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Abstract: The limitations of underwater acoustic communications mean that the side-scan sonar data
of an autonomous underwater vehicle (AUV) cannot be transmitted back and processed in real time,
which means that targets cannot be detected in real time. To address the problem, this paper proposes
an autonomous underwater vehicle-based side-scan sonar real-time detection method for underwater
targets. First, the paper describes the system and operation of real-time underwater-target detection
by the side-scan sonar mounted on the autonomous underwater vehicle. Next, it proposes a real-
time processing method for side-scan sonar data, method for constructing a deep-learning-based
underwater-target detection model, and real-time method for underwater-target detection based on
navigation strip images, which, together, solve the three key technical problems of real-time data
processing, deep-learning-based detection model construction, and real-time target detection based
on the autonomous underwater vehicle. Finally, through sea-based experiments, the effectiveness
of the proposed methods is evaluated, providing a new solution for the autonomous underwater
vehicle-based side-scan sonar real-time detection of underwater targets.

Keywords: autonomous underwater vehicle; side-scan sonar; real-time processing; deep-learning
detection model construction; real-time underwater-target detection

1. Introduction

Underwater-target detection plays a very important role in fields such as navigation
safety, marine survey, maritime search and rescue, and underwater attack and defense. At
present, most underwater-target detection methods are based on acoustic, magnetic, optical,
or electrical detection. Sound waves have become the most widely used underwater-target
detection method because of their ability to propagate long distances in water [1–4]. Of the
acoustic methods, side-scan sonar (SSS) is widely used to detect underwater targets [5–8]
because it has a higher scan breadth and imaging resolution than other acoustic imaging
systems and is small and inexpensive. The conventional SSS detection of underwater
targets is carried out by the mother ship, which is equipped with SSS equipment that is
towed. With this method, however, it is impossible to penetrate deep into sensitive and
remote areas to detect targets and the operation range is very limited.

In recent years, with the rapid development of submersible technology, intelligent
underwater platforms represented by autonomous underwater vehicles (AUVs) are playing
an increasingly important role in the military, scientific research, and economics, and they
are regarded as “multipliers” of maritime power. With its ability to operate autonomously,
the AUV can perform tasks involved in underwater-target detection, marine environment
investigation, marine resource development, surveillance and reconnaissance, mine coun-
termeasures, and anti-submarine warfare in complex marine environments in dangerous,
remote, sensitive, and inaccessible areas, greatly expanding the operating capabilities and
detection range of shipborne, manned, or cabled submersibles [9–13]. When performing
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underwater-target detection tasks, it can rationally plan the optimal path [14,15] according
to the task requirements by perceiving the marine environment when the seabed terrain is
unknown and detect underwater targets with the help of sonar equipment. When the AUV
is underwater, the electromagnetic wave energy is mostly absorbed and scattered [16,17]
and satellite communication cannot be used because it is important to avoid exposure in
sensitive areas. In this case, underwater acoustic communication is the best choice for
long-distance AUV communications. However, because of the limits of the underwater
acoustic communication bandwidth, a large amount of sonar data cannot be transmitted
back in real time and the observed data can only be obtained after the AUV returns or
when it has an opportunity to surface, which greatly increases the delay in data collection
and does not meet the current requirements of some specific scenarios. Therefore, it is
necessary to further research methods for real-time AUV-based SSS data processing and
the intelligent real-time detection of underwater targets.

The main steps of SSS data processing are geometric correction, radiometric distortion
correction, geocoding, and gap filling in waterfall images [18–23]. A number of researchers
have studied each processing step in depth, but most such studies focus on post-processing
shipborne SSS data, their algorithms are time-consuming, and few involve real-time pro-
cessing [24–27], which has become a bottleneck restricting the real-time acquisition of
high-quality image data from AUV-mounted SSS systems.

At present, most target interpretation in SSS images is manual, which has the short-
comings of being inefficient, slow, and highly subjective. Some researchers have stud-
ied automatic detection methods using conventional feature-extraction and classification
machine-learning methods [28–31] and achieved good detection results against simple
seabed backgrounds. However, when the terrain image is more complex, the detection
effect remains unsatisfactory. In recent years, deep-learning methods, especially deep
convolutional neural networks, have attracted attention in the field of underwater detection
because of their powerful feature learning ability and a correct recognition rate that far
exceeds that of conventional methods [32–37]. However, existing detection networks have
complex structures, low detection efficiency, and require a large number of samples for
training. By contrast, the number of SSS images is too small due to the high cost of data
acquisition, slow collection speed, and low number of existing targets [38], which means
the target samples are underrepresented. In this case, it is important to carry out research
on highly accurate and lightweight deep-learning-based detection models [39–43].

In summary, a real-time underwater-target detection method using AUV-based SSS
data is proposed, and the three key technical problems encountered in the implementation
of the method, namely the real-time processing of SSS data, the construction of a deep-
learning-based detection model (including the deep-learning-based detection algorithm
and data augmentation method), and the real-time detection of targets, are investigated
in this study. The aim is to solve the problems that the SSS data of the AUV cannot be
transmitted back and processed in real time and the targets cannot be detected in real time
due to the limitations of underwater acoustic communication. The innovation points and
works of this paper are as follows:

1. An AUV-based side-scan sonar real-time detection method for underwater targets is
proposed, which consists of real-time side-scan sonar data processing, deep-learning-
based underwater-target detection model constructing, and a real-time target detection
method based on navigation strip images.

2. To address the conflict between the requirement of high-quality imaging and the
unavailability of post-event processing in the real-time AUV-based detection, we
proposed a real-time SSS data processing method, including real-time decoding
and data cleaning, echo intensity data conversion, automatic seabed line detection,
slant range correction, radiometric distortion correction, real-time noise cancelation
correction, and geocoding.

3. To satisfy the requirements of high levels of accuracy and efficiency in the underwater-
target detection, we proposed a DETR-YOLO for quick detection and a BHP-UNet for
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high-precision segmentation. In addition, a data augmentation method is proposed
that uses the SSS imaging mechanism, an underwater environment, and 3D printing to
obtain a sufficient number of strongly representative samples for the model training.

4. Considering the large size of the real-time SSS images, we proposed a real-time
method for underwater-target detection that uses navigation strip images based on
sliding detection and weighted fusion of bounding boxes.

The paper is structured as follows: Section 2 introduces the AUV-based real-time
SSS underwater-target detection system and process and details the three key technical
problems of the proposed AUV-based real-time SSS target detection method, including the
real-time SSS data processing, construction of the deep-learning-based detection model,
and the real-time target detection method based on navigation strip images. Section 3
verifies the proposed method by experiments. Section 4 discusses the superiorities and
limitations of the proposed method. Finally, some conclusions are drawn out in Section 5.

2. Materials and Methods

For the AUV-based SSS real-time method for underwater-target detection, the most
important point is to overcome the limitation of underwater acoustic communication
to achieve real-time detection. However, the difference between this method and the
traditional mother ship using towfish is that a large amount of data cannot be sent back
and processed in real time and the target interpretation of SSS images cannot be carried out
by shore-based operators. Therefore, all operations should be processed based on the AUV
platform, and the problems of efficiency and high precision should be met. In order to solve
the above problems, this paper firstly proposes the composition of the real-time AUV-based
SSS underwater-target detection system and the operating process of the system. Secondly,
from the perspective of realization, in order to break through the limitation of bandwidth
of underwater acoustic communication and satisfy the low delay and high precision of
detection, the key technical problems involved in the realization of real-time underwater-
target detection and the corresponding solutions are put forward, including a real-time
processing method for side-scan sonar data, a method for constructing a deep-learning-
based underwater-target detection model, and a real-time method for underwater-target
detection based on navigation strip images, which, together, solve the key technology of
“input-process-output” and provide a new solution for AUV-based SSS real-time detection
of underwater targets.

2.1. Real-Time AUV-Based SSS Underwater-Target Detection System and Process

The real-time AUV-based SSS underwater-target detection system detects underwater
targets using a deep-learning-based underwater-target detection model. When performing
this task, the AUV is the carrier and the SSS equipment is the main load. The AUV transmits
the final detection results and the extracted underwater target feature information back to
the mother ship in real time through underwater acoustic communication, thus realizing
the real-time detection of underwater targets, as shown in Figure 1.

The AUV used in this study is a Black Shark I-A, as shown in Figure 2, which has a
length of 2.65 m, a diameter of 0.25 m, a maximum speed of 12 kn (the cruising range is at
least 100 km at the speed of 5 kn), and a maximum working depth of no less than 300 m.

The main component of the AUV task system is the SSS, which consists of two electronic
components: an embedded single board computer for data processing and the SSS transducer.
The SSS system detects underwater targets primarily using the principles of echo detection, and
the SSS employed in the system used in this study is a Shark-S455D, which has two frequencies,
450 kHz and 900 kHz, corresponding to single-sided ranges of 150 m and 75 m, respectively.
The embedded single board computer used to process the SSS data is an MIO-2263, which runs
the Ubuntu operating system and is equipped with Intel Celeron J1900@2.0 GHz and Intel Atom
E3825@1.33 GHz CPUs and a memory of 8 GB.
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To meet the navigation accuracy requirements of the system, S3 optical fiber inertial
navigation, navigator 1000 kHz DVL, and EvoLogic S2CR 18/34 underwater acoustic
ultra-short baseline positioning (USBL, with underwater acoustic communication function)
are selected in this system.

The AUV communication system can communicate using radio, satellite, and un-
derwater acoustic communication. The underwater acoustic communication device used
in this system is an EvoLogics S2CR, which has an ideal maximum communication dis-
tance of 3500 m, a communication frequency of 18–34 kHz, and a transmission rate of
12.5–14.5 kB/s.

Unlike the shipborne communication system, which directly uses cable transmission
or satellite communication, the radio communication is used for short-distance underwater
communication. The satellite communication is used to communicate with the mother
ship when the AUV surfaces, and the long-distance underwater communication primarily
depends on underwater acoustic communication. Because the bandwidth of underwater
acoustic communication is on the order of kilobytes, the AUV cannot transmit SSS measured
data long distances back to the mother ship in real time, which would be on the order of
megabytes. Therefore, the AUV-based SSS underwater-target real-time detection system
must perform real-time processing and intelligent detection on a sample of measured data
internally and only transmit the extracted key information of the underwater target back
in real time through underwater acoustic communication. On the basis of this feature, a
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real-time underwater-target detection process based on the AUV equipped with SSS is
proposed in this paper. The overall detection process is shown in Figure 3.
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The detection process consists of four steps, data acquisition, real-time processing,
real-time target detection, and result output, and the steps highlighted with an orange
circle indicate the key techniques involved in the method.

First, the original observation data are obtained by analyzing the data of the specified
scan area of the SSS device mounted on the AUV.

Second, the obtained SSS data are processed in real time to obtain the current scan
image of the SSS, and real-time noise cancelation is performed to improve the data quality
as well as the accuracy of the detection model.

In the third step, the high-quality image obtained by real-time processing is input into
the deep-learning-based underwater-target detection model for intelligent detection. Dur-
ing this step, a data augmentation technique is used to increase the number of underwater-
target samples, providing a larger database for the training algorithms of the real-time
detection model. This improves the generalization ability of the model and improves its
performance. At the same time, the underwater-target data obtained by the detection
model during the task are added to the database, which is used to enrich the database and
optimize the training of the subsequent detection models, thereby further improving the
detection performance and realizing a positive cycle of model training, model feedback
data, and new data retraining algorithms.

Finally, the feature information of the target detected by the deep-learning-based detec-
tion model is extracted, and the key information extracted by the real-time target detection
method is transmitted back to the user through underwater acoustic communication, thus
completing the real-time detection of underwater targets.

2.2. Key Techniques of the Proposed Detection Method

In contrast to target detection after the event, to detect underwater targets in real time,
the AUV-based SSS system needs to be able to process SSS data and detect targets in real
time. To this end, this paper proposes a real-time processing method for SSS data, a method
for constructing a deep-learning-based underwater-target detection model, and a real-time
method for detecting underwater targets based on navigation strip images.

2.2.1. Real-Time Processing Method for SSS Data

The real-time processing of SSS data and high-quality imaging are the prerequisites
for the intelligent detection of underwater targets. Because post-event processing is not
possible, a real-time processing method for SSS data is proposed; the flow diagram is shown
in Figure 4.
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As shown in Figure 4, for the input original SSS data, a real-time decoding and
data cleaning and echo intensity data conversion are performed at first to obtain the
original SSS waterfall image. Secondly, to remove the water column in the middle of the
original SSS waterfall image, an automatic seabed line detection is conducted. Thirdly,
to transform the slant range of each echo into horizontal distance, we conduct the slant
range correction based on the SSS image that has been processed by seabed line detection.
Fourthly, considering the grayscale imbalance caused by the expansion and absorption
losses of sound waves, a radiometric distortion correction is conducted by presenting
a statistical gain method. Then, to reduce the interference of the complex environment
noise, equipment noise, and other factors, a real-time noise cancellation is performed.
Finally, to assign the image position information, a geocoding is conducted to transform
the coordinates of the echo point in a geographic coordinate system.

(1) Real-time Decoding and Data Cleaning

According to the data protocol, the original SSS observation data are analyzed in
real time to obtain data such as echo intensity, GNSS positioning, and attitude. The SSS
positioning data and attitude data are filtered by Kalman filtering to improve the quality,
and the echo intensity data are interpolated and corrected to obtain high-quality original
observation data.
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(2) Echo Intensity Data Conversion

The echo intensity value output by the SSS can be quantized to 11 bits or 64 bits by
the system [19], and it is usually quantized again to facilitate later processing and reduce
computer storage. The common quantization formula is as shown below:

new_value = C× ln
(

2n × raw_value
2m

)
(1)

where C is a user-defined constant, m is the number of bytes corresponding to the value
range of the original echo data, and n is the number of bytes corresponding to the value
range after quantization. If n = 8, the original echo intensity data are converted into a
grayscale image.

(3) Automatic Seabed Line Detection

Due to the measurement mechanism used in SSS, there is a region known as the
water column in the middle of the original SSS waterfall image. This results in geometric
distortion in the direction of the vertical track. The process of determining the position of
the first seabed echo in each row is usually called seabed tracing, during which the seabed
is detected according to the grayscale values of the water column area and the seabed
image. The key to real-time detection is hence the selection of thresholds. At present, the
common methods for threshold selection are the amplitude threshold method and the
window slope method.

In the amplitude threshold method, an appropriate threshold is set and the first echo with
an intensity greater than the threshold is identified in the echo sequence in the order of receiving
time. This echo is the seabed line. The seabed line is prone to disturbance by strong echoes, so
the threshold must be adjusted in real time. In the window slope method, it is assumed that the
positions of the seabed line are similar in the images of several adjacent pings. A window is set,
the mean value of each column of echoes within the window is counted, and the column mean
curve is derived using the finite difference method. The position with the largest slope on the
curve is the position of the seabed line. This approach avoids the need to update the threshold
in real time. Hence, in the system described in this paper, the window slope method is used to
detect the seabed line in real time.

(4) Slant Range Correction

According to the SSS imaging mechanism, the towfish height H is calculated using
the position of the first seabed echo detected by the seabed line and the recorded slant
range R of each echo (the distance from the SSS to the seabed echo point) is converted to
the horizontal distance L of the echo point relative to the track line as follows:{

L =
√

R2 − H2

R = ct
2

(2)

where R is the propagation range of the sound wave and H represents the height of the SSS
device estimated based on the position of the seabed line. After the slant range correction,
distortion in the vertical track direction of the SSS waterfall image will be effectively
suppressed, and the generated image reflects the true geospatial distribution of the objects
detected by the SSS.

(5) Radiometric Distortion Correction

There is radiometric distortion in the SSS image, which primarily manifests as a lateral
grayscale imbalance that is caused by the expansion and absorption losses of sound waves
as the propagation distance increases. Existing data acquisition software performs time
varying gain (TVG) compensation using an empirical formula [21], but the compensated
image is still affected by residual radiometric distortion due to the difference between sea
areas. Given the complex variability in the marine environment, to completely eliminate
this effect, this paper presents a statistical gain method based on the measured data. The
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idea of this method is to normalize the echo data to the same energy level based on
mathematical statistics using the spatial distribution characteristics of the original echo
intensity value. The process is as follows:

1. Take a sliding window with a width of d and a length of l, where l is twice the image
scan breadth.

2. Calculate the mean value of the intensities of each column echo along the track
direction within the window.

3. Calculate the mean value of the echo intensities within the window and use it as the
basic value for normalization.

4. Calculate the correction coefficient for each column as follows:

aj =

1
d×l

d
∑
i

l
∑
k

Ei,k

1
d

d
∑
i

Ei,j

,

E′ i,j = Ei,j × a

(3)

where d is the width of the moving window, l is twice the image scan breadth, a is the
correction coefficient, E is the intensity value of the original echo, and E′ is the intensity
value after the gain.

(6) Real-Time Noise Cancelation Correction

During the underwater operation of the AUV, the SSS image is prone to interference
from marine environmental noise, equipment noise, and other factors, which is primarily
manifested as salt-and-pepper noise, Gaussian noise, and stripe noise. The Gaussian noise
can be eliminated by mean filtering or Gaussian filtering, the salt-and-pepper noise can be
eliminated by median filtering, and the stripe noise can often be eliminated by frequency
domain filtering.

(7) Geocoding

The SSS waterfall image is formed by the echo intensity sequences arranged in mea-
surement order, and hence it does not include coordinate information. To assign the image
position information, it is necessary to transform the coordinates of the echo point in a
geographic coordinate system using positioning, compass, and attitude sensor data.

As the descriptions of the above seven processing steps reveal, in contrast to post-
processing, all the parameters in the real-time processing are obtained automatically using
the measured data, and hence the real-time processing of SSS image data can be realized.
Figure 5 shows the real-time processing of SSS data from a strip fragment. It can be seen
that the original echo data are transformed into a high-quality image with geolocation
information via a series of steps and real-time noise cancelation.

2.2.2. Method for Constructing the Deep-Learning-Based Detection Model

• Implementation of the Deep-Learning-Based Detection Algorithm

Underwater-target detection requires high levels of accuracy and efficiency in the de-
tection model. To this end, the DETR-YOLO target detection model for quick detection and
the BHP-UNet target segmentation model for high-precision segmentation are proposed.

After they have been trained, the classic algorithms in the field of target detection (such
as YOLO, Faster R-CNN, and the Transformer [44–47]) as well as the classic algorithms in
the field of target segmentation (such as FCN, U-Net, and Deeplabv3+ [48–50]) can achieve
the intelligent detection of underwater targets. However, these conventional algorithms
cannot meet the requirements for efficiency, real-time operation, accuracy, and lightweight
structure of SSS underwater targets in complex marine environments. Therefore, the design
of detection and segmentation algorithms should be conducted while considering the
characteristics of the marine environment, the features of the underwater-target image, and
the size of the data set. Meanwhile, considering the engineering design of the AUV and the
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computational performance of the control module, a lightweight and compact design is
adopted in terms of the algorithm structure and number of parameters.
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For quick target detection, the DETR-YOLO-based SSS underwater-target detection
model is proposed to improve the accuracy of small target detection, reduce the missed
alarm and false alarm rates of overlapping targets in complex ocean noise background, and
realize the efficiency and lightweight characteristics of the model. The specific structure of
the model is shown in Figure 6.

The DETR module focuses on the effective part of the input, improves the performance
of the model’s target feature learning, processes all object queries at one time during
image feature processing, and outputs all prediction results simultaneously, thus greatly
improving the training efficiency of the model, which helps achieve a lightweight structure
in the model. The multi-scale complex feature fusion aggregates multi-layer parameters,
further improving the learning of abstract features and location information. The SENet
module uses a lightweight structure to increase the sensitivity of the model to channel
features while increasing the computation only a small amount, further improving the
performance of the model.

For high-precision target segmentation, the BHP-Unet-based SSS underwater-target
segmentation model is proposed to improve the high-precision edge segmentation ability
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of closely arranged and overlapping underwater multi-targets and covered or semi-buried
targets. The specific structure of the model is shown in Figure 7.
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Using blended hybrid dilated convolution, the expansion rate of the convolution
kernel is changed at multiple scales on the basis of various dilated convolutions to expand
the receptive field so that the model has a better ability to recognize target areas with low
responses by perceiving the surrounding high-response semantics, and the knowledge of
uncommon areas containing recognition features is transferred to adjacent target areas.
In this way, the feature information of the high-response part of the target object can be
propagated to the adjacent target area at multiple scales. Finally, the target recognition
positioning images generated at different expansion rates are fused. Thus, accurate target
recognition and positioning is achieved, even for dense targets, essentially improving the
recognition ability of the segmentation model.

By introducing the pyramid split attention mechanism, the multi-scale spatial in-
formation and the cross-channel attention are integrated into the feature group of each
segmentation using a lightweight structure so that a better information interaction be-
tween local and global channel attentions is achieved. This enables the model to output
feature images with multi-scale, global, and long-term information, increasing the over-
all segmentation performance of the model while only slightly increasing the amount of
computation.

• Data Augmentation Method

A sufficient number of strongly representative samples are needed to train a high-
performance detection model, and this is a key component for the final development of a
high-performance, deep-learning-based detection model. There is a lack of sonar image
samples for underwater targets as well as actual targets with no sonar images. Therefore, in
this paper, a data augmentation method is proposed that uses the SSS imaging mechanism,
an underwater environment, and 3D printing. Details of the method are shown in Figure 8.
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First, physical models for targets with a very small number of underwater samples
or those that have not been detected but are known to exist under water, such as mines or
derrick platforms, are fabricated using 3D printing. Then, using the imaging characteristics
of the targets with different attributes, the SSS images of the targets under different condi-
tions are simulated using a method based on geometry, shadow transformation, and target
embedding. Finally, using the SSS imaging mechanism and sonar background features
under different conditions, the SSS underwater-target image database is augmented using
a style transfer method considering noise and texture.

(1) Sample Model Fabrication Based on 3D Printing

The sample augmentation based on 3D printing can solve the problems that data are
unavailable or difficult to acquire. First, the existing target is analyzed in terms of style,
material, force, structure, and other factors. Then, the density of the printing material and
the production characteristics of 3D printing are used to design a digital model of the target
using 3D modeling software, and a process engineering drawing is produced. Next, 3D
slicing software is used to specify the model printing process, including mold modification,
shelling, slicing, supports, and other aspects. Finally, additive manufacturing is carried out
using an industrial-grade 3D printer to obtain the physical underwater-target model.

(2) Sample Augmentation Based on Geometry, Shadow Transformation, and
Target Embedding

The SSS uses line scan imaging, and the size of the target image varies with the
geometric distance (height and horizontal distance) from the device to the underwater
target. Accordingly, a large number of underwater-target images can be generated. The
physical target generated by 3D printing can simulate the relative relationship between
the device and the target body and generate an SSS image based on the line scan imaging
mechanism.

A feature of SSS imaging is that the target is accompanied by a shadow, the shadow
generation is shown in Figure 9. After the target image has been generated, the shadow is
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generated in the form described in [51]. The specific process is as follows: Select the m ×
n image containing only the target, where the upper left vertex is taken as the coordinate
origin, the width direction is the X-axis direction, and the length direction is the Y-axis
direction. The Z-axis is perpendicular to the XY plane. The transducer moves along the
track line in the direction perpendicular to the Y-axis with the coordinates as (Xacoustic,
Yacoustic, Zacoustic), where Yacoustic and Zacoustic are arbitrary constants. While moving,
the transducer emits sound waves toward the target to perform line scanning, traversing
from left to right along the scan line. When there is a target pixel, the elevation of the pixel
is calculated according to the pixel gray value Pgray, and then the shadow coordinates of
the same pixel are calculated according to the principle of similar triangles. As a result,
the coordinates of the pixel point are He(Xhull, Yhull, Zhull), and the coordinates of the
shadow point are Se(Xshadow, Yshadow, 0). Meanwhile, the minimum and maximum
values of the coordinates of shadow Y on the scan line are also calculated, and all pixels
between the minimum and maximum values, except for the target pixels, are shadow area
pixels. Finally, the resulting shadow burrs are smoothed by mean filtering. In the following
equations, a, b, and c are arbitrary constants greater than zero.

Xacoustic = Xhull = Xshadow = x
Yacoustic = a, Zacoustic = b, h = c
x ∈ (0, m), a ∈ (0, n)

(4)

Zhull =
Pgray

255
· h (5)

Zhull
Zacoustic

=
Yhull −Yshadow

Yacoustic −Yshadow
= λ (6)

Yshadow =
Yhull − λ ·Yacoustic

1− λ
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The textures and noise levels of SSS images obtained under different SSS systems,
water bodies, terrains, and substrates are quite different. These features are learned and
superimposed on the previously generated target images and shadows to generate tar-
get images for different scenarios, thereby augmenting the target image sample. Image
texture and noise are known as the image “style”. To implement the style transfer, a Style-
BankNet network model for the underwater targets is constructed to change the style of
the underwater-target image and generate a new sample. The model structure is shown in
Figure 10.
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First, effective information, such as the target and background of the sonar image, is deeply
encoded using the encoder–decoder structure to obtain the coding features. Second, the SSS
target images under different imaging conditions are input into the style transfer network, and
the texture and noise under different imaging conditions are encoded in the StyleBank layer
to obtain representative style templates under different conditions. Finally, the style templates
are convolved with the contents generated by the encoder and then decoded by the decoder to
generate SSS small target samples with different textures and noise.

2.2.3. Real-Time Method for Underwater-Target Detection with Navigation Strip Images

In actual practice, the timing and size of the SSS image input into the detection model
directly determines the efficiency and accuracy of real-time detection. The SSS image is
updated in real time and is usually large in size, and directly inputting it into the deep-
learning-based detection model will seriously decrease efficiency, whereas compressing the
image will lead to the loss of the target’s key information. Hence, a real-time method for
underwater-target detection that uses navigation strip images was developed.

Considering the randomness of the underwater-target positions, to provide informa-
tion that is sufficiently redundant for merging detection boxes of the same target while
ensuring the detection of the target, the adjacent detection window is slid over the image
with a coverage of 75%. If single-ping detection is used, the computational burden of the
entire model will increase, but the increase in the number of single-ping data has no effect
on the detection result of the entire target. In this paper, therefore, the sliding detection
is performed on new images along with the previously measured images after the newly
added 10-ping SSS data have been stitched. The real-time process of underwater-target
detection is shown in Figure 11.
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In the deep-learning-based process of target detection, the same target may be partially
or completely detected by multiple sliding windows, or multiple targets may be detected
by the same sliding window. If they are not fused or distinguished, missed alarms and
false alarms may occur. Therefore, to obtain a single detection box for a single target, a
confidence-based detection box weighted fusion strategy is proposed, and the specific
process is shown in Figure 12, where the red boxes indicate examples.
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Multiple targets of the same category or different categories may appear within
the same sliding window. Therefore, before the bounding boxes are fused, it must be
determined whether the bounding boxes belong to the same target. Specifically, when a
sliding window detection is completed, if there is a target in the window, the detected
target information should be compared with the detected target information in all adjacent
windows that share the same coverage area, and the ratio of the two is calculated as follows:

TIoU =
(Pi ∩Wol) ∩ (Pj ∩Wol)

min((Pi ∩Wol), (Pj ∩Wol))
(8)

where Pi and Pj are the prediction boxes of the adjacent detection windows Wi and Wj, and
Wol is the overlap area of the adjacent windows. When TIoU is greater than a set threshold,
it will be determined that the bounding boxes belong to the same target.
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To further improve the detection and positioning accuracy and avoid missed alarms
when detecting overlapping or very close targets, the role of each prediction box is consid-
ered in the generation of the detection box, that is, a weight is assigned to each prediction
box according to the confidence score, and the coordinates of the weighted fusion box are
generated. The confidence of the fusion box is determined by the average confidence of all
prediction boxes, which is calculated as follows.

xt
le f t =

∑n
i=1 ci×xi

le f t

∑n
i=1 ci

, xt
right =

∑n
i=1 ci×xi

right
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top =
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, yt
bottom =
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(9)

ct =
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3. Results

To evaluate the feasibility and effectiveness of the AUV-based SSS real-time underwater-
target detection method, two real-time underwater-target detection maritime experiments
were carried out in the Zhoushan Sea area in July 2022 and in the Sanya area in August 2022.
The evaluation consisted of two parts, namely the construction of the deep-learning-based
detection model and the maritime experiment. During the experiments, the target detected
in the Zhoushan Sea area was the shipwreck marked on the chart, and the target detected
in the Sanya Sea area was the 3D-printed mine model.

3.1. Detection Model Construction and Analysis

The deep-learning-based detection models implemented in the AUV system in these
experiments were the DETR-YOLO and BHP-UNet detection models described in Sec-
tion 3.2.1. The model pre-training was implemented in Python based on the PyTorch
framework, and the hardware environment was as follows: Windows 10 operating system;
CPU: Intel(R) Core(TM) i9-10900X@3.70 GHz; GPU: 2 NVIDIA GeForce RTX 3090; and
parallel memory: 48 GB. The model training data categories included shipwrecks and
mines. The underwater-target data augmentation was carried out using the data sample
augmentation method described in Section 3.2.2, as shown in Table 1.

Table 1. Details of the underwater-target data sets.

Category Number of Original Training
Data Images

Number of Sample Augmented
Data Images Ratio of Training to Test Data

Shipwreck 612 1200 4:1
Mine 8 100 4:1

The augmentation results of some underwater data samples are shown in Figure 13.
It can be seen from the figure that the newly added SSS underwater-target images

obtained using the data sample amplification method show the target features very well,
which solves the problem of the lack of underwater-target sample data to a certain extent.
In this experiment, the training sets and the test sets in the data sets were divided using a
ratio of 4:1, and ten-fold cross-validation was used to train the model. During training, the
initial learning rate was set to 0.0001, the learning rate was adjusted in real time using the
Adam algorithm, the number of epochs was set to 1200, and the batch size was set to 32
according to the computer’s configuration.
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In this experiment, the average precision (AP) was used as the metric to evaluate the
accuracy of the detection model, where AP_0.5 refers to the AP value when the intersection
over union (IOU) was set to 0.5 and AP_0.5:0.95 indicates the average of the AP values
when the IOU threshold ranged from 0.5 to 0.95 in intervals of 0.05, calculated as follows:
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The dice score and IOU were used as metrics to evaluate the segmentation performance
of the model. They are, respectively, calculated as follows:

Dice =
2× Precision× Recall

Precision + Recall
=

2TP
2TP + FP + FN

=
2|X ∩Y|
|X|+ |Y| (13)

IoU =
TP

TP + FP + FN
(14)

At pixel-level detection, precision, which measures the accuracy of the result, refers to
the probability that the positive samples are actually detected as positive samples. Recall,
which measures the completeness of the result, refers to the probability that the positive
samples are detected as positive samples. Moreover, TP (true positives) indicates the
positive samples detected correctly, and FP (false positives) indicates the positive samples
detected incorrectly. TN (true negatives) denotes the negative samples detected correctly,
and FN (false negatives) denotes the negative samples detected incorrectly. Finally, |X|
refers to the ground truth, indicating the real pixels of the target, and |Y| refers to the
predicted mask, which indicates the segmented pixels predicted by the model. FPS (frames
per second) and weights are used as metrics to evaluate the efficiency and structural
complexity of the detection model. The detection and segmentation performances of
proposed models on the test set are given in Tables 2 and 3.

Table 2. Detection performances of the DETR-YOLO model.

Mine Target Shipwreck Target

Model AP0.5/% AP0.5–0.95/% FPS Weights/MB AP0.5/% AP0.5–0.95/% FPS Weights/MB

DETR-YOLO 76.5 56.9 427 18.2 84.5 57.7 431 20.1
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Table 3. Segmentation performances of the BHP-UNet model.

Mine Target Shipwreck Target

Model Dice/% IOU/% FPS Weights/MB Dice/% IOU/% FPS Weights/MB

BHP-UNet 76.33 78.52 132 64.2 78.31 77.71 121 66.2

According to Table 2, the proposed DETR-YOLO realized 84.5% AP0.5 and 57.7%
AP0.5–0.95 with 431 FPS on the test data of the shipwreck target, which is better than the
mine target. This is because the shipwreck target is bigger and more distinct than the mine
target, and it has more abundant features such as the texture and outline.

As for the segmentation task, the performances of the proposed BHP-UNet for the
mine target and the shipwreck target are similar. Although the shipwreck target is more
distinct, it has more complex detailed features than the mine target. Hence, when faced
with the segmentation task, the BHP-UNet achieved a better efficiency for the mine target
with 132 FPS.

3.2. Maritime Experiments and Analysis
3.2.1. Shipwreck Target Experiment

The sea area targeted in this experiment is located in an area south of Nanyuanshan
Mountain in the Zhoushan Islands. According to the chart data, this sea area has an average
water depth of about 40 m. Near the coordinates (30◦11′49.776′′ N, 122◦19′31.696′′ E), there
are shipwreck targets. The offshore deployment of the AUV is shown in Figure 14.
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The track line of the AUV is shown in Figure 15. During the experiment, the AUV
scanned the seabed to detect underwater targets at a fixed height of 20 m, an average speed
of 3.5 kn, and a scan breadth of 150 m.
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Figure 15. Task track in the Zhoushan Sea area.

In the actual operation of the AUV, a total of four survey lines were deployed, including
three planned lines and one inspection line. Of these, for three survey lines, the UAV
transmitted back the key information of underwater targets at the approximate positions
indicated by red dots in Figure 15, the red dot in the figure is the area of this experiment.

In this paper, the real-time information transmitted from the No. 40-3 survey line is
shown as an example. The key information of the underwater target was transmitted at a
point about two nautical miles from the mother ship, and it included the information such
as images, the category of the target, the coordinates of the center point, and the geometric
dimension of the underwater target, as shown in Figure 16. The transmission speed was
13.8 kB/s, and the total data volume was 246 kB.
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As Figure 16 shows, the real-time transmitted SSS image waterfall image has clear
noise cancelation effects, even under the conditions of complex seawater noise found in the
Zhoushan Sea area, and the deep-learning-based detection model proposed in this paper
detected the underwater shipwreck target well. Moreover, the coordinates of the detected
shipwreck were similar to the position marked in the chart, and the shipwreck height was
calculated to be 6.44 m using the geometric feature-extraction method. The correctness
of this value cannot be verified, but it is consistent with the value given by traditional
experience.

3.2.2. Mine Target Experiment

The area targeted in this experiment is located in the southeast of Hainan Niuqizhou
Island. According to the chart data, it has an average water depth of about 30 m. The mine
model produced by 3D printing was 2 m in diameter, as shown in Figure 17, and it was
deployed at the location shown in Figure 18.
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The track line of the AUV is shown in Figure 18. During the experiment, the AUV
scanned the seabed to detect underwater targets with a fixed height of 15 m, an average
speed of 3 kn, and a scan breadth of 150 m.
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In the actual operation of the AUV, a total of five survey lines were deployed, four
planned routes and one inspection line. Because of the small size of the mine target, the
UAV transmitted back key information of the underwater target for only two of the survey
lines. The approximate locations are indicated by the red dots in Figure 18, the red dot is
the point where the AUV found the target. In this paper, the No. 30-2 survey line is shown.
The key information of the underwater target was transmitted back at a point one nautical
mile from the mother ship and included the information such as images, the target category,
the coordinates of the center point, and the geometric dimensions of the underwater target,
as shown in Figure 19. The transmission speed was 14.3 kB/s, and the total data volume
was 194 kB.
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Figure 19. Key information transmission for the mine target.

Figure 19 reveals that the transmitted coordinates for the mine were slightly different
from the coordinates where the mine was deployed, which may have been caused by the
movement of the mine target due to the impact of the seabed inrush and positioning error
of the AUV. In addition, the geometric information transmitted back indicates that the
horizontal edge of the mine was 1.75 m and its longitudinal edge was 2.01 m, which is
almost the same as the actual diameter of 2 m. Although the size of the mine is relatively
small, the deep-learning-based detection model proposed in this paper still intelligently
detected the mine target and realized the real-time transmission of key information.

The above two experiments demonstrate that the system proposed in this paper
realized real-time AUV-based SSS underwater-target detection, proving that the method is
feasible and the key techniques are effective, which will have great guiding significance in
practice.

4. Discussion
4.1. Significance of the Proposed Method

It is proved that the AUV-based side-scan sonar real-time method for underwater-
target detection proposed in this paper is maneuverable and effective through the above
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experiments, which solves the challenge brought by the limitation of underwater acoustic
communication to a certain extent. The following key technologies proposed in this paper
are further discussed.

4.1.1. Data Augmentation Method

A sufficient number of strongly representative samples is a key component for the
detection model. Under the premise of few or even zero samples, the proposed method
realizes the data samples from “none” to “have” through 3D printing and realizes the
data samples from “have” to “many” by combining the imaging features of different
attributes, the imaging mechanism of SSS, and the sonar background features under
different conditions. Compared with the SSS sample augmentation method that takes into
account five aspects of target diversity, target texture, imaging resolution, equipment and
environmental noise, and background [52], our method obtains more realistic and detailed
augmented samples.

As can be seen from Figure 20, the image augmented by our method in this paper has
higher resolution, complete detail features, and a stronger sense of reality.
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In order to verify the influence of the augmented samples on the performance of the
proposed underwater-target detection model, three sets of data were designed to train
the DETR-YOLO and BHP-Unet models, taking the shipwreck target as the experimental
object, and the number of images remained the same at 500. A total of 100 real SSS ship-
wreck images were selected to evaluate the performance of the trained model. Evaluation
indicators are consistent with those in Section 4.1.

As can be seen from Tables 4 and 5, the detection performance of the DETR-YOLO
model and BHP-Unet model trained by Group 2 is higher than that of the other two groups,
indicating that our method is superior to the method [52] and even better than the real SSS
image, which proves the effectiveness of our method and can be a crucial help in improving
model performance.
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Table 4. Composition of training set.

Group Real SSS Image Generated by Proposed
Method

Generated by [52]
Method

1 1 500 0 0
2 2 0 500 0
3 3 0 0 500

1 The data in Group 1 are made up of real SSS images. 2 The data in Group 2 are made up of SSS images augmented
by our method. 3 The data in Group 3 are made up of SSS images augmented by [52] method.

Table 5. Performances of the models trained with different sets.

Model AP0.5/% AP0.5–0.95/% Dice/% IOU/%

DETR-YOLO-1 79.9 50.5 - -
DETR-YOLO-2 83.1 54.9 - -
DETR-YOLO-3 80.7 50.2 - -

BHP-Unet-1 - - 72.6 72.2
BHP-Unet-2 - - 73.1 75.6
BHP-Unet-3 - - 71.5 69.7

4.1.2. Deep-Learning-Based Detection Algorithm

Underwater-target detection requires high levels of accuracy and efficiency in the
detection model. The proposed DETR-YOLO target detection model realized the goal for
quick detection, and the proposed BHP-UNet target segmentation model realized the goal
for high-precision segmentation.

To study the influence of the DETR module on YOLO and the BHP module on UNet,
we conducted the ablation study and compared the AP0.5, AP0.5–0.95, FPS, and size of
weights filed in different settings. The results are shown in Tables 6 and 7.

Table 6. Influence of the DETR module on YOLOv5.

Mine Target Shipwreck Target

Model AP0.5/% AP0.5–0.95/% FPS Weights/MB AP0.5/% AP0.5–0.95/% FPS Weights/MB

YOLOv5a 74.2 47.4 426 16.1 81.8 51.6 430 18.6
DETR-YOLO 76.5 56.9 427 18.2 84.5 57.7 431 20.1

Table 7. Influence of the BHP module on UNet.

Mine Target Shipwreck Target

Model Dice/% IOU/% FPS Weights/MB Dice/% IOU/% FPS Weights/MB

U-Net 67.95 70.61 135 62.1 69.26 71.47 126 65.9
BHP-UNet 76.33 78.52 132 64.2 78.31 77.71 121 66.2

For the influence of the DETR module on YOLOv5, according to Table 4, the DETR-
YOLO achieved a better performance than the raw YOLOv5a in detection precision and
efficiency no matter when faced with the mine target or shipwreck target. Specifically
speaking, the DETR module improved the YOLOv5a by increasing the AP0.5 and AP0.5–
0.95 by 2.3% and 9.5% for the mine target and 2.7% and 6.1% for the shipwreck target.
Therefore, the self-attention mechanism of the DETR module can focus more on the target
area, especially for the small target.

For the influence of the BHP module for UNet, according to Table 5, the BHP-UNet
achieved 77.33% mean dice and 78.12% mean IOU with 127 mean FPS. Therefore, the BHP
module improved the dice and IOU of U-Net by 8.38% and 7.91% for the mine target and
9.05% and 6.24% for the shipwreck target with little extra efficiency burden. Therefore,



J. Mar. Sci. Eng. 2023, 11, 690 24 of 28

the BHP module is helpful to segment both the large and small targets by the multi-scale
features.

In order to further verify the performance of the proposed model, comparison experi-
ments were conducted with conventional models (Transformer, Faster R-CNN, YOLOv5),
and data set composition, experimental configuration, and training strategy were consistent
with those in Section 4.1.

As Tables 8 and 9 reveal, the DETR-YOLO model has an AP score that is significantly
higher than those of the other three models, indicating a better detection performance,
whereas the BHP-UNet model is superior to the other two models in terms of both dice
score and IOU, indicating the best segmentation performance. In addition, both models
proposed in this paper have a more complex structure, but there is only a very small gap
in complexity relative to the Transformer and U-Net, which have the simplest structure
and the fastest speed in terms of FPS and weights, which indicates that the lightweight
structure and high efficiency of the detection model proposed in this paper fully meets the
requirements for real-time detection.

Table 8. Comparison of the detection performances of the DETR-YOLO model and conventional models.

Mine Target Shipwreck Target

Model AP0.5/% AP0.5–0.95/% FPS Weights/MB AP0.5/% AP0.5–0.95/% FPS Weights/MB

Transformer 68.5 41.9 439 13.6 77.3 43.9 442 18.3
YOLOv5 74.2 47.4 426 16.1 81.8 51.6 430 18.6

Faster R-CNN 74.3 44.2 408 30.7 80.31 49.9 411 34.6
DETR-YOLO 76.5 56.9 427 18.2 84.5 57.7 431 20.1

Table 9. Comparison of segmentation performances of the BHP-UNet model and conventional models.

Mine Target Shipwreck Target

Model Dice/% IOU/% FPS Weights/MB Dice/% IOU/% FPS Weights/MB

U-Net 67.95 70.61 135 62.1 69.26 71.47 126 65.9
DeepLabv3+ 73.01 72.58 95 100.1 76.80 75.20 88 103.6
BHP-UNet 76.33 78.52 132 64.2 78.31 77.71 121 66.2

4.1.3. Comparison with other AUV-Based Detection Methods

To further evaluate the performance of this proposed method, the proposed method is
also compared with the existing AUV-based underwater-target detection methods. The
comparison results are listed in Table 10.

Table 10. Comparison of our method with the existing AUV-based real-time underwater-object
detection methods.

Num Method Algorithm Task Object Accuracy Efficiency

1 Ours DETR-YOLO
BHP-UNet

Detection and
Segmentation

Mine Target
Shipwreck

80.5% AP
78.1% IOU

429 FPS (detection)
127 FPS (segmentation)

2 Son-Cheol Yu
(2008) [10] Binarization Detection Cubic

Cylindrical - -

3 Jeffrey Rutledge
(2018) [13] Resnet Detection Target

93.75% recall and 20.71% precision
(data set A)

18.18%% recall and 10.43% precision
(data set B)

-

4 Burguera et al.
(2020) [12]

Fully Convolutional
Neural Network Segmentation

Rock
Sand
Other

87.8% (F1 score, AUV) 4.6 milliseconds per
100 pixels (AUV)

According to Table 10, method 2 initially proposed an AUV-based acoustic image
object recognition system, but it still requires manual feature extraction. Method 3 is the
preliminary attempt to automate underwater detection, but the scarcity of data results in
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that the classification algorithm is overly sensitive to the mislabeled data. Our method
achieved a better performance in terms of segmentation quality and speed compared with
method 4. Comparatively, our method achieved the best performance, and overcomes
the limitation of underwater acoustic communication, thus under-water target real-time
detection is realized.

4.2. Limitations of the Proposed Method
4.2.1. Real-Time Processing Method for SSS Data

Affected by the seabed reverberation and environmental noise, the SSS image noise is
extremely complex. Considering that AUV real-time processing needs to be fast and timely
while avoiding taking up too much computational resources, this paper only uses simple
mean, median, and frequency domain filtering for processing, which can eliminate most
of the pepper and Gaussian noise, and the remaining small amount of noise is blended
with the target. Although it will cause some interference in the final imaging, according
to the study of Huang et al. [52], the residual noise has less impact on the deep-learning-
based underwater-target recognition task, which means that the needs of AUV underwater
recognition can be satisfied by using a simple method. However, if the time requirement is
not high and the computational resources are sufficient, better results can be achieved by
using complex denoising methods such as non-downsampling Contourlet transform [53].

4.2.2. Data Augmentation Method

In the actual operation process, the proposed method costs a lot because it involves
the production of a solid model and the actual maritime experiments to obtain the real
SSS images, but, compared with the traditional sample augmentation only through optical
image and hand-painted image, it at least has the characteristics of real SSS. In addition,
although 3D printing can make objects with known material, texture, and structure, it
cannot restore objects with unknown properties well. Meanwhile, this paper has not
analyzed the internal structure of objects. However, in general, the proposed method can
be fully applied to the augmentation of deep-learning training data under the condition of
few or even zero samples, and a high-performance detection model can be obtained.

4.2.3. Real-Time Method for Underwater-Target Detection

In the sea experiment in Section 3.2, the overall sea condition is good, but the real-time
information return effect is greatly affected under complex sea conditions (especially large
swell); at the same time, due to the limitation of hardware performance of underwater
acoustic communication equipment, it is easy to cause garbled code in the process of real-
time information transmission under complex sea conditions. In addition, the confusion of
AUV velocity and the transmitting frequency of SSS caused by the drastic change of AUV
attitude will also lead to a poor effect of the real-time method for detection with navigation
strip images. However, in general, when the sea conditions are not particularly bad, it can
meet the target of underwater-target real-time detection.

5. Conclusions

To address the problem that the SSS data of an AUV cannot be transmitted back
and processed in real time due to the limitation of underwater acoustic communication,
which means that targets cannot be detected in real time, this paper proposed a real-time
AUV-based SSS method for detecting underwater targets and analyzed the key techniques
involved. The main innovations of this paper include the following three aspects:

1. A real-time AUV-based SSS underwater-target detection method was proposed that
includes the system composition and implementation process.

2. A real-time processing method for SSS data, a method for constructing a deep-learning-
based underwater-target detection model, and a real-time underwater-target detection
method based on navigation strip images were proposed. These methods solve the three
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key technical problems of real-time data processing, deep-learning-based detection model
construction, and real-time target detection using SSS based on an AUV.

3. Through two actual maritime experiments, the real-time intelligent detection of un-
derwater targets using an SSS device on an AUV platform was realized, proving
the feasibility of the proposed method and the effectiveness of the key techniques,
providing a new solution for AUV-based SSS underwater-target real-time detection.

In summary, the proposed method for the AUV-based SSS real-time underwater-target
detection and the key techniques proposed in this paper have overcome the limitations of
underwater acoustic communication to a certain extent and realized real-time, efficient,
and intelligent underwater-target detection, which will have high significance for guiding
practice and engineering implementation and can serve to meet the needs of military
applications in specific scenarios in the future. Further research priorities include research
exploring key techniques further; optimizing the engineering implementation, for example,
the compatibility between hardware and software; and further investigating multi-source
detection techniques, such as detection using a combination of SSS and forward-looking
sonar as well as a combination of magnetic, optical, and electrical systems to further
improve the accuracy of detection.
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