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Abstract: Seagrass is an essential component of coastal ecosystems because of its capability to absorb 

blue carbon, and its involvement in sustaining marine biodiversity. In this study, support vector 

machine (SVM) technologies with corrected satellite imagery data, were applied to identify the dis-

tribution of seagrasses. Observations of seagrasses from satellite imagery were obtained using Geo-

Eye-1, Sentinel-2 MSI level 1C, and Landsat-8 OLI satellite imagery. The satellite imagery from 

Google Earth has been obtained at a very high resolution, and was to be used within both the train-

ing and testing of a classification method. The optical satellite imagery must be processed for image 

classification, throughout which radiometric correction, sunglint, and water column adjustments 

were applied. We restricted the scope of the study area to a maximum depth of 10 m due to the fact 

that light does not penetrate beyond this level. When classifying the distribution of seagrasses pre-

sent in the research region, the recently developed SVM technique achieved overall accuracy values 

of up to 92% (GeoEye-1), 88% (Sentinel-2 MSI level 1C), and 83% (Landsat-8 OLI), respectively. The 

results of the overall accuracy values are also used to evaluate classification models. 
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1. Introduction 

Coastal areas have an essential role in preserving ecological resources and maintain-

ing biodiversity [1–3]. Seagrass is a flowering marine angiosperm that forms meadows in 

shallow coastal areas, and supports the survival of marine biota by clearing seawater, sta-

bilizing aquatic sediments, and spreading its roots across reefs or soft sand. [4,5]. These 

flowering aquatic plants also protect the earth because they can significantly reduce 

greenhouse gas emissions effects [6], and mitigate climate change [7]. 

A variety of approaches for mapping and monitoring seagrass ecosystems in shallow 

coastal waters have applied optical remote sensing technology [8,9], airborne platforms 

[10,11], and bathymetry [12,13]. In several studies, the multispectral satellite images, in-

cluding Landsat-8 OLI [14,15], Sentinel-2 MSI [16,17], SPOT 5 [18], and WorldView-2 

[19,20], were used to help detect the distribution of seagrass. 

The identification of benthic habitats with remote sensing data requires data pre-

processing to remove external disruptions. Several types of image correction, such as ra-

diometric, sunglint, and water column, are necessary for assessing benthic habitat map-

ping and their uses for classifying the seagrass mapping. The radiometric correction can 
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be carried out using several methods, such as The Fast Line-of-Sight Atmospheric Analysis 

of Spectral Hypercubes (FLAASH) [21], Ocean Color’s Simultaneous Marine and Aerosol 

Retrieval Tool (OC-SMART) [22], and ACOLITE [23]. Sunglint correction, which is very 

widespread in ocean images, is sunlight reflected the from water surface [24]. This ap-

proach is susceptible to errors and requires sunglint corrections because it employs the 

brightest and darkest pixels to calculate the correlation between the NIR and the visible 

wavelength. The method of Hedley et al. (the NIR signal to sunglint ratio) is measured 

using one or more regions of the image [25]. 

Results collected by identifying seagrass using satellite imagery can be applied to 

classification techniques to improve the mapping of seagrass distribution. Several types 

of algorithms have been developed for classifying seagrass using satellite imagery, includ-

ing support vector machine (SVM) [26], random forest (RF), maximum likelihood classi-

fier [16], and deep learning [27]. SVM is the most widely utilized for developing machine 

techniques. SVM has become a common and effective method for classifying seagrass dis-

tribution, and has the most reliable mathematical model for regression and classification 

[28]. 

The eastern coast of Korea is characterized by sandy beaches, reefs, lagoons, and 

small ports. Nine of the 60 seagrass species present in coastal and estuarine ecosystems 

globally are found in the coastal regions of the Korean Peninsula [29]. In Korea, seagrasses 

are found along the shoreline at depths of up to approximately 15 m [30,31]. Previous 

research showed that global climate change has brought on increased sea surface water 

temperature anomalies. These anomalies will change the growth and distribution of tem-

perate seagrasses around Korean coastal ecosystems; consequently, climate change will 

influence the sustainability of regional seagrass habitats over a long period of time [32–

34]. The eastern coast of South Korea was chosen as the study area. 

This study used GeoEye-1, Sentinel-2 MSI level 1C, and Landsat-8 OLI satellite im-

agery to identify seagrass using a machine learning method. After pre-processing of Geo-

Eye-1, Sentinel-2 MSI level 1C, and Landsat-8 OLI satellite imagery, SVM classification 

techniques are applied for seagrass distribution mapping. This research focuses on the 

impact of using satellite imagery data with different spatial resolutions (0.5 m, 10 m, 30 

m) on the accuracy of seagrass identification. The results show the suitability of four types 

of remote sensing satellite imagery (GeoEye-1, Sentinel-2 MSI level 1C, and Landsat-8 

OLI) for seagrass mapping, and contribute to the sustainability of this essential marine 

and coastal ecosystem. 

2. Materials and Methods 

2.1. Study Area 

The research area was located around the Korean National Ocean Science Museum, 

in Uljin-gun, Gyeongsangbuk-do, on the eastern coast of South Korea which was shown 

in Figure 1. The study was conducted in the coldest season of the year. The total area of 

study was 480 ha. This study used areas in which water depths were as much as 10 m 

below mean sea level (MSL), as determined by the Korea Hydrographic and Oceano-

graphic Agency. The studied species of seagrass along Uljin–-gun is a Zostera caulescens, a 

seagrass species endemic to Northeastern Asia [35]. 
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Figure 1. Area of this study, indicated by a red line. 

2.2. Satellite Data 

In this research, GeoEye-1, Sentinel-2 MSI level 1C, and Landsat-8 OLI satellite im-

ages were selected. The GeoEye-1 satellite produces images with a spatial resolution of 2.0 

m for multispectral bands. Several spectral bands were applied in this study, including 

blue (0.45–0.51 µm), green (0.51–0.58 µm), red (0.65–0.69 µm), and NIR (0.78–0.92 µm), at 

a quantization level of 11 bits per pixel in each band. The acquisition data for GeoEye-1 

were recorded on 13 February 2019. 

Sentinel-2 Multi Spectral Instrument (MSI) level 1C (L1C) imaging was used in this 

study. In cartographic geometry, L1C products have been corrected using at the top of 

atmosphere (ToA) satellite reflectance data. The images have spectral bands. The Sentinel 

2 satellite imagery data from 4 February 2019 were selected. This study used images with 

spatial resolutions of 10 m, which consisted of three visible bands and an NIR band, which 

was needed for image corrections. 

The satellite imagery of Landsat-8 OLI Level 1 used data path/row 114-34 with 30 m 

resolution for multispectral bands. The spectral bands used in this study included blue 

(0.452–0.512 µm), green (0.533–0.590 µm), red (0.636–0.673 µm), and NIR (0.851–0.879 

µm). The Landsat-8 OLI data were recorded on 22 January 2019. 

2.3. Image Processing 

Satellite imagery data for identifying benthic habitats should be radiometrically cor-

rected to remove any disturbances generated by the environment. The classification accu-

racy of satellite images may be greatly improved by utilizing corrected images, which 

contain atmospheric, sunglint, and water column corrections. 
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In this study, we used ACOLITE to perform atmospheric corrections on Landsat-8, 

Sentinel-2, and GeoEye-1 imagery. Each image consists of blue, green, red, and NIR bands, 

and all of them were atmospherically corrected. The exploration of underwater radiances 

in the visible region of the ocean requires the use of atmospheric correction methods for 

multichannel remote sensing imagery. The ACOLITE atmospheric correction technique 

has the lowest relative and absolute error values, compared to the existing L2-WFR, POL-

YMER, C2RCC, SeaDAS and SeaDAS-ALT [36]. Therefore, this atmospheric correction al-

gorithm was used in this study. ACOLITE supports sensors from a variety of satellites, 

including Landsat 5, 7, 8, Sentinel 2, 3, PlanetScope, and WorldView, with atmospheric 

correction performed using Dark Spectrum Fi�ing [23,36–39]. ACOLITE also works on the 

basis of an input image, and does not require external inputs, such as aerosol optical thick-

ness (��) estimates or measurements (such as FLAASH), subject to meeting two condi-

tions: the atmosphere is constant and homogeneous within a limited space, and; at least 

one pixel in the scene or subscene has a surface reflectance (��) close to zero, so that the 

atmospheric path reflectance (�����) can be estimated in at least one band [23]. The param-

eters used to produce the surface-level reflectance are generated by the composite band. 

The parameter output used in this study was L2R (Level 2, surface-level reflectances) (��, 

rhos_*). For the ACOLITE atmospheric corrector method, there are internal parameters, 

such as minimum gas transmi�ance for retrieval of aerosol optical thickness, which were 

all set to default values. 

Sunglint is a significantly greater complication for remote sensing of the sea floor and 

aquatic characteristics via radiometric correction. The sunglint algorithm in shallow wa-

ters was developed by Hedley [25]. Utilizing brightness in a NIR band, this approach is 

advantageous for removing sunglint from remote sensing imagery [24]. Maintaining a 

steady baseline brightness and low water luminosity in the NIR, the image was chosen to 

allow for a variety of pixel luminosity levels. Using all pixels in the area covered, a linear 

regression is performed between the NIR radiance and the visible band radiance. This 

technique performs a regression analysis of the NIR and visible band data, using random 

samples of pixel data to obtain a set of regression slopes. The slope of least squares regres-

sion is then used to determine the correlation between the visible band and NIR, and each 

pixel is adjusted by subtracting the visible band from the NIR radiance’s estimated lowest 

value. The formula in equation (1) used for sun glint is shown as follows: 

��
� = �� − ��(���� − ������) (1)

where ��
� is the sunlight-free reflectance; �� is the reflectance from visible band �; �� is 

the product of the regression slope; ����  is the reflectance from the NIR band, and; 

������ is the minimum NIR band. 

Considering that environmental factors, such as the bo�om type, water depth, and 

water a�enuation (which may cause sca�ering and absorption in the water column), can 

vary widely, water column adjustment is a major challenge. Many water column algo-

rithms were developed, though, in some cases, algorithms were not available due to the 

requirement for values for bathymetry and the diffuse a�enuation coefficient of the water 

[27]. Therefore, in this study, the Lyzenga algorithm was selected because it could mini-

mize the water a�enuation effect in shallow waters, and did not require additional data 

[27,40]. Spectral characteristics obtained from the ocean’s surface were utilized to recog-

nize the water column depth through the Lyzenga algorithm [41]. The algorithm was con-

tinually enhanced and became extensively adopted as the depth invariant index (��� ) 

transformation, which could be employed for conducting ecosystem mapping of shallow 

waters based on satellite data [42–44]. Approaches were established to correct for water 

column, which stems from absorption and sca�ering by particles in the water [45]. The 

technique for identifying benthic habitats has potential advantages, including the devel-

opment of more than two spectral bands to boost performance, improve researchers’ abil-

ity to distinguish between bo�om components with similar object spectral reflectances, 

and expand the functional capability without considering the same coefficient of water 
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a�enuation [41]. This approach establishes that the bo�om type is the primary factor that 

affects the constant in the linear relationship between the Lyzenga-converted reflectance 

values of the various bands. The ��� index is defined as an expression between bands � 

and �, as follows in equation (2): 

����� = ln(��) − ��
��

��
� ln����� (2)

where ��  is the reflectance value of band � ; ��  is the reflectance value of band � , and; 

��/�� is the following equation (3) allowed to determine the slope of the interband conver-

sion: 

��

��
= � + ��� + 1 (3)

where ��/�� is the ratio of the a�enuation coefficient values of bands � and �, � is the 

variable defined in equation (4) 

� =
���� − ����

�2����
 (4)

where ��� is the covariance of bands � and j; ��� is the variances of band �; and  ���  is 

the variance of band j. The following image shows ��� corrections applied to the values 

of the three main band ratios, including blue and green (B1/B2), blue and red (B1/B3), and 

green and red (B2/B3) data [42]; these bands are factored into the equations. 

One type of supervised learning algorithm, known as a support vector machine 

(SVM), is a non-parametric classifier [46]. The objective of support vector machines 

(SVMs) is to locate a hyperplane that can divide the input dataset into a fixed number of 

classes in a way that corresponds to the samples  used for training [47]. The elements 

used to classify the image were divided into four classes: land, seagrass, breaking wave, 

and others. Table 1 describes each category. The closest training values in the training da-

tasets, generally referred to as support vectors, were used to increase the margin between 

the tested point and the ideal hyperplane. When the size of the margins was maximized, 

there was an improvement in the classification accuracy [48]. The hyperplane in the deci-

sion variables was thus established; the SVM model was then developed for each seagrass 

using the radial gaussian basis function kernel, with approach C and gamma regarded as 

the best option due to its greater efficiency [49]. The radial gaussian basis function kernel 

has be�er performance than other kernels, with powerful capabilities in remote sensing 

data processing; it simply needs a few numbers of the parameters to be defined [50]. Sup-

port vectors selected the best values for the SVM hyperparameters and employed cross 

validation, with some of the training pixels being retained. The parameters for the classi-

fication process using SVM were selected (shown in Table 2), and included Kernel Type, 

C and Gamma in Kernel Function. The selected kernel type was a radial basis function. 

The C and Gamma values were used 5792.61 and 32, respectively. 

Table 1. Classes used in this study for classification. 

Category of the Class Description Sources 

Seagrass 
Define the distribution of 

seagrass habitats. 

The in-situ data was 

obtained from Korea 

Institute of Ocean Science 

and Technology (KIOST). 

Breaking wave 

Define the image that 

contains sea wave 

disturbance. 
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Land 

Include port, mixed barren 

land, natural grasses, field, 

and other grasses. 

Korea Institute of Geoscience 

and Mineral Resource 

(KIGAM). 
Others 

Define the water in the 

coastal area/ocean water. 

Table 2. The selected input parameters of SVM. 

Parameter Parameter 

Kernel type Gaussian basis function 

C values 5792.61 

Gamma values 32 

We used the equalize random sampling schema to classify the seagrass [51]. In this 

method, the samples in each class were divided into training and testing steps. The sam-

pled area was segmented into the seagrass, breaking wave, land, and others classes based 

on two methods. Table 2 shows the definition of each class, which were used as references 

for dividing the classes for training and testing purposes. From the entire study, the 3737 

pixels were selected as references for training, and 1604 pixels were selected for testing. 

The testing points were selected according to the random sampling method within the 

label distribution, and were balanced. Training and testing data for seagrass were gener-

ated using research from the Korea Institute of Ocean Science and Technology (KIOST), 

while research from the Korea Institute of Geoscience and Mineral Resource was used for 

the land and others classes; the breaking wave class data were generated by satellite im-

ages. The classified image was then tested to estimate overall accuracy. The accuracy of 

classification was determined using the method of the percentage of pixels correctly allo-

cated, which is evaluated using the overall accuracy of the classification. Accuracy for a 

target class is the percentage appropriately labeled to the total number of pixels in that 

class. We used the matrix’s column and row allocation to define two types of accuracy; 

these methods are called user’s and producer’s accuracy. Nevertheless, they do not ac-

count for agreements across data sets that could be a�ributed to random chance. The 

kappa coefficient approach was used to assess the consistency of the output maps by 

measuring the agreement, based on the actual agreement in the confusion matrix and the 

chance agreement. 

3. Results 

3.1. Atmospheric Correction, Sunglint and Water Column Correction 

The first pre-processing steps involve transforming the digital number to the top of 

atmosphere reflectance. The top of the atmosphere becomes the surface level reflectance. 

The comparisons due to corrections variations are shown by standard deviation in Table 

3. 

Table 3. Comparison of the corrected images by standard deviation values. 

 GeoEye-1 Sentinel-2 Landsat-8 OLI 

Before correction 5.5 4 9.5 

After atmospheric correction 0.000976 0.000603 0.000534 

After sunglint correction 0.000276 0.000604 0.000548 

After Lyzenga correction 0.189 0.024 0.015 

The next pre-classification step focuses on removing the effects of sun glint. We used 

the Hedley algorithm to mitigate the effects of sunglint. The process of sunglint correction 

required the product of the regression slope. After sunglint processing, the Lyzenga algo-

rithm was applied. Figure 2 presents a comparison of the corrected images from GeoEye-
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1, Sentinel-2, and Landsat-8. The figure in the red box shows one of the areas in which 

seagrass habitats lived. 

 

Figure 2. Impact of atmospheric, sun-glint, and water column corrections on the Uljin–gun area: (a) 

atmospheric correction of GeoEye-1, (b) atmospheric correction of Sentinel-2, (c) atmospheric cor-

rection of Landsat-8, (d) sun-glint corrections of GeoEye-1, (e) sunglint corrections of Sentinel-2, (f) 

sunglint corrections of Landsat-8, (g) water column corrections of GeoEye-1 (h) water column cor-

rections of Sentinel-2, and (i) water column corrections of Landsat-8. 

3.2. Image Classification 

The results of this study provide three models for seagrass distribution along the 

Uljin-gun area, including mapping of seagrass using GeoEye-1, Sentinel-2, and Landsat-

8. The results of the classification images are shown in Figure 3. The green color repre-

sented seagrass, the soft blue color represented the others class in waters within ≤10 m, 

the blue color represented the breaking wave, and the brown color represented the land 

area. 

 

Figure 3. The classification results of the SVM methods for seagrass distribution in the Uljin-gun 

using (a) GeoEye-1 (b) Sentinel-2 (c) Landsat-8 satellite, with Lyzenga water column correction. 
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The last step is the measurement of overall and kappa accuracy using the equalize 

random sampling schema. The results of classification without water column correction 

and with water column correction are shown in Figures 2 and 3. These results should be 

validated using the error matrices and their related statistics. Tables 4–6 present the pro-

ducer’s accuracy and user’s accuracy values in each class for GeoEye-1 (Table 4), Sentinel 

2 (Table 5), and Landsat 8 (Table 6). The Table 4 shows the confusion matrix for seagrass 

classification using GeoEye-1, which indicated 7% for the misclassification of seagrass at-

tributed to the others classes. Table 5 explains the confusion matrix for seagrass classifica-

tion using Sentinel-2, which demonstrated 9% for the misclassification of seagrass at-

tributed to the others classes. Table 6 mentions the confusion matrix for seagrass classifi-

cation using Landsat, which demonstrated 13% for the misclassification of seagrass at-

tributed to the others and breaking waves classes. However, the SVM classifier for the 

image with Lyzenga water column correction showed the seagrass influenced by the oth-

ers class was often confused. It is proposed that the resolution imagery and complex en-

vironment lead to a high intra-class variability, making it difficult for the classifier to sep-

arate the classes located in the coastal area, especially for classifying the seagrass. The 

accuracy of classification was indicated by the fact that overall accuracy and kappa accu-

racy values were 92% and 0.89 for GeoEye-1, 88% and 0.85 for Sentinel-2, and 79% and 

0.72 for Landsat-8, respectively. The results of the classification indicate that the imple-

mentation of water column correction does not increase accuracy values. Obtaining high 

accuracy values requires a considerable bathymetric variation and greater water turbidity 

in the studied areas [27]. 

Table 4. Confusion matrix for seagrass classification using Geoeye-1. 

Class Name Others Land Seagrass 
Breaking 

Wave 
Sum 

User’s 

Accuracy 

Others 377 0 24 0 401 0.94 

Land 2 388 0 9 401 0.96 

Seagrass 69 0 332 0 401 0.82 

Breaking wave 15 6 0 380 401 0.94 

Producer’s Accuracy 0.80 0.98 0.93 0.97   

Overall Accuracy 92%     

Kappa Accuracy 0.89     

Table 5. Confusion matrix for seagrass classification using Sentinel-2. 

Class Name Others Land Seagrass 
Breaking 

Wave 
Sum 

User’s 

Accuracy 

Others 358 0 26 17 401 0.89 

Land 5 383 0 13 401 0.95 

Seagrass 110 0 291 0 401 0.72 

Breaking wave 3 4 0 394 401 0.98 

Producer’s Accuracy 0.75 0.98 0.91 0.92   

Overall Accuracy 88%     

Kappa Accuracy 0.85     

Table 6. Confusion matrix for seagrass classification using Landsat-8 OLI. 

Class Name Others Land Seagrass 
Breaking 

Wave 
Sum User’s Accuracy 

Others 351 0 43 7 401 0.87 

Land 14 368 0 19 401 0.91 

Seagrass 93 0 307 1 401 0.76 
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Breaking wave 51 40 0 310 401 0.77 

Producer’s Accuracy 0.64 0.90 0.87 0.91   

Overall Accuracy 83%      

Kappa Accuracy 0.77      

4. Discussion 

Recently, remote sensing technology has proven to be an effective tool for estimating 

the distribution of large seagrass habitats on a large scale. The SVM classification methods 

have been suitable for identifying the seagrass distribution in coastal areas, which was 

represented with seagrass classes. A previous study applied seagrass classification using 

Worldview-2 based on a maximum depth of 20 m. Those researchers discovered that SVM 

results achieved a classification accuracy and kappa coefficient of 72% and 0.61, respec-

tively [52]. Regarding other previous research, seagrass mapping using multispectral sat-

ellite imagery was applied by machine learning methods, including SVM [27]. These stud-

ies considered water column correction using the Lyzenga algorithm and without water 

column correction for classifying the seagrass. The accuracy of SVM for the seabed maps 

of Cabrera was shown by the fact that overall accuracy of image classification was greater 

without water column corrections than with such corrections; these methods had accuracy 

rates of 97.9% and 96.9%, respectively. 

This study examined four classes for classifying the images:, land, seagrass, breaking 

wave, and others. The utilization of multispectral satellite imaging for analyzing seagrass 

is challenging, and extensive processing is needed to reduce distortions caused by the data 

acquisition process. Adequate preprocessing procedures were used in this work, such as 

band combination, atmospheric, sunglint, and water column corrections. This study com-

pared estimates of seagrass habitats based on the differences in spatial resolution for sat-

ellite imagery of GeoEye-1, Sentinel-2 MSI level 1C, and Landsat-8 OLI, within an area of 

water depth <10 m. Furthermore, this study picked different spatial resolution for each 

imaging method: 2m for GeoEye-1 , 10 m for Sentinel-2 MSI level 1C , and 30 m for Land-

sat-8 OLI, respectively . The validation for seagrass mapping is shown to have overall 

value accuracies of 92%, 88%, and 83% for GeoEye-1, Sentinel 2, and Landsat-8 OLI, re-

spectively. The overall accuracy value was improved by using high spatial resolution im-

ages of GeoEye-1, Sentinel-2, and Landsat-8. 

We faced several challenges when classifying seagrass in the studied coastal areas. 

Mapping coastal areas using remote sensing images presents a considerable challenge due 

to the fluctuations of the tide and other water sources [53]. Misclassifications and the ex-

istence of several objects in a pixel were identified as potential factors contributing to mis-

interpretation. Each class is located in a basic level classification system, with a limited 

number of classes contains numerous subcategories, resulting in various spectral signa-

tures over the scene [54]. In addition, the spectral identification of seagrass ecosystems 

using optical data becomes more challenging with expanded depth due to absorption and 

sca�ering of light [9], with light penetration depths varying by the wavelengths of sun-

light. Six images were successfully used for classifying the seagrass. However, we propose 

that the fluctuations of the tide along the study area also contributed to the classification 

results. 

This study did not consider bathymetry and water turbidity parameters. Conse-

quently, the effects of the water column could not be described precisely; thus, future re-

search ought to consider bathymetry data and identify the specific bo�om types, includ-

ing sand, pavement, algae, and coral, to further improve classification accuracy. In clear-

water, the algorithm developed by Stumpf et al. can generate depths of more than 25 m 

over variable bo�om types; it also demonstrates be�er stability between regions  [55]. 

Moreover, several studies have shown that seagrass habitats can be affected by sea 

surface temperature [35] and coastal landforms [30]. The sea surface temperature and 

coastal landforms along Uljin-gun are illustrated in Figure 4a,b, respectively. These 
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characteristics indicate the oceanographic environments along the coastline of Uljin-gun. 

The mean sea surface temperature during the coldest month in the 2000s was around 9.8 

°C in January [56], and 10.1 °C in February [29]. The sea surface temperature along the 

Uljin-gun coastline is illustrated in Figure 4a. The majority of the seagrass habitat was in 

the range of 8.052 °C to 15.672 °C during the winter season, which was generated by the 

Multi-Channel Sea Surface Temperature-1 (MCSST-1) algorithm using Landsat-8 

OLI/TIRS on 4 February 2019. The coastal landforms in the study area, illustrated in Figure 

4b, are dominated by sand and reef. Based on the KIOST (Korea Institute of Ocean Science 

and Technology) data of surface sediment analysis along the coastal area in this study, the 

size of the average grain of sand in the region was 0.89–2.14 phi. Moreover, based on the 

data of KIGAM (Korea Institute of Geoscience and Mineral Resource), local reefs were 

formed from acidic volcanic rocks. 

The distribution of seagrass along the coastal area produced variations in chlorophyll 

concentrations [57]. Chlorophyll content is a relevant indication of sunlight exposure for 

seagrasses, in addition to being useful for assessing seagrass productivity. Chlorophyll 

tests were carried out with the objective of identifying the relative contribution of seagrass 

to the entire meadow productivity, as a possible supply of carbon for consumers [58]. The 

annual range of marine chlorophyll in Uljin-gun has been reported to be 0.19~10.69 

mg/m� [59]. The chlorophyll-A along Uljin-gun coastline, as shown in Figure 4c, had a 

concentration range from 0.034 mg/m3 to 11.746 mg/m3 (generated by Sentinel-2 on 22 Jan-

uary 2019). 

 

Figure 4. Oceanography conditions mapping (a) sea surface temperature distribution (b) map of 

coastal landforms along Uljin-gun (c) chlorophyll-a distribution. 

5. Conclusions 

The mapping seagrass distribution was conducted using imaging data of varying 

spatial resolutions from the GeoEye-1, Sentinel-2 MSI level 1C, and Landsat-8 OLI satel-

lites. Seagrass distribution mapping using remote sensing technology may be useful for 

monitoring seagrass on a large scale, particularly when using multispectral band ratios. 

Band ratio modeling provides an additional band by combining two bands from the visi-

ble spectrum in the following products: blue and green (B1/B2), blue and red (B1/B3), and 

green and red (B2/B3). According to the results, GeoEye-1 was the most effective imaging 

,method for seagrass habitat data extraction along the coastline of Uljin-gun, with an over-

all accuracy of 92% and kappa accuracy coefficient of 0.89. In contrast, Sentinel-2 MSI level 

1C had an overall accuracy of 88% and a kappa coefficient of 0.85, while Landsat-8 OLI 

had an overall accuracy of 83% and a Kappa coefficient of 0.77. 
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