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Abstract: In this study, we present a hybrid approach of Ant Colony Optimization algorithm (ACO)
with fuzzy logic and clustering methods to solve multiobjective path planning problems in the case
of swarm Unmanned Surface Vehicles (USVs). This study aims to further explore the performance
of the ACO algorithm by integrating fuzzy logic in order to cope with the multiple contradicting
objectives and generate quality solutions by in-parallel identifying the mission areas of each USV to
reach the desired targets. The design of the operational areas for each USV in the swarm is performed
by a comparative evaluation of three popular clustering algorithms: Mini Batch K-Means, Ward
Clustering and Birch. Following the identification of the operational areas, the design of each USV
path to perform the operation is performed based on the minimization of traveled distance and energy
consumption, as well as the maximization of path smoothness. To solve this multiobjective path
planning problem, a comparative evaluation is conducted among ACO and fuzzy inference systems,
Mamdani (ACO-Mamdani) and Takagi–Sugeno–Kang (ACO-TSK). The results show that depending
on the needs of the application, each methodology can contribute, respectively. ACO-Mamdani
generates better paths, but ACO-TSK presents higher computation efficiency.

Keywords: ant colony optimization; fuzzy logic; multiobjective path planning; swarm USV;
metaheuristics; clustering

1. Introduction

Robotic vehicles are integrated into the modern style of life to undertake challenging
tasks, such as monitoring or navigation assistance [1]. An Unmanned Surface Vehicle (USV)
is a type of autonomous robotic vehicle with various applications, including ocean monitor-
ing [2,3], safety and rescuing [4] and swarm approaches combined with Unmanned Aircraft
Vehicles (UAVs) and/or Unmanned Ground Vehicles (UGVs) for monitoring. The increased
use and application of USVs impose the need for more autonomous functions/decisions in
dynamic and complex environments without any human interference, such as the ability to
find an optimal route and to avoid detected obstacles in real time [5].

Path planning problems can be found in various domains, such as air transportation
and UAVs [6–9], robotic vehicles and USVs [5] and even for smart assistive systems for
individuals with disabilities [1,10,11]. To address the USV path planning problem in
complex and dynamic environments, multiple factors/objectives should be considered
for generating an optimal path. Traditional approaches for path planning are based on
single-objective metaheuristics for finding the shortest path or the most energy efficient
or safest path, among others. For instance, A* [12,13], Dijkstra [14] and Ant Colony
Optimization (ACO) [15,16], among others, have been used to address the aforementioned
single-objective path planning problems.

The path planning of unmanned or autonomous surface vehicles (USVs/ASVs) aims
to use optimization algorithms to determine optimal paths/trajectories for a specific op-
eration. The problem can be defined as a route identification between two positions in
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a dynamic space. The target is to find a collision-free route, physically feasible within
spatial constraints and certain optimization criteria/objectives [17]. The path planning
approaches can be categorized to global and local path planning and to single- or multiob-
jective optimization. In general, classical approaches include visibility graphs and Voronoi
diagrams [18], graph-based algorithms, such as Dijkstra and A*, or Potential Fields [19].
On the other hand, intelligent path planning is based on Deep Reinforcement Learning [20],
evolutionary algorithms, artificial intelligence or fuzzy logic [17,19,21].

In the case of single-objective unmanned or autonomous surface vehicles’ path plan-
ning, commonly used objectives include the minimization of traveled distance, traveled
time and energy consumption or the maximization of safety [17]. ACO has been applied for
obstacle avoidance [22], hybridized with artificial potential field for adaptive early warn-
ing [23]; for global path planning combined with quantum computing [24], with Bayesian
network [25] and with immune algorithm [26]; and for collision avoidance [16]. A* was
used as a stand-alone or hybrid approach in maritime environments with dynamic obstacles
and ocean currents [13], as well as for path smoothing [12,27]. Other studies propose the
use of a multilayer path planner for obstacle avoidance [28] and Voronoi diagram [29] or
Particle Swarm Optimization algorithm (PSO) [30] for finding energy efficient paths.

When it comes to path planning with multiple objectives of unmanned or autonomous
surface vehicles, limited studies have been proposed. The majority of them are based
on common approaches, such as scalarization and Pareto optimality [31]. On the other
hand, few methodologies employ fuzzy logic (FL) or develop novel approaches to address
efficiently in terms of computational effort in the multiobjective path planning problem [32].
In the literature, the scalarization of the objective terms by using mostly the weighted
sum has been proposed for multiobjective USV path planning to combine time, distance
and energy consumption. To solve the aforementioned modeling, a hybrid A* algorithm
was developed [33]. In another study [34], the Pareto optimality was adopted with a
particle swarm optimization algorithm for path planning of USVs with current effects. The
Convention on the International Regulations for Preventing Collisions at Sea (COLREGs)
with a hierarchical inclusion of constraints were integrated to form a multiobjective opti-
mization framework. To solve this problem, a hierarchical multiobjective particle swarm
optimization (H-MOPSO) algorithm was proposed for ASVs [35]. In ref. [36], FL has been
integrated to the ACO algorithm for finding an optimal path among multiple objectives,
distance, energy consumption and path smoothness. Another study on ASVs employs
fuzzy decision making in a hybrid global–local path planning for collision avoidance by
using the Theta*-like heuristic [37]. A comparative study [32] among FL and Root Mean
Square Error evaluation criterion was conducted for the novel swarm intelligence algo-
rithm (SIGPA) [38]. Another comparative study for ASVs focuses on local path planners
for monitoring applications including A*, Potential Fields (PF), Rapidly Exploring Random
Trees* (RRT*) and variations of the Fast Marching Method (FMM) [39].

The current literature on path planning for a swarm of USVs includes the use of
the improved adaptive adjustable fast marching square method to meet the COLREGs
requirements [40] and for collision avoidance in restricted waters [41]; the B-spline data
framing approach for smooth operational area design [42]; a negotiation protocol based
on ad hoc networks to solve the collision avoidance problem in the case of a swarm of
USVs [43]; the particle swarm optimization based on obstacle dimension to optimize
defense paths of USVs to intercept intruders in the context of a collaborative defense with
USVs and UAVs [44]; and the Improved Salp Swarm Algorithm for a cooperative path
planning of multiple USVs in the case of search and coverage in water environments [45].
Most approaches of swarm unmanned surface vessels for search and hunting are based on
swarm intelligence, such as the PSO algorithm, ABC algorithm and ACO algorithm [46].
Based on ref. [46], ACO, over the other compared algorithms, has faster convergence and
higher robustness and parallelism, with simple mathematical operations. However, it can
easily fall to local optima.
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This study focuses on the problem of multiobjective path planning of a USV swarm
in the case of covering an operational area and visiting multiple points of interests. The
proposed methodology consists of hierarchical steps (Figure 1). The problem is divided
into two subproblems: (i) The management of the swarm by identifying collision-free
suboperational areas for each USV in the swarm. This is implemented through a compar-
ative evaluation of popular clustering algorithms. (ii) The design of the optimal path for
each USV to implement the operation with respect to multiple objectives. To address this
problem, a comparative evaluation of ACO enhanced with fuzzy logic is conducted.
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Specifically, this study takes advantage of the state-of-the-art ACO-FS algorithm pro-
posed in [36], enhanced with fuzzy logic to address the multiobjective path planning
problem. To overcome the limitations of [36] and expand the methodology to a swarm
of USVs to cover a certain area and visit multiple targets, this study employs a clustering
approach to group the targets based on weather and geolocation data. For the clustering,
three popular clustering methods, namely the Mini Batch K-Means, Ward’s Hierarchical
Agglomerative Clustering and Birch, were compared and evaluated based on the aggre-
gation of three clustering evaluation methods. Then, a comparative evaluation of two
popular fuzzy inference systems (FIS), Mamdani and Takagi–Sugeno–Kang (TSK), follows.
Therefore, through a comparative evaluation process, the best suitable FIS and clustering
algorithm for this application is identified (Figure 1).

2. Materials and Methods

In this section, the proposed methodology is presented. Following the hierarchy of the
methodological steps in Figure 1, Section 2.1 is dedicated to the presentation of the swarm
problem and the clustering approach used to address it. The multiobjective path planning
problem is presented in Section 2.2. Specifically, the objective terms are described with their
formulation. Then, in Section 2.3, the proposed optimization algorithm ACO is presented,
followed by the presentation of the FISs that are employed for generating balancing paths
among the objective terms.

2.1. Swarm Approach of USV Path Planning Problem

To solve the swarm USV path planning problem, various clustering methods, namely
Mini Batch K-Means, Ward’s Hierarchical Agglomerative Clustering (Ward) and Birch, are
tested and evaluated through a comparative evaluation process (described in Section 3)
in order to identify the most effective one for this application. Mini Batch K-Means is an
alternative clustering method to the K-Means algorithm. The advantages of this method
include a reduction in the computational effort by using small random batches of a fixed
size instead of all of the dataset in each iteration [47]. Ward’s Hierarchical Agglomerative
Clustering Method belongs to the family of hierarchical agglomerative clustering. It is
based on the criterion of the sum of squares to produce groups that minimize within-group
dispersion at each binary fusion [48]. Balanced Iterative Reducing and Clustering using
Hierarchies (Birch) is an unsupervised data mining algorithm used to perform hierarchical
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clustering. It generates a compact summary that retains as much distribution information
as possible, and then clusters the data summary instead of the original dataset [49,50].

The clustering of the targets that need to be visited in an area by the swarm of the
USVs is performed based on the geospatial coordinates and the wind information (velocity
and direction). To this end, targets with similar characteristics are grouped. The number of
clusters is defined by the number of the USVs that form the swarm, so that each USV will
perform a mission.

2.2. Objective Terms of the USV Path Planning Problem

In this study, the multiobjective path planning problem with multiple targets is ad-
dressed in the case of a swarm of USVs. The formulation of the problem is based on [32,36].
The goal is to find the optimal path to cover the specified areas by minimizing (i) the
distance (1); (ii) the brut turns along the route (2); and (iii) the energy consumption due to
current velocity and direction (3).

- Term 1 for the minimization of traveled distance.

minD = ∑i∈N ∑ j ∈ N :
(i, j) ∈ ε

dij = ∑i∈N ∑ j ∈ N :
(i, j) ∈ ε

(√
(jx − ix)

2 +
(

jy − iy
)2
)

(1)

where N and ε are the sets of nodes and the edges of the graph, respectively; dij is
the Euclidean distance metric between node i and node j. ix, jx and iy, jy are the
geographical coordinates of nodes i and j on horizontal and vertical axes, respectively.

- Term 2 for the minimization of brute changes along the path (Figure 2).

minθ = ∑i∈N ∑ j ∈ N :
(i, j) ∈ ε

∑ k ∈ N :
(j, k) ∈ ε

θijk (2)

where θijk is the angle that is formed from the edges (i, j) and (j, k).
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- Term 3 for the minimization of the fuel consumption of the USV.

minFC = ∑i∈N ∑ j ∈ N :
(i, j) ∈ ε

dij

V + vc
f (3)

where f is the fuel consumption per unit time (kg/h), and V and vc are the velocities
of the USV and of the currents, respectively. The term is included in the model, since
if a USV is moving against the currents, more energy is needed to retain a certain
velocity during a route [24,32,34,36,51,52].

2.3. Ant Colony Optimization Algorithm with Fuzzy Logic

The ACO algorithm is one of the most popular heuristic algorithms used to solve path
planning problems formed as graphs for finding the shortest path [15]. To adapt the ACO
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algorithm to solve the above-defined multiobjective path planning problem for USVs, ACO
is enhanced with fuzzy logic. This enables the ability to evaluate the impact of multiple
objectives and identify the optimal solution. ACO is inspired by the operation of ants to
trace their food by depositing pheromones along the path [53]. ACO operation consists of
two main steps: in the first step, the transition probability, pij, of each edge in the graph
is calculated based on (4), and in the second step, the equation (5) is used to update the
pheromones. This is achieved by recalculating the pheromone deposit, τij, on each edge for
the ant population P :

pij =

(
τij
)γ(

ηij
)β

∑(k,l)∈ε τkl
(4)

τij = (1− ρ)τij + ρ ∑a∈P
Q
La

(5)

where ρ ∈ [0, 1] is the evaporation coefficient, ηij =
1

dij
where dij is α distance metric, γ ≥ 0

and β ≥ 1 are the parameters to control the influence of τij(t) and ηij, respectively. La is the
cost of the path of ant a and Q is a constant that is associated with the remaining pheromone
amount [53]. In the literature, in the case of single-objective optimization problems, the
La corresponds to the objective cost/value. For example, in shortest distance problems,
the cost is the length of the path found by the ant a. Bellow, more details are given for the
calculation of this cost in our study.

The pseudocode of the ACO algorithm is shown below in Algorithm 1. In the initial-
ization phase InitializePheromoneValues(τ), the pheromone values (τij) are all initialized
to a constant value c > 0 at the start of the algorithm. In the phase of the solution
construction, ConstructSolution(τ), the construction of a solution starts with an empty
partial solution sp = 〈 〉. Then, at each construction step, the current partial solution sp

is extended by adding a feasible solution component based on the transition probabili-
ties and the heuristic information (4). Moreover, the pheromone update process follows
ApplyPheromoneUpdate(τ, Giter, s∗), based on (5).

Algorithm 1: ACO pseudoalgorithm

Input: variables of ACO
InitializePheromoneValues(τ)
s∗ ← NULL // current best solution does not exist
while termination criteria are not met do
Giter ← ∅ // the set of the path at the current iteration is empty
for j = 1, . . . , na do

s← ConstructSolution(τ)
if ( f (s) < f (s∗)) or s∗is NULL then s∗ ← s

Giter ← Giter ∪ {s∗}
end for
ApplyPheromoneUpdate(τ, Giter, s∗)

end while
Output: current best solution s∗

In this study, a path planning problem formulated as a multiobjective optimization
problem is investigated. To this end, the cost of the path, La, used in (5), is defined in
a way to reflect the objective cost derived from all the objectives ((1), (2) and (3)) of the
problem presented in Section 2.1. Therefore, to calculate the La cost of the path of each
ant, two popular FIS systems are employed. The FISs are used to aggregate the impact
of the objective terms into a single value derived from the defuzzification process. The
hybridization of ACO with Mamdani or TSK FISs has been successfully implemented in
our previous studies, where more details on this process can be found [32,52].
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2.3.1. FIS1 1: Mamdani Fuzzy Inference System (ACO-Mamdani)

In the hybridization of ACO with Mamdani FIS, the defuzzification value of the
Mamdani FIS is used as the cost of the path (La). This is because the defuzzification value
denotes the optimality of the generated path after the aggregation of the objective terms
and the defined fuzzy sets and rules. For this study, the following fuzzy membership
functions (Figure 2) corresponding to each objective term and fuzzy rules (Table 1) are
defined and used for the Mamdani FIS.

Table 1. Fuzzy rules.

Path Length Path Deviations Energy Consumption Path Optimality

Short Smooth Low Very High
Short Smooth Medium High
Short Moderate Low High

Moderate Smooth Low High
Short Moderate Medium Medium

Moderate Smooth Medium Medium
Moderate Moderate Low or Medium Medium
Moderate Moderate or Brut Medium or High Low

Moderate or Long Moderate Medium or High Low
Moderate or Long Moderate or Brut Medium Low

Long Brut High Very Low

2.3.2. FIS 2: Takagi–Sugeno–Kang Fuzzy Inference System (ACO-TSK)

In the second approach, where the ACO is hybridized with TSK FIS as the path
cost (La), the value of the TSK FIS is used. Similarly to Mamdani FIS, this value denotes
the optimality of the generated path. TSK FIS calculates a crisp output value by using
a weighted average of the fuzzy rules’ consequent [54]. This makes the TSK FIS a less
computationally demanding approach compared with Mamdani. For the TSK FIS, the same
membership functions and rules (Figure 3, Table 1) are adopted.
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3. Evaluation Methodology
3.1. Experimental Setup

Two case studies (CSs) in a simulation environment are performed to evaluate the
presented methodology for a swarm of 3 USVs with the same characteristics by comparing
the effectiveness of the clustering algorithms and the selected FISs in the specific application.
To this end, a fully connected graph was randomly generated with 25 nodes. For each
node, the values of current velocity and direction were set based on Gaussian distribution,
a common approach to develop data in simulated environments [55]. The current velocity
was set from 1 and 3 m/s. Moreover, the direction was set from 0 to 360 degrees clockwise.
Nodes with yellow correspond to lower values of current velocity (close to 1 m/s), while
dark blue nodes correspond to higher values of current velocity (close to 3 m/s). It is
assumed that all the USVs have the necessary fuel and energy to perform the tasks. Regard-
ing the parameter settings of ACO, the iterations were set to 20 with 5 size population. The
evaporation coefficient was set to 0.5, and Q was set to 1. Regarding the USV characteristics,
F was set to 2 kg/h and V to 3 m/s. The experiments were implemented in Python using
Microsoft Windows 10 Environment operational system, with AMD Ryzen 7 3800X 8-Core
Processor at 3.89 GHz and 32GB RAM. Figure 4 illustrates the evaluation steps followed in
this study.
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3.2. Comparative Evaluation of Clustering Algorithms

The evaluation of the clustering methods is performed based on the aggregation of
3 evaluation methods, adopted from [56]. The chosen clustering evaluation criteria are the
Silhouette Coefficient, the Calinski–Harabasz Index (CHI) and the Davies–Bouldin Index.
The normalized scores of the evaluation criteria are summed for calculating a cumulative
evaluation score (Figure 5).
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Silhouette Coefficient is an evaluation metric that calculates the goodness of a clus-
tering technique, and its value ranges from −1 to 1. The higher value 1 shows that the
means clusters are well apart from each other and clearly distinguished. The lower value
−1 shows that the means clusters are wrongly assigned, while the value 0 shows that
the distance between the means clusters is not significant. For each point i, the distance
to its own cluster centroid ai and the distance to the nearest neighboring centroid bi are
calculated. The Silhouette score for the point i is calculated based on (6):

silhouette score =
(bi − ai)

max(ai, bi)
(6)
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The Calinski–Harabasz Index, also known as the Variance Ratio Criterion, measures
the similarity of a point i with its own cluster (cohesion) compared with other clusters
(separation). The cohesion is calculated based on the distances from the data points
within the cluster to their cluster centroid, while the separation is calculated based on the
distance of the cluster centroids from the global centroid. A high score indicates better
cluster compactness.

The cohesion, instracluster dispersion, or within-group sum of squares (WGSS) is
calculated by the following expression (7), where ni is the number of data points/elements
in cluster i, Xji is the j-th element of the cluster I and Ci the centroid of cluster i, and K is
the number of clusters:

WGSS = ∑K
i=1 ∑ni

j=1 ||Xji − Ci||2 (7)

The separation, intercluster dispersion, or between-group sum of squares (BGSS) is
calculated by the following expression (8), where C is the centroid of the dataset (barycenter):

BGSS =
K

∑
i=1

ni × ||Ci − C || (8)

The Calinski–Harabasz Index is defined as shown in (9), where N is the total number
of data points/elements in the dataset:

CHI =
BGSS
K−1

WGSS
N−K

=
BGSS
WGSS

× N − K
K− 1

(9)

The Davies–Bouldin Index shows the average similarity of clusters, where similarity
is a measure that relates cluster distance to cluster size. Comparing clustering algorithms,
lower values of DBI means that a better separation between the clusters has been achieved.
This reflects a function of intracluster dispersion and separation between the clusters.

The intracluster dispersion of cluster i is calculated by (10), where Ti is the number of
elements in cluster i, Xj is the j-th element in the cluster i, Ci is the centroid of cluster i and
q is a predefined value, usually set to 2 to calculate the Euclidean distance:

Si =

[
1
Ti

∑Ti
j=1

∣∣Xj − Ci
∣∣q] 1

q
(10)

The separation measure is calculated based on (11), where K is the total number of
clusters, cki and ckj are the k-th component of n-dimensional centroid Ci of cluster i and Cj
of cluster j, respectively, and p, similarly to q in (10), is a predefined value, usually set to 2
to calculate the Euclidean distance:

Mij =
[
∑K

k=1

∣∣∣cki − ckj

∣∣∣p] 1
p

(11)

The DBI is calculated based on the following Equation (12), where

D =
1
K ∑K

i=1 ∑K
j = 1
j 6= i

max

{
Si + Sj

Mij

}
(12)

3.3. Comparative Evaluation of Path Planning Algorithms

For the evaluation of the path planning of the swarm of USVs, the evaluation criteria
are the objective terms.

The evaluation criteria among the solutions are as follows:

• The objective criteria: (i) distance; (ii) brute turns; and (iii) fuel consumption;
• Path quality based on the defuzzification value of Mamdani and TSK FISs;
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• The computing time;
• The relative percentage deviation (RPD) adopted by [57,58]:

RPD =
|Bestsol − Algsol |

Bestsol
100% (13)

• The relative deviation index (RDI) adopted by [57,58]:

RDI =
|Bestsol − Algsol |
|Bestsol −Worstsol |

100% (14)

where Bestsol and Worstsol are the best and the worst solutions, respectively;Algosol is
the path quality value of the examined solution. Based on Equations (13) and (14), it is
obvious that the lowest values of RPD and RDI indicate the preferable solution based on
the satisfaction of objective criteria.

Each case study was run 20 times. For the proposed ACO variations, the population
size was set to 10 ants and the number of iterations to 20. Moreover, the evaporation
coefficient ρ was set to 0.5, and Q was set to 1. The case studies were designed based
on the evaluation methodology adopted in related works [13,22,38,59]. The experiments
and the algorithms were implemented in Python 3.10, on Microsoft Windows 10 Environ-
ment operational system, with AMD Ryzen 7 3800X 8-Core Processor at 3.89 GHz and
32 GB RAM.

4. Results and Discussion
4.1. Results

The clustering results of the two case studies (CSs) are illustrated bellow in Figures 6 and 7.
In these figures, the color of the points of interest represents the velocity of the currents
in this node. The lighter color (e.g., yellow) indicates a lower velocity value. For better
visualization, the edges are not depicted, and each cluster is shown in different color and
represents the operational area for each USV. In the CS1, all the clustering algorithms
achieved the same result (Figure 6), since the nodes were scattered and the areas based on
the clustering features were discrete enough. For this reason, a clustering evaluation was
not performed. On the other hand, for more complex areas, such as the one of case study 2,
the Mini Batch K-Means and Ward’s Hierarchical Agglomerative Clustering generated the
same clusters with a better evaluation score compared with Birch (Figure 7, Table 2). It
can be observed that the clusters constructed by Mini Batch K-Means and Ward are more
balanced in terms of distance, current velocity and number of targets that each USV has to
visit in its operational area compared with Birch’s clusters.

For the presented case studies, we evaluated the proposed hybrid ACO-FIS schemes.
The best clustering results were used to determine the operational area of each USV.
Tables 3 and 4 show the multiobjective path planning mean results with the standard
deviation for the case studies after 20 runs solved with ACO-Mamdani and ACO-TSK
approaches for the swarm of USVs and the selected operational areas for each USV.
We should note that all the USVs have the same characteristics and, therefore, it is not
important to identify which USV will perform a certain operation. The three operational
areas are declared with different colors in the Figures 6 and 7. The mean results show
that ACO-Mamdani is capable of generating more balanced paths (better overall path op-
timality in both cases, Table 4 with respect to the objective terms, while on the other hand,
ACO-TSK, due to the lack of the defuzzification step, achieves lower computing times,
an important factor in real-time applications. Moreover, the cumulative results over the
swarm of USVs for each objective criterion and case study are depicted in Figures 8 and 9,
respectively. The results show the different performance of each comparative algorithm.
Indeed, based on the evaluation criteria, RPD and RDI for distance (Table 5), number
of turns (Table 6) and consumption (Table 7), we observe that the paths derived from
ACO-Mamdani are of better quality in almost all USVs and case studies, but the differ-
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ence is not that significant, making the ACO TSK an adequate option when computing
time is also important. Lastly, Table 8 shows the results of the Friedman test performed
over the results of the compared algorithms for each case study and for both case studies.
This statistical analysis methodology was adopted as a well-recognized approach for the
comparison of swarm and evolutionary algorithms [60–62]. Friedman tests statistically
prove the different performances of the algorithms in this set of experiments.
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Table 2. Evaluation of clustering methods for CS2. The best evaluation score is shown in bold.

Clustering Algorithm Silhouette
Coefficient Calinski–Harabasz Index Davies–Bouldin Index Cumulative

Evaluation Score

Mini Batch K-Means 0.82 1301.34 0.36 3
Ward 0.82 1301.34 0.36 3
Birch 0.77 1205.45 0.42 0

Table 3. Path planning mean results with standard deviation after 20 runs of the case studies for each
ACO-FIS approach for the swarm of USVs. The number of turns are rounded. The best solutions are
denoted in bold.

Case Study ACO-FIS Swarm USVs Distance (km) Number of Turns Consumption (kg)

CS1 ACO-Mamdani USV1 (red) 17.61 ± 1.02 8 ± 1.48 3.75 ± 0.25
USV2 (yellow) 18.55 ± 0.98 9 ± 1.33 3.87 ± 0.13

USV3 (blue) 18.43 ± 1.04 5 ± 0.87 3.73 ± 0.37
ACO-TSK USV1 (red) 17.63 ± 0.79 8 ± 1.08 3.78 ± 0.12

USV2 (yellow) 18.62 ± 1.14 8 ± 1.09 3.89 ± 0.24
USV3 (blue) 18.43 ± 1.22 5 ± 0.88 3.72 ± 0.19

CS2 ACO-Mamdani USV1 (red) 17.22 ± 2.24 7 ± 1.01 3.58 ± 0.45
USV2 (yellow) 15.76 ± 1.95 6 ± 1.03 3.32 ± 0.54

USV3 (blue) 19.04 ± 0.88 5 ± 0.86 3.64 ± 0.15
ACO-TSK USV1 (red) 17.37 ± 1.90 7 ± 1.03 3.65 ± 0.21

USV2 (yellow) 16.05 ± 1.46 6 ± 0.92 3.38 ± 0.17
USV3 (blue) 19.18 ± 2.19 6 ± 0.88 3.79 ± 0.52
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Table 4. Path planning optimality and computing time mean results with standard deviation after
20 runs of the case studies for each ACO-FIS approach for the swarm of USVs. The best solutions are
denoted in bold.

Case Study ACO-FIS Optimality Computing Time (ms)

CS1 ACO-Mamdani 0.82 ± 0.04 3.46 ± 0.03
ACO-TSK 0.80 ± 0.05 3.39 ± 0.02

CS2 ACO-Mamdani 0.75 ± 0.03 4.12 ± 0.02
ACO-TSK 0.66 ± 0.04 4.01 ± 0.01

Table 5. Evaluation results of mean relative percentage deviation (RPD) and mean relative deviation
index (RDI) for distance. The best solutions are denoted in bold.

Case Study ACO-FIS Swarm USVs RPD RPD RDI RDI

CS1 ACO-Mamdani USV1 (red) 0.00% 3.33% 0.00% 58.09%
USV2 (yellow) 5.34% 93.07%

USV3 (blue) 4.66% 81.19%
ACO-TSK USV1 (red) 0.11% 3.50% 1.98% 61.06%

USV2 (yellow) 5.74% 100.00%
USV3 (blue) 4.66% 81.19%

CS2 ACO-Mamdani USV1 (red) 9.26% 10.03% 0.426900585 46.20%
USV2 (yellow) 0.00% 0

USV3 (blue) 20.81% 0.959064327
ACO-TSK USV1 (red) 10.22% 11.25% 0.470760234 51.85%

USV2 (yellow) 1.84% 0.084795322
USV3 (blue) 21.70% 1
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Table 6. Evaluation results of mean relative percentage deviation (RPD) and mean relative deviation
index (RDI) for brute turns. The best solutions are denoted in bold.

Case Study ACO-FIS Swarm USVs RPD RPD RDI RDI

CS1 ACO-Mamdani USV1 (red) 60.00% 46.67% 75.00% 58.33%
USV2 (yellow) 80.00% 100.00%

USV3 (blue) 0.00% 0.00%
ACO-TSK USV1 (red) 60.00% 40.00% 75.00% 50.00%

USV2 (yellow) 60.00% 75.00%
USV3 (blue) 0.00% 0.00%

CS2 ACO-Mamdani USV1 (red) 40.00% 20.00% 100.00% 50.00%
USV2 (yellow) 20.00% 50.00%

USV3 (blue) 0.00% 0.00%
ACO-TSK USV1 (red) 40.00% 26.67% 100.00% 66.67%

USV2 (yellow) 20.00% 50.00%
USV3 (blue) 20.00% 50.00%

Table 7. Evaluation results of mean relative percentage deviation (RPD) and mean relative deviation
index (RDI) for consumption. The best solutions are denoted in bold.

Case Study ACO-FIS Swarm USVs RPD RPD RDI RDI

CS1 ACO-Mamdani USV1 (red) 0.81% 1.70% 17.65% 37.25%
USV2 (yellow) 4.03% 88.24%

USV3 (blue) 0.27% 5.88%
ACO-TSK USV1 (red) 1.61% 2.06% 35.29% 45.10%

USV2 (yellow) 4.57% 100.00%
USV3 (blue) 0.00% 0.00%

CS2 ACO-Mamdani USV1 (red) 7.83% 5.82% 55.32% 41.13%
USV2 (yellow) 0.00% 0.00%

USV3 (blue) 9.64% 68.09%
ACO-TSK USV1 (red) 9.94% 8.63% 70.21% 60.99%

USV2 (yellow) 1.81% 12.77%
USV3 (blue) 14.16% 100.00%

Table 8. Results of Friedman test for each case study.

Case Studies
CS1 CS2 All

p-value 1.05566 × 10−5 4.85828 × 10−122 1.05266 × 10−128

Chi-square 305.97 544.35 603.97

4.2. Discussion

To sum up, the problem of multiobjective path planning of a USV swarm in the case of
covering an operational area and visiting multiple points of interests can be addressed with
the proposed methodology of hierarchical steps (Figure 1). The problem is divided into
two subproblems: (i) the division of the initial area into collision-free operational subareas
via clustering and (ii) the design of the optimal path for each USV to visit multiple targets
with respect to multiple objective criteria. ACO with fuzzy logic is employed for this step.

The clustering results show that Mini Batch K-Means or Ward clustering algorithms
could divide the operational area uniformly (Table 2) even in more complex weather
conditions (Figures 6 and 7). Indeed, both algorithms managed to find the same areas
of operation with similar characteristics and the same number of targets in each area,
compared with the Birch clustering algorithm that did not manage to cluster the more
complex operational area effectively (Table 2, Figure 7). The cumulative evaluation criteria
used to compare the effectiveness of the clustering algorithms justify the superiority of the
Mini Batch K-Means and Ward over Birch, derived from the qualitative comparison shown
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in Figures 6 and 7. Clustering algorithms have been used in the literature for addressing
various applications of UAVs or GSVs when there is a need for dividing the operational
area. Specifically, discussions and research on an efficient management of a swarm of UAVs
conclude the use of hierarchical approaches to address complex task assignment problems,
where clusters can be adopted for area allocation [63,64] or energy efficiency in a wireless
network [65]. For instance, these approaches may integrate density-based clusters to find
an area of maximum density of targets in the case of UAV swarm exploration [66] or to
generate feasible paths among heterogeneous UAVs. These approaches can be extended to
USV/ASV swarms. In our study, we aimed to adopt a similar methodology, and the results
are aligned with the current literature.

The performance of both algorithms was significantly different (Table 8), with the ACO-
Mamdani outperforming ACO-TSK in terms of solution optimality in both case studies
(Table 4 CS1 0.82/0.80, CS2 0.75/0.66). It is proven that the ACO algorithm enhanced with
Mamdani FIS is capable of balancing among the optimization criteria in order to assign
the operational areas for each USV in the swarm. On the other hand, ACO-TSK presented
a better computational efficiency compared with ACO-Mamdani in both cases (Table 4,
CS1 3.39/3.46 ms, CS2 4.01/4.12 ms), a fact that is aligned with the literature regarding
the computational efficiency of TSK FIS in solving multiobjective path planning problems
in the case of a single USV [52]. Based on the results and the literature [32,36,38,67,68],
Mamdani and TSK FISs can be considered as suitable solutions for real-time applications
of swarm USV multiobjective path planning. Due to the advantages of Mamdani FIS,
ACO-Mamdani has expressive power and interpretable rule consequents, while it can be
widely used in decision support systems due to the intuitive and interpretable nature of
the rules. However, it is less flexible in system design and needs more computational effort
compared with ACO-TSK. ACO-TSK has advantages over Mamdani due to the weight
calibration from using other algorithms, the design flexibility and the lower processing
time. However, it is not as suitable as Mamdani FIS for decision making due to the lack of
a defuzzification process that leads to a loss of interpretability [67,69]. Therefore, the best
combination for addressing this problem depends on the needs of the application. These
results are aligned with the current literature and comparative studies on intelligent path
planning and fuzzy decision-making systems [52,70,71].

5. Conclusions

This study presents a methodology to address the swarm USV path planning problem
for visiting multiple targets, formulated as a multiobjective optimization problem. To this
end, a comparative study among two popular FISs and three popular clustering algorithms
was conducted. The results show that in simple problems with highly discrete areas, in
terms of weather conditions, all the clustering methods achieved similar results; however, in
uniform weather data, Mini Batch K-Means and Ward presented slightly better performance
based on the evaluation criteria. Regarding the performance of FISs for solving the USV
path planning problem, the results are in accordance with the literature, where each FIS
can be suitable depending on the need of the application. For instance, ACO enhanced
with Mamdani FIS presents a better performance with respect to the quality of the solution,
but on the other hand, ACO with TSK FIS decreases the computing time, which is also
important in real-time applications.

The limitations of this study are the use of a simulation environment with not real
weather data. To this end, future work will include the evaluation of the proposed method-
ology with real data for real case studies.
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