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Abstract: With the increasing use of electric propulsion ships, the emergence of the shaftless rim-
driven thruster (RDT) as a revolutionary integrated motor thruster is gradually becoming an impor-
tant development direction for green ships. The shaftless structure of RDTs leads to their dependence
on position sensorless control techniques. In this study, a novel control algorithm using a composite
sliding mode observer (SMO) with a modified feed-forward phase-locked loop (PLL) is presented
for achieving high accuracy position and speed control of shaftless RDT motors. The deviation
between the observed and actual currents is exploited to develop a current SMO to extract back
electromotive force (back-EMF) errors. On this basis, a back-EMF observer is established to achieve
accurate estimation of the back-EMF. The basic structure of the PLL was modified and incorporates a
speed feedforward mechanism, which enhances the performance of rotor position estimation and
facilitates bidirectional rotation. The stability of the algorithm has been verified in Matlab/Simulink
for a range of steady-state, dynamic, and ship propeller loading conditions. Remarkably, the control
algorithm boasts an impressive adjustment time of approximately 0.006 s and its position estimation
error may be as low as 0.03 rad. Simulation results highlight the performance of the algorithm to
achieve bidirectional rotation, while exhibiting fast convergence, minimal vibration, exceptional
control accuracy, and robustness.

Keywords: rim-driven thruster (RDT); electric power propulsion ship system; permanent magnet
synchronous motor (PMSM); position-sensorless control; sliding mode observer (SMO); phase-locked
loop (PLL)

1. Introduction

Electric propulsion ships [1], underwater robots [2], unmanned surface vehicles [3,4],
and other navigational vehicles [5] have undergone significant development in recent
years, imposing more demands on propulsion systems. Electric propulsion systems are
phasing out thermal propulsion systems due to their better control performance and higher
control efficiency [6]. With the development of electric propulsion systems, integrated
motors are increasingly being applied in a wide range of applications [7]. The shaftless rim-
driven thruster (RDT) [8] is a revolutionary integrated motor thruster that merges propeller
blades and motors to conserve cabin space, increase power density, motor efficiency, and
hydrodynamic efficiency, as well as reduce system installation and manufacturing costs [9].
The introduction of the shaftless RDTs brings the electric propulsion ship systems more
prominent features such as integration, electrification, intelligence, and flexibility [10]. As a
typical complicated electromechanical system, the selection and control of the propulsion
motor in the shaftless RDT are the most important considerations. Due to its great power
density and efficiency, the permanent magnet synchronous motor (PMSM) is widely utilized
in the field of propulsion motors [11]. The field-oriented control (FOC) [12] method
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of a PMSM requires precise real-time rotor position and speed information, which is
commonly measured by mechanical position sensors installed on the rotor shaft, including
shaft encoders, resolvers, and Hall sensors [13]. Because RDTs should operate in a harsh
marine environment with high temperature, high humidity, and high salt for an extended
period of time, shaftless RDTs cannot be equipped with conventional mechanical position
sensors [14]. Simultaneously, removing the physical sensors from the control system can
significantly enhance the system’s dependability and minimize motor production costs and
size [15]. Consequently, it is necessary to develop the control algorithm of PMSM without a
position sensor.

There are two types of PMSM position sensorless control strategies [16]: Back electro-
motive force (EMF) based mid-to-high speed method and saliency-tracking based zero-to-
low speed approach. The motor dynamic model is utilized to obtain the back-EMF [17],
which provides information on the rotor position and speed. The Kalman filter method [18],
model adaptation method [19], Luenberger state observer [20], and sliding mode ob-
server (SMO) [21] are the typical back-EMF-based methods.

The SMO approach has been widely adopted for the sensorless control of PMSM, ow-
ing to its straightforward construction, robustness against disturbances, and insensitivity to
parameter variations [22]. However, the inherent switching characteristic of SMO gives rise
to control discontinuity within the system, leading to undesirable chattering phenomena
that compromise control precision and pose a risk to device integrity. The conventional
SMO methods utilize the sign function as the sliding mode switching function [23], which
exacerbates the problem of chattering due to the discontinuous nature of the sign function.
Moreover, the back-EMF estimation by conventional SMO approaches is often plagued
by high-frequency noise. As a result, one or more low-pass filters (LPF) are typically
employed to extract the back-EMF signal. However, the use of LPFs introduces phase
delays, necessitating position compensation based on the actual corner frequency and
LPF cutoff frequency [24]. In response to these challenges, various research endeavors
have been undertaken to address these issues and enhance the performance of the control
system. In Ref. [25], a position-sensorless control method for PMSM was proposed, which
utilized a SMO based on the variable boundary layer sigmoid function. The width of the
boundary layer was adjusted based on the velocity to effectively address the chattering
issue. However, this method used a LPF, which resulted in a phase shift of the system
state and reduced the estimation accuracy. To solve the phase delay problem. In Ref. [26],
a cascade low-pass filter (LPF) with a variable cut-off frequency is proposed to mitigate
chattering. In addition, a variable phase delay compensation is applied to counterbalance
the phase shift introduced by the LPF across the speed range. Although the LPF with
delay compensation strategy has demonstrated its effectiveness in improving the perfor-
mance of PMSMs, its topological complexity poses challenges for practical implementation.
In Ref. [27], the authors proposed a new approach for rotor position estimation in perma-
nent magnet synchronous motors (PMSMs) using a hyperbolic function-based SMO. Unlike
conventional SMOs, the proposed approach eliminates the need for a low-pass filter (LPF)
and angle compensator. The previous study proposed a method to reduce chattering in
sliding mode observers (SMOs) by utilizing a continuous switching function to construct a
transition boundary layer and generate a quasi-SMO. However, the thickness of the bound-
ary layer had a significant impact on the performance of the SMO. A narrow boundary
layer range improved the approach speed of the sliding mode motion, but introduced
chattering and harmonic distortion in the back-EMF. Conversely, a wide boundary layer
reduced chattering but weakened the robustness of the control system by decreasing the
approximation speed. Thus, regulating the width of the boundary layer appropriately
based on the continuous switching function was necessary to enhance the performance of
the control system while minimizing the chattering.

Sensorless control algorithms traditionally employ the inverse tangent function to
extract rotor position information from the back-EMF for motor speed calculation. However,
the rotor position estimation approach that utilizes the inverse tangent function introduces
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high-frequency harmonics into the division operation, leading to an amplification of high-
frequency harmonics that can cause significant errors in rotor position estimation. In
Ref. [28], a current pre-compensation scheme based on a double sampling strategy with
one switching cycle was proposed to improve the accuracy of position estimation and
motor control performance by compensating for the computational delay. However, this
technique significantly increased the computing complexity of the control system. To
address this issue, many researchers have proposed using phase-locked loop (PLL) to
extract rotor position and velocity information [29], which provides a simpler and more
efficient alternative for sensorless control. PLL usually consists of three parts: phase
detector (PD), loop filter (LF), and voltage-controlled oscillator (VCO). The PLL described
in the preceding work was referred to the traditional PLL. The conventional phase-locked
loop (PLL) has been shown to enhance the reliability of rotor position estimation. However,
it is only appropriate for estimating position information when the motor moves in one
direction with uniform parameters. Upon motor reversal, a position deviation of 180°
arises, causing imprecise estimation of the system position. In Ref. [13], the authors
introduced a position estimation technique for the sensorless control of a PMSM that
utilized a PLL structure with a tangent function. This enhanced PLL provided reliable
rotor position estimation during both forward and backward rotation, catering to the
frequent forward and reverse RDT rotation requirements. However, due to its reliance on a
tangent function, the technique was vulnerable to noise interference, leading to imprecise
location estimation. An often overlooked problem with conventional phase-locked loops
(PLLs) is their inability to quickly track rotor position during acceleration and deceleration.
Additionally, maintaining a zero steady-state error is challenging, and sudden changes in
velocity can result in significant position estimation errors, leading to tracking failures.

To address the aforementioned issues, a position-sensorless algorithm for PMSM is
proposed in this study, based on a composite SMO and a feedforward PLL. The composite
SMO comprises a modified current SMO and a back-EMF observer. The modified current
SMO adopts a continuous hyperbolic tangent function to replace the discontinuous sign
function, which reduces the SMO chatter. This SMO extracts the counter-electromotive
force error, which is much smaller in amplitude than the counter-electromotive force, so a
smaller SMO gain factor can be set to further weaken the chattering. The back-EMF observer
is constructed based on the back-EMF model, which replaces the traditional LPF and
avoids phase delay while greatly improving the observation accuracy of the back-EMF. The
proposed PLL with rotor speed feedforward compensation enhances the tracking stability
and position extraction accuracy, while maintaining the reliability of position extraction
when the motor rotates in both directions. The stability of the composite SMO and PLL is
verified through simulations under steady-state, dynamic, ship propeller load, and external
random disturbance conditions. The experimental results demonstrate that the algorithm
features fast convergence, small jitter, high control accuracy, and strong robustness compared
with conventional algorithms. There are two main highlights in this paper:

(1) This study addresses SMO chattering by replacing the sign function with a continuous
hyperbolic tangent function and selecting an appropriate boundary layer width. An
observer based on the back-EMF model is developed to eliminate the LPF, reduce
phase delay, and enhance the back-EMF signal estimation precision;

(2) Through optimization of the traditional PLL structure and the addition of feedforward
compensation, this study has successfully realized position extraction during bi-
directional rotation of the motor, while significantly improving the accuracy of position
extraction during acceleration and deceleration.

The remainder of this paper is organized as follows: In Section 2, the mathemati-
cal model of PMSM is presented. Section 3 proposes the improved SMO and counter-
electromotive force observer, and their stability is proven. Section 4 analyzes the limitations
of the conventional PLL and presents the design of the improved feedforward PLL, along
with a discussion of its stability. Simulation results under different conditions are presented
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in Section 5 to demonstrate the superiority and reliability of the proposed algorithm. Finally,
Section 6 concludes the paper.

2. PMSM Mathematical Model

In the d− q coordinate system, the mathematical model of the surface-mounted PMSM
is shown in Equation (1), in which iron saturation, flux leakage, eddy current, and hysteresis
losses can be ignored. 

ud = Rsid + Ls
did
dt
−ωeLsiq

uq = Rsiq + Ls
diq
dt

+ ωeLsid + ωeψ f

(1)

where ud, uq, id, iq represent the voltage and current in the corresponding coordinate system,
respectively. Rs, Ls represent the stator resistance and stator inductance, respectively. ψ f
represents the permanent magnet flux linkage, and ωe represents the electrical angular
velocity. Equation (1) can be converted to a stationary α − β coordinate system using the
coordinate transformation as follows.

uα = Rsiα + Ls
diα
dt

+ eα

uβ = Rsiβ + Ls
diβ

dt
+ eβ

(2)

where uα, uβ, iα, iβ, eα, eβ represent the voltage, current, and back-EMF in the corresponding
coordinate system, respectively. The back-EMF is described as{

eα = −ψ f ωe sin(θe)

eβ = ψ f ωe cos(θe)
(3)

where θe is the electrical angle and the ωe can be expressed as

ωe =
1

ψ f

√
(e2

α + e2
β) (4)

From Equation (3), it can be seen that the back-EMF contains information regarding
the position and angular velocity of the motor rotor. The exact observation of the motor
back-EMF is, thus, the foundation of the position-sensorless control algorithm.

3. SMO Design for PMSM Rotor Position Estimation

In this paper, based on the mathematical model of PMSM, an improved SMO is
constructed based on the error between the actual current iα, iβ and the observed current îα,
îβ to obtain the back-EMF errors ẽα, ẽβ. Next, the back-EMF observer is constructed based
on the back-EMF model, and the back-EMF êα, êβ is the output.

According to Equation (2), the expression for the current can be written as
diα

dt
=

uα − Rsiα − eα

Ls
diβ

dt
=

uβ − Rsiβ − eβ

Ls

(5)

Define ĩα, ĩβ as the current estimation error of SMO with the following expression:{
ĩα = îα − iα

ĩβ = îβ − iβ

(6)
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where îα, îβ are SMO estimated currents. Based on the theory of the sliding mode variable
structure, the sliding surface is chosen as

s(ĩs) =

[
sα(ĩα)
sβ(ĩβ)

]
= ĩs + µ

t∫
0

ĩsdτ (7)

where ĩs =
[
ĩα ĩβ

]T, µ is a constant and satisfies 0 < µ < Rs/Ls.
According to the mathematical model of PMSM, the SMO is established as follows:

dîα
dt

=
uα − Rs îα − êα − λ · F(Sα(ĩα))

Ls

dîβ

dt
=

uβ − Rs îβ − êβ − λ · F(Sβ(ĩβ))

Ls

(8)

where F(·) is the sliding mode switching function and λ is the sliding mode gain.
Due to the discontinuous character of the sign function, the back-EMF estimation

generates significant chattering. In order to reduce the chattering phenomenon of SMO, the
continuous hyperbolic tangent function is used instead of the sign function. The images of
the sign function and hyperbolic tangent function are shown in Figure 1. The hyperbolic
tangent function is demonstrated below:

F(s) =
ehs − e−hs

ehs + e−hs (9)

sign

hyperbolic tangent function

Figure 1. Sign function and hyperbolic tangent function.

Figure 2 depicts the hyperbolic tangent function with different values of h, which
shows that the boundary layer width d is inversely proportional to the coefficient h. The
magnitude of h is related to SMO chattering. The chattering of the state variable trajectory
in SMO reduces as h decreases. When it increases, the approximation speed of the state
variable improves, but if it is too large, SMO robustness is compromised. Therefore,
the balance between the robustness of SMO and suppression of chattering needs to be
considered when choosing h.
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Figure 2. Hyperbolic tangent function for different h.

The current observation error equation can be obtained by subtracting Equation (5)
from Equation (8), 

dĩα

dt
=
−Rs ĩα − ẽα − λ · F(Sα(ĩα))

Ls

dĩβ

dt
=
−Rs ĩβ − ẽβ − λ · F(Sβ(ĩβ))

Ls

(10)

According to the sliding mode equivalence principle, we may derive:{
ẽα = −λ · F(Sα(ĩα)) + (µLs − Rs)ĩα
ẽβ = −λ · F(Sβ(ĩβ)) + (µLs − Rs)ĩβ

(11)

Theorem 1. Consider the closed-loop system, which consists of Equation (2) with environmental
disturbances. Assume that Equation (8), Equation (21), and PLL are stable. When the system
parameters are set to satisfy 0 < µ < Rs/Ls and λ > max(|ẽα|, |ẽβ|), the current observation
error, back-EMF estimation error, position estimation error, and velocity estimation error converge
asymptotically to zero.

Proof of Theorem 1. The Lyapunov function is chosen as follows,

V(ĩs) =
1
2

S(ĩs)
TS(ĩs) (12)

The derivative of the above equation yields,

V̇(ĩs) = S(ĩs)
T Ṡ(ĩs)

= Sα(ĩα)Ṡα(ĩα) + Sβ(ĩβ)Ṡβ(ĩβ)

= Sα(ĩα)[{ ˙̃iα + µĩα] + Sβ(ĩβ)[{ ˙̃iβ + µĩβ]

= V̇α(ĩα) + V̇β(ĩβ)

(13)

where V̇α(ĩα) = Sα(ĩα)[
˙̃iα + µĩα] and V̇β(ĩβ) = Sβ(ĩβ)[

˙̃iβ + µĩβ].
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According to V̇α(ĩα) and Equation (10) it can be derived that

V̇α(ĩα) = Sα(ĩα)[ ˙̃iα + µĩα]

= Sα(ĩα)[−
Rs

Ls
ĩα −

1
Ls

ẽα −
1
Ls

λ · F(Sα(ĩα)) + µĩα]

= (µ− Rs

Ls
)ĩαSα(ĩα)−

Sα(ĩα)

Ls
(ẽα + λ · F(Sα(ĩα)))

(14)

According to Equation (7) and 0 < µ < Rs/Ls we can get the first term of the above
equation as

(µ− Rs

Ls
)ĩαSα(ĩα) = (µ− Rs

Ls
)(ĩ2α + ĩαµ

t∫
0

ĩαdτ) ≤ 0 (15)

When λ > |ẽα|, the second term of Equation (14) satisfies

−Sα(ĩα)

Ls
(ẽα + λ · F(Sα(ĩα))) < 0 (16)

In accordance with the aforementioned derivation, we may obtain

V̇α(ĩα) = (µ− Rs

Ls
)ĩαSα(ĩα)−

Sα(ĩα)

Ls
(ẽα + λ · F(Sα(ĩα))) < 0 (17)

Likewise, when λ > |ẽβ|, we may derive

V̇β(ĩβ) = (µ− Rs

Ls
)ĩβSβ(ĩβ)−

Sβ(ĩβ)

Ls
(ẽβ + λ · F(Sβ(ĩβ))) < 0 (18)

Thus, when λ > max(|ẽα|, |ẽβ|), we obtain

V̇(ĩs) = V̇α(ĩα) + V̇β(ĩβ) < 0 (19)

This shows that the sliding mode surface as depicted in Equation (7) is reachable,
therefore the SMO is stable and can accurately obtain the back-EMF error as described in
Equation (11). The conventional SMO sliding mode gain needs to satisfy λ > max(|eα|, |eβ|),
while the improved SMO only needs to satisfy λ > max(|ẽα|, |ẽβ|). Obviously, the back-
EMF error is smaller than the back-EMF. Therefore, the sliding mode gain of the improved
SMO setting is significantly smaller than that of the conventional SMO, which can weaken
the sliding mode chattering.

The aforementioned SMO is capable of generating an equivalent back-EMF error
signal, but this signal still contains a high-frequency component and cannot be utilized
directly to extract rotor position information. Most conventional methods use LPF for
filtering, but this introduces a phase delay, which impacts the subsequent extraction of rotor
position information. This work employs the back-EMF model to construct the observer,
extract the back-EMF signal, and then use PLL to estimate the rotor position and speed.
Since the change rate of motor speed is significantly smaller than that of the stator current,
assuming ω̇e = 0, the back-EMF model of PMSM can be expressed as

deα

dt
= −ψ f ω̇e sin θe − ψ f ωe cos θe

dθe

dt
= −ωeeβ

deβ

dt
= ψ f ω̇e cos θe − ψ f ωe sin θe

dθe

dt
= ωeeα

(20)
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Based on the above equation, the back-EMF observer is established as

dêα

dt
= −ω̂e êβ −mẽα

dêβ

dt
= ω̂e êα −mẽβ

dω̂e

dt
= ẽα êβ − ẽβ êα

(21)

where m is the observer gain, and m > 0. The error equation can be obtained by
subtracting Equation (20) from Equation (21),

dẽα

dt
= −ω̃e êβ −ωe ẽβ −mẽα

dẽβ

dt
= ω̃e êα + ωe ẽα −mẽβ

dω̃e

dt
= ẽα êβ − ẽβ êα

(22)

Theorem 2. Considering that the change rate of motorspeed is significantly smaller than that of
the stator current, assume that ω̇e = 0. When the back-EMF observer is stable,the back-EMF error
converges to zero and the back-EMF observation can be obtained accurately.

Proof of Theorem 2. To verify the stability of the back-EMF observer, the Lyapunov func-
tion is chosen as

V =
ẽ2

α + ẽ2
β + ω̃2

e

2
(23)

Derivation of the above equation yields

V̇ = ẽα ˙̃eα + ẽβ ˙̃eβ + ω̃e ˙̃ωe

= ẽα(−ω̃e êβ −ωe ẽβ −mẽα) + ẽβ(ω̃e êα + ωe ẽα −mẽβ) + ω̃e(ẽα êβ − ẽβ êα)

= −m(ẽ2
α + ẽ2

β)

≤ 0

(24)

According to the above proof, the back-EMF observer is asymptotically stable, and its
stability is solely dependent on the motor parameters and not external disturbances.

4. Rotor Position and Speed Extraction
4.1. Traditional PLL Analysis

The PLL is significantly more stable than the arctangent function for extracting rotor
position information from the back-EMF, whose structure and equivalent model are de-
picted in Figure 3 and Figure 4, respectively. However, in the conventional PLL, once the
controller parameters are determined, the motor only runs in a single direction and the
position information cannot be estimated accurately if the parameters are not modified
when the motor reverses in the other direction. In addition, when the motor is accelerating
or decelerating, the estimation error is significant. In Figures 3 and 4, θe, θ̂e mean the rotor
electrical angle and the estimated value of the electrical angle, respectively, ∆e indicates the
electrical angle estimation error, and kp, ki denote the proportional coefficient and integral
coefficient of the PI in the PLL, respectively.
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ˆcos( )e

ˆsin( )e

i
p

k
k

s

1
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ê

ê

ˆ
ee

Figure 3. Structure of conventional PLL.
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p

k
k

s

1

s ˆ
e

e

e

Figure 4. Traditional PLL equivalent model.

When the motor is rotating in the forward direction, the conventional PLL dynamics
equation is as follows. 

dθ̃

dt
= ω̃

dω̃

dt
= −kp cos(θ̃)ω̃− kI sin(θ̃)

(25)

where ω̃ = ω− ω̂ is the electrical angular velocity estimation error and kp, kI are positive.
The phase plane of the system is shown in Figure 5, where (±π, 0) is the saddle point,
and (0, 0) is the stable focus. The trajectory in the phase plane of the system would converge
to the origin, i.e., the position and velocity estimation errors would converge to zero, and
the system would be able to precisely estimate the rotor position.

When the motor is reversed, the back-EMF of the motor would change from Equation (3)
to Equation (20). {

eα = ψ f ωe sin(θe)

eβ = −ψ f ωe cos(θe)
(26)

At this stage, the dynamics equation of a conventional PLL is as follows:
dθ̃

dt
= ω̃

dω̃

dt
= kp cos(θ̃)ω̃ + kI sin(θ̃)

(27)

The phase plane diagram of the system is shown in Figure 6, where (±π, 0) is the
stable focus, and (0, 0) is the saddle point. Therefore, the system is stable at (±π, 0). In such
a case, the PLL would not converge the rotor position error to zero, but rather generate a π
deviation. When the motor is reversed, the conventional PLL would be unable to reliably
detect the rotor position.
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Figure 5. Traditional PLL forward phase plane.

Figure 6. Traditional PLL reversed phase plane.

According to Figure 4, the error closed-loop transfer function can be obtained as

Φess0(s) =
s2

s2 + kps + kI
(28)
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When the motor is accelerated or decelerated, the input is acceleration equivalent to
the angle. Assuming that the aforementioned transfer function is provided with a unit
acceleration input, the steady-state error can be calculated as follows:

ess0 = lim
s→0

s ·Φess0(s) ·
1
s3

= lim
s→0

1
s2 + kps + kI

=
1

KI

(29)

It is known that the steady-state error of the system is not 0 at this time, and the steady-
state error of the system would be reduced when increasing the integral coefficient kI . How-
ever, increasing the integral coefficient kI may cause the stability of the system degradation.
Therefore, under the traditional PLL, the rotor position error cannot converge to 0.

4.2. Improved PLL Analysis

Based on the deficiencies of the traditional PLL outlined in the previous section, this
section will provide an improved PLL and demonstrate its stability. The structure diagram of
the improved PLL is shown in Figure 7. The relationship between ∆e and θe, θ̂e is as follows.

∆e = −[1
2
(e2

α + e2
β) sin(2θ̂e)]− [eαeβ cos(2θ̂e)]

= −1
2

ψ2
f ω2

e cos(2θe) sin(2θ̂e) +
1
2

ψ2
f ω2

e sin(2θe) cos(2θ̂e)

=
1
2

ψ2
f ω2

e sin 2(θe − θ̂e) ∝ sin(2θ̃e)

(30)

2x

2x
ê

ê

0.5

PI 0.5
1

s

sin(2 )x

cos(2 )x

ˆ
e

2 2ˆ ˆe e
1

f

c

cs

e

Figure 7. Structure of the improved PLL.

When the PLL is steadily tracking the rotor position, θ̃e → 0, θ̂e ≈ θe.
Combining Equations (3), (26), and (30), when the improved PLL is used, its dynamic

equation is as follows whether the motor is in forward or reverse rotation.
dθ̃

dt
= ω̃

dω̃

dt
=

1
2
[−kp cos(2θ̃) · 2ω̃− kI sin(2θ̃)]

(31)

The phase plane diagram of the system is shown in Figure 8, where (±π, 0), (0, 0),
(±0.5π, 0) are the five balance points of the system, (±0.5π, 0) are the saddle points, and
(±π, 0), (0, 0) are the stable focus. The trajectory in the phase plane of the system would
approach the origin. That is, the position and speed estimation errors would converge to
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zero. At this time, θ̂e ≈ θe, the system can accurately estimate the position and speed of the
rotor. The improved PLL open-loop transfer function is

G1(s) =
(kp + ωc)s2 + (kI + kpωc)s + kIωc

s2(s + ωc)
(32)

where ωc is the cut-off frequency of the LPF in the feedforward channel. By Equation (26),
the error closed-loop transfer function of the rotor position can be obtained as

Φess1(s) =
s3

(s + ωc)(s2 + kps + kI)
(33)

When the motor is accelerated or decelerated, the input is the acceleration equivalent
to the angle. Assuming that a unit acceleration input is added to the above transfer function,
according to the final value theorem, the steady-state error can be obtained as

ess1 = lim
s→0

sΦss1(s)
1
s3

= lim
s→0

s · s3

(s + ωc)(s2 + kps + kI)
· 1

s3

= 0

(34)

Figure 8. Improved PLL phase plane.

The improved PLL can reduce the rotor position error to 0 caused by the PLL when
the motor is accelerating and decelerating. Therefore, the improved PLL can extract the
position information of the rotor more accurately than the traditional PLL.

To sum up, there are two main improvements of the improved PLL:

(1) Improve the inability of the conventional PLL to reliably extract position information
during motor reversal;

(2) During motor acceleration and deceleration, the conventional PLL’s error problem has
been resolved.

Therefore, the structure of the PMSM position sensorless control system based on
SMO is shown in Figure 9.
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Figure 9. Structure of the PMSM position sensorless control system based on SMO.

5. Simulation Verification

To verify the feasibility of the proposed PMSM sensorless control algorithm based on
hyperbolic tangent SMO and improved PLL, a simulation model is built in Matlab/Simulink
according to Figure 9, and the simulation parameters are shown in Table 1.

Table 1. Main parameters of PMSM.

Parameter Value

number of pole pairs p 4

stator resistance Rs 2.875 Ω

stator inductor Ls 8.5 mH

rotational inertia J 0.001 kg ·m2

permanent magnet flux ψ f 0.175 Wb

DC voltage Udc 311 V

5.1. Steady-State Performance

This experiment focuses on examining the steady-state performance differences be-
tween conventional SMO combined with conventional PLL and improved SMO combined
with feedforward PLL.

Set the parameters of the improved SMO to h = 0.01, λ = 100, µ = 300, m = 100.
The parameter of traditional SMO is set to λ = 1000, ωc = 2000. The parameters of both
feedforward PLL and conventional PLL are set to kp = 100, kI = 10,000.

When the motor is unloaded and its speed is set to 1000 r/min, the steady-state
performance of the motor under each algorithm is compared. From Figures 10a and 11a, it
can be observed that both the conventional algorithm and the improved algorithm can keep
the motor running steadily, with the conventional algorithm having a speed fluctuation
range of ±5 r/min and the improved algorithm having a speed fluctuation range of
±0.1 r/min. Therefore, the improved SMO may effectively mitigate the speed chattering
issue. The peak rotor position estimation error is 0.255 rad and the steady-state error
is 0.212 rad for the conventional algorithm, whereas the peak rotor position estimation
error is 0.0043 rad and the steady-state error is 0.0042 rad for the improved algorithm
(Figures 10b, 11b and 12). Consequently, the improved feedforward PLL provides superior
position tracking performance.
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Actual rotor speed

Estimated rotor speed

(a)

(b)

(c)

Figure 10. Responses of the simulation with conventional SMO combined with conventional PLL
(steady-state). (a) Rotor speed. (b) Rotor position. (c) Estimation of the back-EMF.



J. Mar. Sci. Eng. 2023, 11, 642 15 of 26

Actual rotor speed

Estimated rotor speed

(a)

(b)

(c)

Figure 11. Responses of the simulation with improved SMO combined with feedforward PLL
(steady-state). (a) Rotor speed. (b) Rotor position. (c) Estimation of the back-EMF.
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Traditional SMO + Traditional PLL

Improved SMO + Feedforward PLL

Figure 12. Rotor position observation errors (steady-state).

5.2. Dynamic Performance

This experiment focuses on comparing the dynamic performance differences between
the conventional SMO combined with the conventional PLL algorithm and the improved
SMO combined with feedforward PLL when acceleration, deceleration, and sudden load
addition are encountered.

First, set the initial load of the motor to 2 N·m and the initial given speed to 1000 r/min. When
the motor runs to 0.03 s, set the given speed to 500 r/min to decelerate the motor. Add a sudden
4 N·m load to the motor while it has been running for 0.06 s. From Figures 13a and 14a, it can be
seen that the conventional algorithm has a speed fluctuation range of±5 r/min in the initial state
and an overshoot of 4%. The improved algorithm has a speed fluctuation range of±0.1 r/min
and an overshoot of 0.3% in the initial state. In the case of motor deceleration, the adjustment time
of the conventional algorithm is 15 ms, while the adjustment time of the improved algorithm is
6 ms. In the case of load surge, the speed drop of the conventional algorithm is 50 r/min and
the adjustment time is 10 ms, while the speed drop of the improved algorithm is 40 r/min and
the adjustment time is 6 ms. Figures 13b, 14b and 15 reveal that the traditional algorithm rotor
position estimation error peaks at 0.25 rad, while the improved algorithm rotor position estimation
error peaks at 0.0043 rad. After motor deceleration and sudden load application, the conventional
algorithm rotor position estimation error is 0.1 rad, but the improved algorithm rotor position
estimation error can quickly converge to 0.002 rad. Therefore, the improved SMO can make the
motor maintain good stability and low chattering during dynamic operation. The improved PLL
can keep the rotor position estimation error low during acceleration and deceleration, so that the
rotor position information can be extracted more accurately.

5.3. Forward and Reverse

The main purpose of this experiment is to verify that the improved feedforward PLL
can accurately extract rotor position information in both forward and reverse motor rotation.

The motor load is initially set to 2 N·m and the initial given speed is set to 1000 r/min.
To simulate the motor reverse, the given speed is adjusted to −500 r/min for 0.05 s. From
Figures 16–18, it is evident that the improved PLL can accurately identify the rotor position
information when the motor is reversed and maintain stable motor operation, whereas the
conventional PLL cannot extract the rotor position information correctly when the motor
is reversed, resulting in unstable motor operation. Consequently, the improved PLL can
better maintain the stability of the ship motor control system in the face of the frequent
forward and reverse rotation requirements of ship motors.
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Actual rotor speed

Estimated rotor speed

(a)

(b)

(c)

Figure 13. Responses of simulation with conventional SMO combined with conventional PLL
(dynamic). (a) Rotor speed. (b) Rotor position. (c) Estimation of the back-EMF.
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Actual rotor speed

Estimated rotor speed

(a)

(b)

(c)

Figure 14. Responses of simulation with improved SMO combined with feedforward PLL (dynamic).
(a) Rotor speed. (b) Rotor position. (c) Estimation of the back-EMF.
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Traditional SMO + Traditional PLL

Improved SMO + Feedforward PLL

Figure 15. Rotor position observation errors (dynamic).

Actual rotor speed

Estimated rotor speed

(a)

(b)

(c)

Figure 16. Responses of the simulation with conventional SMO combined with conventional PLL
(forward and reverse). (a) Rotor speed. (b) Rotor position. (c) Estimation of the back-EMF.
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Actual rotor speed

Estimated rotor speed

(a)

(b)

(c)

Figure 17. Responses of simulation with the improved SMO combined with feedforward PLL
(forward and reverse). (a) Rotor speed. (b) Rotor position. (c) Estimation of the back-EMF.
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Traditional SMO + Traditional PLL

Improved SMO + Feedforward PLL

Figure 18. Rotor position observation errors (forward and reverse).

5.4. Performance under Ship Propeller Load

The motor position sensorless control algorithm proposed in this paper is mainly
applied to electric propulsion ships, so it is necessary to verify the effectiveness of the
algorithm under the ship propeller load. In addition, to verify the robustness of the
algorithm in this paper, a random noise is applied to the load torque to simulate the
disturbance of wind and waves in the ocean.

According to Ref. [30], the dynamic load model of the ship propeller is shown in
Figure 19. Based on the propeller load model and the model parameter values shown in
Table 2, the simulation model is established. The relationship between the motor speed and
its load when the ship is sailing can be obtained. The effectiveness of the improved SMO
and improved feedforward PLL is proposed in this paper for the dynamic environment of
ship navigation. In Figure 19, n is the propeller speed of the motor, unit is rad/s, TL is the
propeller torque, unit is N·m, J is the advance ratio of the propeller, Dp is the diameter of
the propeller, unit is m, P is the thrust generated by the rotation of the propeller, unit is N,
Ms is the mass of the ship, unit is kg, R is the resistance of the ship, unit is N, Vs is the
speed of the ship, unit is m/s, Vp is the propeller advance speed, unit is m/s, ω is the wake
coefficient, t is the thrust derating coefficient, k is the water attachment coefficient, Kp is
the dimensionless coefficient of propeller thrust, and Km is the dimensionless coefficient of
drag torque. {

Kp = 0.38955− 0.27115J − 0.10256J2

Km = 0.049543− 0.021832J − 0.02079J2
(35)

The PMSM load perturbation was set to propeller load while introducing random
perturbations. The initial speed was set to 1000 r/min, and after the motor ran for 0.05 s,
the speed was set to −500 r/min to simulate motor reversal. As shown in Figure 20a, in the
presence of random noise, the conventional algorithm ensures system stability in forward
rotation, with a speed fluctuation range of ±50 r/min. However, in reverse rotation, the
conventional algorithm causes the system to become unstable. From Figure 21a, it can
be observed that the improved algorithm ensures system stability in both forward and
reverse rotation, with a speed fluctuation range of ±20 r/min. The improved algorithm
effectively reduces speed fluctuation under disturbance while ensuring stable forward
and reverse rotation. From Figure 22, the maximum rotor position estimation error of
the conventional algorithm is 0.231 rad, whereas the maximum rotor position estimation
error of the improved algorithm is only 0.008 rad. Thus, the improved algorithm can
significantly reduce the rotor estimation error and improve the position estimation accuracy.
In conclusion, the algorithm exhibits excellent anti-interference performance and can adapt
to complex marine environments.
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Figure 19. Ship propeller load model.

Actual rotor speed

Estimated rotor speed

(a)

(b)

(c)

Figure 20. Responses of the simulation with conventional SMO combined with conventional PLL
(with propeller load). (a) Rotor speed. (b) Rotor position. (c) Estimation of the back-EMF.
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Actual rotor speed

Estimated rotor speed

(a)

(b)

(c)

Figure 21. Responses of the simulation with improved SMO combined with feedforward PLL (with
propeller load). (a) Rotor speed. (b) Rotor position. (c) Estimation of the back-EMF.
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Traditional SMO + Traditional PLL

Improved SMO + Feedforward PLL

Figure 22. Rotor position observation errors (with propeller load).

Table 2. Main parameters of PMSM.

Parameter Value

Propeller diameter Dp/m 0.1

Hull mass Ms/kg 100

Water attachment coefficient k 1.1

Wake coefficient ω 0.12285

Thrust derating coefficient t 0.146

6. Conclusions and Outlook

This paper presents an improved algorithm for position sensorless control of PMSM,
which is specifically designed for electric propulsion ships equipped with shaftless RDTs.
The primary goal of this algorithm is to enhance the reliability of the motor control system.
The algorithm utilizes continuous hyperbolic tangent functions instead of discontinuous
symbolic functions to address the chattering problem of SMO. An observer based on the
back-EMF model is constructed to extract the back-EMF accurately and minimize speed
fluctuations, which effectively reduces the sliding mode gain of the SMO and eliminates
the phase delay caused by LPF. Furthermore, the improved feed-forward PLL is introduced
to minimize rotor position estimation errors during acceleration and deceleration, as well
as to achieve accurate extraction of rotor position information during motor reversal,
outperforming the conventional PLL.

To verify the reliability of the algorithm in a complex marine environment, a ship
propeller load model and random load are introduced. The simulation results demonstrate
the superiority of the improved algorithm over the conventional algorithm consisting of
a conventional SMO and a conventional PLL. The improved algorithm achieves smaller
speed fluctuations in the face of disturbances, which is beneficial for the stable operation of
the ship. It also shows good performance in bi-directional rotation of the motor and can
stably track the rotor position, which is important for the frequent forward and reverse
rotation of the ship’s RDT motor.

Our future work will validate the algorithm in a real motor and apply it to a real ship,
which will greatly contribute to the realization of green and sustainable ship technology.
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