
other elements fail or are disturbed [21]. From the perspective of quantitative indexes,
Wang et al., 2016, proposed a quantitative method to study the change rate of network
vulnerability. The quantitative indexes include the change rate of characteristic values
such as network average degree, network clustering coefficient, proportion of network
isolated nodes, network average distance, and network efficiency [22]. Viljoen and Joubert,
2016, sorted the edges according to their importance and deleted edges in the network
according to their order, and studied the impact of edge failure on the topology vulnera-
bility of the global container shipping network. Measures include link betweenness and
link salience [23]. Guo et al., 2017, analyzed the vulnerability of the China–Japan–South
Korea shipping network based on average degree, clustering coefficient, and distance value
by using the blocking flow theory, hub port interruption and deletion, and other meth-
ods [24]. Yu et al., 2020, proposed a quantitative method of network survivability to assess
vulnerability [25]. Xu et al., 2022, proposed a new global liner transport network cascading
model, taking into account the dynamic process of container flow redistribution between
ports, and evaluated the vulnerability of network to the cascade failure caused by port
congestion propagation [26]. Wen et al., 2022, used three centrality measures considering
different network topological information to identify the importance of ports. The three
centrality measures include neighborhood-based centrality, gravity-based centrality, and
iterative refinement centrality, and an index is proposed based on importance to analyze
the vulnerability of the network [27].

3. Research Method
3.1. Index

The indexes involved in the proposed method include centrality indexes and vulnera-
bility indexes. The vulnerability indexes are the change rate of network indexes when the
port fails. The specific introduction and formula are as follows [22,28,29].

(1) Degree Centrality (DC)
The degree centrality of node i is measured by the number of nodes connected by

edges. The greater the degree centrality of node, the more important the node is. The
calculation formula is

DCi =

∑
j∈V

aij

N − 1
(1)

where V = {v1, v2, · · · , vN} is the node set, N is the total number of nodes, and aij is the
value in the adjacency matrix in the unweighted network.

(2) Weighted Degree Centrality (WDC)
The weight centrality of node i is measured by the edge weight of the node, and the

calculation formula is
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WDCi =

∑
j∈V

bij

∑
i∈V

∑
j∈V

bij
(2)

where bij is the value in the adjacency matrix in the weighted network, and the weight is
the number of connected edges.

(3) Betweenness Centrality (BC)
The betweenness centrality of node i is measured by the ratio of the shortest path

number of any two nodes passing through node i in the network to the shortest path
number between the two nodes. The greater the betweenness centrality of nodes, the more
important the nodes are. The calculation formula is

BCi =
2

(N − 1)(N − 2) ∑
i 6=s 6=t

g(s, t|i)
g(s, t)

(3)

where g(s, t) represents the number of shortest paths of any two nodes s and t in the
network, and g(s, t|i) represents the number of shortest paths of nodes s and t through i in
the network.

(4)Closeness Centrality (CC)
The closeness centrality of node i is measured by the reciprocal of the average distance

between the node and other nodes. The greater the closeness centrality of the node, the
easier the node information is to spread, and the more important the node is. The calculation
formula is

CCi =
1
di

=
N − 1
∑
j 6=i

dij
(4)

where dij is the shortest path length between port i and j.
(5) Change rate of Network Efficiency (CRNE)
Network efficiency is usually used to reflect the connectivity difficulty between ports

in the whole network. The transport efficiency between any two port nodes i and j can
be expressed by the reciprocal of the shortest path length. The average value of network
efficiency between all port pairs is the efficiency value of the whole network, and the
calculation formula is

NE =
1

N(N − 1)∑
i 6=j

1
dij

(5)

Then, the index of the change rate of network efficiency is

CRNEi =
NE− NEi

NE
(6)

where NE represents the initial network efficiency, NEi represents the network efficiency
after the failure of port i, and CRNEi represents the change rate of network efficiency after
the failure of port i.

(6) Change rate of network connectivity (CRNC)
The port scale of the maximum connected subgraph reflects the network connectivity

after port i fails. The ratio of the number of ports in the maximum connected subgraph to
the initial number of ports in the network is used to measure the overall connectivity of the
network. The calculation formula is

NC =
nmax

N
(7)

where nmax is the number of ports included in the maximum connected subgraph.
Then, the index of the change rate of network connectivity is

CRNCi =
NC− NCi

NC
(8)
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where NC represents the initial network connectivity, NCi represents the network con-
nectivity after the failure of port i, and CRNCi represents the change rate of network
connectivity after the failure of port i.

3.2. Projection Pursuit Model

The projection pursuit method is a new statistical method for addressing multi-index
complex problems. It is a cross between statistics, applied mathematics, and computer
technology and offers unique advantages in analyzing and processing data with high di-
mensionality that is also nonlinear and non-normally distributed [30]. The idea of projection
pursuit is to project high-dimensional data onto one-dimensional space, and then find the
comprehensive projection eigenvalues of high-dimensional data structures or features in
the one-dimensional space, and finally analyze and study the features of high-dimensional
data [31]. The one-to-one corresponding functional relationship between the projection
eigenvalue and the dependent variable is established, to complete the transformation from
high-dimensional data to low-dimensional data. In this process, multiple evaluation in-
dexes are integrated into a comprehensive evaluation index, which is then used for a more
reasonable classification and evaluation of samples [32,33].

As a comprehensive evaluation method directly driven by sample data that can be
used to deal with multi-index complex problems, this method seeks the best projection
direction according to the data characteristics of the sample. The comprehensive evaluation
of the research object is realized according to the size of the projection value. The obtained
evaluation results are highly consistent with actual data and have strong interdisciplinary
universality [34]. Therefore, the projection pursuit model is used for the study of water
abundance of mine aquifers with multifactor comprehensive evaluation. Figure 1 shows
the flow path of projection pursuit model.
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(1) Data standardization
In order to eliminate the impact of data dimension and unit between various indexes, it

is necessary to standardize the sample data. This paper uses the range method to calculate;
the calculation formula is as follows:

x(i, j) = [x∗(i, j)− xmin(j)]/[xmax(j) − xmin(j)] (9)

where x∗(i, j) is the original value of the j-th index of sample i, x(i, j) is the standardized
value of the j-th index of the sample, xmax(j) is the maximum value of the j-th index, and
xmin(j) is the minimum value of the j-th index.
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(2) Projection pursuit function construction
Assuming that the number of indexes is p, the projection direction vector is

a = {a(1), a(2), . . . , a(p)}, and the one-dimensional projection of sample i in this direction
is Z(i) = ∑

p
j=1 a(j)x(i, j).

And then the projection index function is constructed.

Q(a) = SZDZ (10)

SZ =
√

∑n
i=1 (Z(i)− E(Z)2/(n− 1) (11)

DZ = ∑n
i=1 ∑p

j=1 (R− r(i, j))µ(R− r(i, j)) (12)

R = 0.1SZ (13)

r(i, j) = |Z(i)− Z(j)| (14)

µ(R− r(i, j)) =
{

1, R ≥ r(i, j)
0, R < r(i, j)

(15)

where Sz and Dz, respectively, represent the standard deviation and local density of the
projected eigenvalue z(i), E(Z) is the mean value of Z(i) sequence, r(i, j) is the distance
between samples, and R is the window radius of the local density.

(3) Optimization of the projection pursuit index function based on genetic algorithm
When the sample set is given, the projection index function Q(a) is only affected by the

projection direction a. The following optimization problems need to be solved to analyze
the optimal projection direction.

Objective function:
max Q(a) = SZDZ (16)

Constraint condition:

s.t.
p

∑
j=1

a2(j) = 1 (17)

This is a nonlinear optimization problem, which is difficult to solve by traditional
optimization methods, and it needs to be solved by combining relevant algorithms. In
this paper, the real coding-based accelerated genetic algorithm (RAGA) is used to solve
the problem of high-dimensional global optimization. This improved genetic algorithm
overcomes the shortcomings of binary coding, and can greatly improve the optimization
speed, speeding up the convergence speed. The cycle of RAGA can be adjusted gradually,
narrowing the interval for searching the optimal value of the optimization variable, and
improving the accuracy. The optimization steps of RAGA mainly include the following [33]:

Step 1: Encode the variables to be optimized.
Step 2: Initialize the parent group randomly. Each individual in the parent group

represents a chromosome gene code.
Step 3: Calculate the fitness of individuals in the parent group; evaluate and rank the

fitness. The higher the fitness, the higher the probability of being selected. The lower the
fitness, the lower the probability of being selected.

Step 4: Select individuals encoding chromosome genes according to their fitness.
Step 5: Carry out crossover and mutation operation on the parent group.
Step 6: Optimize and iterate according to the crossover and mutation results of Step 5,

so as to generate a new generation of the population.
Step 7: Use the variable change interval generated by the first and second optimization

as the initial change interval of the new round of variables, and return to Step 1 to realize
the accelerated operation. Until the optimal individual optimization criterion function
value is less than the set value, or the number of algorithm runs is equal to the set number,
the algorithm ends and the final optimal result is obtained.
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4. Importance Evaluation of Ports along the MSR
4.1. Data and Network Construction

The MSR is an open cooperation initiative, with different definitions of its spatial
scope. On the whole, its key direction is from China’s coastal ports to the South Pacific
and Indian Ocean through the South China Sea. According to the key direction of the
MSR, the research scope is defined as ports in countries and regions including East Asia,
Southeast Asia, South Asia, West Asia, the east coast of Africa, Oceania, the Mediterranean,
and Europe. The research scope is as shown in Figure 2.
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Figure 2. Scope of MSR.

The data come from Container Forecaster in 2019 of Drewry, which includes major
container routes and ports. Table 1 shows partial route data; ports are represented by port
codes. The original route data used is attached as Supplementary File.

Table 1. Partial route data from Container Forecaster in 2019 of Drewry.

Carrier/Service, 2M (Maersk, MSC) Service Type Route

2M—AE7/Condor ETE
CNTAO, CNNGB, CNSHA, CNYTN, MYTPP, EGSCT, MAPTM,
FRLEH, DEHAM, BEANR, GBGTW, FRLEH, MAPTM, OMSLL,

AEJEA, CNYTN, CNTAO

2M—AE10/Silk ETE CNXGG, KRKWA, CNNGB, CNSHA, CNYTN, MYTPP, PTSIE,
DEBRV, PLGDN, DEBRV, NLRTM, MYTPP, CNSHA, CNXGG

2M—AE5/Albatross ETE
CNDLC, CNXGG, KRPUS, CNNGB, CNSHA, CNYTN, MYTPP,

NLRTM, DEBRV, SEGOT, DKAAR, DEBRV, DEWVN, SGSIN,
CNSHA, CNDLC

2M—AE2/Swan ETE CNTAO, KRPUS, CNNGB, CNYTN, MAPTM, NLRTM, GBFXT,
BEANR, NLRTM, ESALG, SGSIN, HKHKG, CNTAO

2M—AE1/Shogun ETE
CNNGB, CNSHA, CNXMN, HKHKG, CNYTN, MYTPP, LKCMB,

GBFXT, NLRTM, DEBRV, NLRTM, MAPTM,
OMSLL, LKCMB, CNNGB

2M—AE6/Lion ETE CNNGB, CNSHA, CNYTN, MYTPP, ESALG, BEANR, GBFXT,
FRLEH, EGSCT, SGSIN, CNNGB

2M—AE7/Condor ETE
CNTAO, CNNGB, CNSHA, CNYTN, MYTPP, EGSCT, MAPTM,
FRLEH, DEHAM, BEANR, GBGTW, FRLEH, MAPTM, OMSLL,

AEJEA, CNYTN, CNTAO

After screening, 179 ports are finally obtained. In the Space L model, each port is
directly connected according to route, which can directly reflect the spatial characteristics
and topological structure of the shipping network. It can facilitate the analysis of key nodes
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in the network and in the mining of the characteristics of the shipping network. Therefore,
this paper uses the Space L model to build the undirected MSR shipping network. Except
for the WDC index, other indexes are based on an undirected unweighted network. The
edge weight is the number of routes. Figure 3 shows the undirected unweighted MSR
shipping network diagram based on Gephi software.
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4.2. Network Topology Analysis

The average node degree of the MSR shipping network is 7.955, among which 99 port
nodes have a degree value less than 5, accounting for 55% of all the nodes, and 16 port
nodes have a degree value greater than 20, accounting for 8.9% of all the nodes.

In order to analyze the small-world characteristics of the MSR shipping network, the
average path length and aggregation coefficient of the network and a random network of
the same size are calculated, respectively, and the results are shown in Table 2.

Table 2. Topological comparison between the MSR shipping network and a random network of the
same scale.

Network Number of Nodes Average Degree Average Path Length Clustering Coefficient

MSR shipping network 179 7.955 2.915 0.4899
Random network 179 7.943 2.721 0.0436

It can be found that the average path length of the random network is 2.721, and the
clustering coefficient is 0.0436, while the average path length of the MSR shipping network
is 2.915, and the average clustering coefficient is 0.4899. The clustering coefficient of the
MSR shipping network is higher than that of the random network. Therefore, it has the
characteristics of a small-world network. Moreover, the average route length means that
it can be reached after an average of two transshipments from the port of origin to the
port of destination. In addition, it is also found that the average path length of the MSR
shipping network is slightly higher than that of the random network of the same scale. This
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is because shipping is limited to a certain extent by factors such as marine geography and
channel distribution, and ships cannot sail at will. Most of the cross-regional routes need to
pass through certain channels or canals for transportation.

4.3. Importance Evaluation of Ports

Firstly, the centrality index of each port is calculated, including DC, WDC, BC, and CC.
Then we calculate the network efficiency and network connectivity of the MSR shipping
network when it is not disturbed, and these values are 0.3878 and 1, respectively. Then,
we need to simulate the failure of each port one by one. From the perspective of topology,
the failed port and its connected edges should be deleted. At this time, each vulnerability
quantified index value is calculated by combining the index value of the shipping network
in the initial state, namely, CRNE and CRNC. Table 3 shows the index values of the top
20 ports in terms of WDC.

Table 3. The centrality index and vulnerability index of the top 20 ports in terms of WDC.

Port WDC DC BC CC CRNE CRNC

Singapore 0.0390 0.3483 0.2784 0.5651 5.47% 0.56%
Shanghai 0.0266 0.1348 0.0239 0.4310 1.56% 0.56%
Shenzhen 0.0265 0.1461 0.0473 0.4552 1.80% 0.56%

Ningbo-Zhoushan 0.0243 0.1461 0.0427 0.4384 1.80% 0.56%
Port Klang 0.0170 0.2697 0.1816 0.5235 4.45% 0.56%
Colombo 0.0159 0.1854 0.0932 0.4917 2.57% 1.68%

Rotterdam 0.0139 0.1461 0.0647 0.4734 3.01% 1.12%
Jeddah 0.0121 0.1629 0.0645 0.4709 2.17% 0.56%

Jebel Ali 0.0115 0.1461 0.0314 0.4635 1.66% 0.56%
Busan 0.0112 0.1236 0.0318 0.4228 1.66% 0.56%

Tanjung Pelepas 0.0111 0.2022 0.1031 0.5100 3.55% 0.56%
Qingdao 0.0106 0.1124 0.0227 0.4149 1.44% 0.56%

Hong Kong 0.0103 0.1461 0.0362 0.4320 1.92% 0.56%
Hamburg 0.0086 0.0618 0.0073 0.3539 1.18% 0.56%
Antwerp 0.0083 0.0787 0.0158 0.3763 1.33% 0.56%
Xiamen 0.0081 0.0674 0.0015 0.3973 1.28% 0.56%

Port Said 0.0078 0.1517 0.0591 0.4529 1.89% 0.56%
Kaohsiung 0.0072 0.1067 0.0227 0.4352 1.59% 0.56%
Le Havre 0.0071 0.1124 0.0214 0.4300 1.51% 0.56%
Salalah 0.0070 0.0955 0.0069 0.4320 1.40% 0.56%

It can be found that the position of ports along the MSR is different. For example,
the WDC value of Shanghai is relatively large, while BC and CC are relatively small. This
is because the port bears a large amount of traffic in the network, but its pivotal role is
weaker than that of other ports, such as Singapore, Port Klang, Colombo, Shenzhen, etc.
Different ports affect different aspects of network vulnerability. From the perspective of
CRNC, the failure of each port alone has a small impact on the connectivity of the MSR
shipping network. Except for the failure of Colombo and Rotterdam ports alone, which
will make some nearby ports become isolated nodes, the failure of other ports alone will
not affect the connectivity of the whole shipping network. This is mainly because each
port already has shipping contacts with many ports. It does not rely mainly on individual
important ports.

The objective function and constraint condition of Formulas (15) and (16) are then
constructed. The real coding-based accelerated genetic algorithm (RAGA) is used to solve
the optimization problem. The values of the best projection vector are 0.5889, 0.3871, 0.4251,
0.0145, 0.3273, 0.2929, which is the weight of the corresponding index. In the calculation
results, Singapore port, Colombo port, and Port Klang are the most important, with values
of 1.8843, 1.1160, and 0.9631, respectively. This is mainly because they are the hub ports
of the main line of the MSR and occupy very important core positions in the network.
Ilyichevsk port and General Santos port are the least important because of their small
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hinterland location and poor hub function. Due to space limitation, Figure 4 shows only
the ports with the top 50 importance values.
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Figure 4. The importance of the top 50 ports.

According to the calculated importance value, the K-means clustering algorithm is
used to classify ports. The algorithm flow is as follows. Firstly, K samples are randomly
selected in the importance data set as the initial center point of clustering. Then we calculate
the Euclidean distance between all other samples and K sample points, compare the K
distance values between sample points and K central points, and classify them as the closest
center point. Finally, we recalculate the cluster center point and repeat the previous steps
until the cluster center point position converges.

The K-means clustering algorithm divides the ports along the MSR into four categories:
first-class, second-class, third-class, and fourth-class. The number of ports in each category
is 2, 12, 33, and 132, respectively. The ports included in the first three categories are shown
in Table 4.

Table 4. Classification results of ports along the MSR based on K-means clustering algorithm.

Category Port

First-class Singapore, Colombo

Second-class
Port Klang, Shenzhen, Rotterdam, Shanghai,

Ningbo-Zhoushan, Tanjung Pelepas, Jeddah, Jebel Ali,
Hong Kong, Port Said, Piraeus, Busan

Third-class

Bremerhaven, Qingdao, Kaohsiung, Le Havre, Salalah,
Antwerp, Jawaharlal Nehru, Guangzhou, Hamburg,

Davao, King Abdullah Port, Xiamen, Ambarli, Tangier,
Melbourne, Marsaxlokk, Algeciras, Mundra, Damietta,
Valencia, Brisbane, Tianjin, Genova, Tauranga, Gioia

Tauro, Sydney, Fremantle, Durban, Felixstowe, London,
Southampton, Djibouti, Abu Dhabi

In order to highlight the important position of key ports in the shipping network,
ports of first-class and second-class categories in the classification results are deleted, and a
new shipping network is obtained, as shown in Figure 5.
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It can be found that these ports occupy a very important position in the MSR shipping
network. Deleting these ports destroys the core port group structure of the MSR. At the
same time, it shows that the ports of the first-class and second-class categories are at the core
of the port group along the MSR. This result is consistent with the actual situation. If these
ports are damaged, the accessibility of the MSR shipping network will be seriously affected.

5. Conclusions

This paper proposes a port importance evaluation method based on the centrality
index and vulnerability index. The degree centrality, weighted degree centrality, between-
ness centrality, closeness centrality, change rate of network efficiency, and change rate of
network connectivity are combined comprehensively. The weight of each index is calcu-
lated by the projection pursuit model. Finally, the evaluation method is verified in the MSR
shipping network.

The method proposed in this paper integrates the different performances of each index.
It is more comprehensive in importance evaluation, avoiding the limitations of the indi-
vidual index. The evaluation results show that the most important ports are concentrated
in transport corridors and transit areas. The importance of Singapore, Colombo, and Port
Klang rank as the top three. They are the hub ports of the main line of the MSR and occupy
extremely important core positions in the network.

The importance evaluation method proposed in this paper comprehensively considers
the centrality index and vulnerability index. The research results can provide valuable
reference for targeted maintenance of the port, effectively ensuring the transport efficiency
of the MSR shipping network. In the future, these evaluation methods can be enriched
in combination with actual situations, such as considering the failure probability and
self-recovery ability of the port, and providing theoretical solutions for specific decisions.
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