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Abstract: Artificial Intelligence (hereinafter referred to as AI) systems have recently found great
application and use in various industries, such as data processing, data analysis, and the operation
control of marine robotic complexes, etc. In view of the ever-increasing degree of complexity of the
missions assigned to marine robotic systems, it is becoming obvious that the AI technologies should
be used as combined systems which can provide control of marine robotic complexes (hereinafter
referred to as MRCs), their navigation in sea, logic formation of MRC behaviour in uncertain en-
vironments, path planning, and processing optimization of the received MRC payload data. All
the areas mentioned above are within the field of MRC development, and currently do not have a
general solution. This article discusses the development process of an intelligent system for path
planning of a group of marine robotic complexes. The architecture of the intelligent system is based
on a cascade approach, which includes the consistent use of functional modules designed as various
“organs of perception” of the system. A detailed description of the development of each module and
mathematical modelling of the presented algorithms are provided in this paper, and the main results
of the conducted full-scale experiments are demonstrated.

Keywords: neural network; machine learning; reinforcement learning; DQN; group control system;
path planning; RRT; computer vision

1. Introduction

Currently, intelligent systems (hereinafter referred to as ISs) have a very wide range of
applications thanks to AI development that extend human skills and capabilities.

The term “Artificial intelligence” is widely used at present to refer to applications
for complex missions that previously could only be performed by humans. AI makes it
possible to reproduce and improve on what we learn from the world around us and what
can be done with such information. This feature of AI underlies innovation. AI is based
on various machine learning technologies, which recognize data patterns and generate
predictions. In view of this particular feature, AI is an intermediate link that often lies at
the junction of several technologies, which allows the potential of various systems to be
increased and the best results to be achieved more effectively.
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Today, AI technologies, machine learning (hereinafter referred to as ML), and deep
learning (hereinafter referred to as DL) technologies are used in the field of marine robotics.
Developers increasingly use these methods to implement planning, control, and internal
diagnostic systems in the field of airborne [1,2], ground [3,4], and marine robotic com-
plexes [5–7], including underwater gliders [8–10] and surface gliders [11], as well as for the
tasks of monitoring and patrolling potentially dangerous underwater objects. Intelligent
systems provide the implementation of adaptation to uncertain environments [12,13] and
ability to evaluate and simulate the current state [14–16], and can perform goal-setting
functions and action planning for air, ground, and sea robotics [17–20], including vehicle
basing (issues related to AUV docking) [21].

Currently, a transition is underway from group control to practical implementation of
group applications for homogeneous groups of autonomous vehicles (hereinafter referred
to as AVs) [22–24] and heterogeneous groups of AVs [25,26]. Developers use existing
groundwork from video games to train neural networks in order to set up and train
multi-agent teams [27–33]. Progressive development of models and technologies for group
application of marine robotic complexes (and MRCs as well) poses new challenges for
developers related to the planning and operation of MRC groups in uncertain marine envi-
ronments [34,35]. Marine robotics usually involves performing tasks without preliminary
detailed mapping in large open water areas with different depths, bottom topography, and
constantly changing periodic and aperiodic effects. In addition, the underwater environ-
ment imposes significant restrictions on the possibility of using the sensor, communication,
and navigation systems of AVs, leading to additional requirements to consider the power
and structural features of the controlled object as well as the conditions of the area for the
planned job. To take into account such functional features, developers often use methods
based on intelligent neural networks and ML, which makes it possible to increase the
autonomy of the MRC. In previous papers [36–39], authors have demonstrated the use of
neural networks to solve the problems of positioning and navigation of MRC as well as to
calibrate the automatic control system [40–46].

Analysis has shown that while AI systems are widely used to solve data analysis
and processing problems [47–57], they are generally not used in motion-planning systems
for groups of AVs. To date, there have been papers presenting the use of AI for motion
planning of a single marine robotic complex [58,59] and as an auxiliary decision-making
system when objects move in sophisticated environments with obstacles [60–64]. However,
these papers do not consider features of the interaction of AVs with each other or features
of group operation when moving in a formation, when it is necessary to solve the tasks of
rebuilding or reconfiguring the formation. It should be noted that developers are currently
considering centralized principles in this direction to build up a group management system.
Such systems have a distinctive feature in the relatively low “survivability” of the system in
case of unforeseen situations (e.g., failure of the leader). Moreover, assumptions are made
upon MRC operation taking the preliminary cartography into account.

In this paper, we have taken up the task of developing an intelligent system for
governing group interaction of MRCs. The proposed system should analyze data available
to the group, make a recommendation as to the next action taken by each agent, and form
an intragroup interaction policy. This allows the system to conduct subsequent self-learning
in order to find adaptive solutions and ways to rebuild and reconfigure the formation in
the most optimal way. A key distinguishing feature of intelligent MRC operation with an
adaptive control and planning system is that the sequence of actions necessary to achieve
the goal is not determined in advance, as information on future states of the environment
is generally not available. The advantage of the developed “cascade” planning method
over other group motion planning systems is the use of DL methods for each agent to
ensure that the decentralized control concept is complied with. The developed “cascade”
method of group motion planning has a modular architecture for easy system scaling. The
presented method combines various algorithms for different tasks, for instance, to form a
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group interaction area, process group sensory data, and combine reinforcement learning
methods for intra-group interaction of MRCs.

Today, reinforcement learning methods are widely used in motion planning systems
for robots and groups of robots [65–68]. However, the results of related studies and
papers have mostly described the use of Artificial Neural Networks in certain deterministic
conditions with known hard-coded values for the area of operation. These sources present
the use of centralized AI systems for the optimal distribution of a group of robots over an
area and the organization of group interaction to solve a global task in front of a group,
for example, using the smart factory pattern implementation [69]. In particular, many
methods are based on the analysis of information obtained from preliminary cartography,
which is not available in real conditions in general. Our analysis revealed that currently
available methods and algorithms cannot explicitly solve the problems of monitoring,
patrolling, and surveillance of the required territories and objects, which include, for
example, potentially dangerous underwater objects. Thus, it is necessary to consider
reconfiguration and adaptive changes to address the presence of such objects within
the structure of the formation while avoiding both static and moving obstacles. A new
algorithm based on graph-analytical and neural network methods is presented in our study.
The combination of reinforcement learning and graph-based algorithms is advantageous,
as it allows robotic complexes and group(s) to quickly identify possible research areas
and use their knowledge to maximize rewards. For example, graph-based algorithms can
calculate the global situation and trajectory as well as the future states of each individual
robot or group (which may lead to high rewards) and the best ways to change the state.
Reinforcement learning can use this information to realize improve performance.

In this article, Section 2 considers the formal statement of the problem and the problems
associated with the use of the MRC groups in uncertain environments with obstacles. This
section provides a workflow for developing the intragroup MRC interaction algorithms.
Next, Section 3 proposes the development workflow of a neural network cascade system for
path planning of an MRC group, including the development workflow for its architecture.
Our full-scale experiment is described in detail in Section 4. Finally, in the conclusion we
summarize the key results of this research and propose future work for the development of
MRC group path-planning intelligent systems.

2. Problem Statement

The primary goal of the present study is to develop a neural network system for
path planning of the MRC group that allows agents to move in an uncertain environment
with fixed and moving obstacles while taking into account the restrictions imposed on
maintaining the structure of the MRC group formation.

The following tasks must be resolved in order to implement the cascade system of
intelligent path planning of the MRC group:

• Development of algorithms for the local path planner of each agent in the group and
the global approach of the group motion;

• Implementation of the logical approach for the intragroup policy operation for the
interaction of agents in a group, which is based on the communication range and the
vision system parameters, which in turn are functions of the current and predicted
parameters that describe environmental conditions, including data on the location of
agents and their current state;

• Development of an architecture for the intelligent interaction of agents based on the
existing intragroup policy.

The general structure of the proposed cascade approach for the intelligent interaction
planning of the MRC group in an uncertain environment with obstacles is presented in the
Figure 1.
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Figure 1. General structure of the developed cascade system for intelligent group motion planning.

The figure shows the following main stages of the intelligent planning system operation:

• Formation of an area of group interaction ðgroup. This module implements the con-
struction of the area space, in which all agents of the group must be located.

• Global planning algorithm development based on the RRT* method. This algo-
rithm provides real-time trajectory formation of the group Hgroup without preliminary
area mapping.

• Vision system (hereinafter referred to as VS) of each agent in the group, which forms
a dataset Ωn of the existing obstacles in the AV’s n field of view. This algorithm
integrates the data received from the VS of each AV into a single field of view
Ωgroup(R1, R2, R3) (in which case n = 3), which provides the subsequent analysis
and a recommendation at the next stage of the planning algorithm operation.

• Formation of a policy for the internal interaction of agents in a group Pagents. This
module is required for the analysis of all events occurring in the external space around
the agent Ea and its reaction to these events An based on conditions that determine
the current state of other agents in the group Sagents(Sa1, Sa2), taking the group task
into account.

• Development of a neural network path planner for each agent in the group, which
manages the local trajectory of the agent’s motion and is based on the data received
from the built-in VS systems. In addition, this manages the agent’s position in the
group interaction area (hereinafter referred to as GIA) and the group interaction policy
parameter. This method is based on the DQN approach [61,70] with a modernized
error function.

• Development of a group neural network planner, which is aimed at ensuring the
synergy of data received from each agent’s individual neural network. This module
calculates the group reward policy Rgroup, and affects the subsequent actions of each
agent in the group.
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2.1. Development of the GIA Formation Algorithm

Use of MRC groups in real sea conditions is always associated with the use of high-
precision technologies to ensure proper positioning and the necessary parameters for radio
and hydroacoustic communication. However, it is not always possible for developers to take
into consideration the various indicators of marine environment stratification, the presence
of multidirectional currents, and other non-stationary processes, especially when the MRC
is used in 3D marine environments [71–73]. An aspiration to ensure high accuracy in the
field of MRC groups’ application leads to the high complexity of algorithm development
in this context, and, on the other hand, to the high complexity of implementation and
application in real-world conditions [27,34,74]. Therefore, we have decided to deviate
from the generally accepted principles of constructing a “hard-coded system” of the MRC
formation and implement a method for constructing an MRC group based on the GIA.
This method can be described by the following set of parameters (under the conditions
of applying the algorithm in a 2D formulation): distr—given distance between agents;
rcon—range of the communication system (e.g., radio communication systems during the
MRC surface group operation). To calculate the boundaries of the GIA ðgroup, the following
expression is used (1):

ð1 = Ξ1 ∩ Ξ2
ð2 = ð1 ∩ Ξ3

ðgroup = ð1 ∩ ð2

(1)

where Ξ1(rcon1 , distr), Ξ2(rcon2 , distr), Ξ3(rcon3 , distr) are the bounding areas of operation
for each agent of the group depending on the distance between agents and the allowable
communication range. An example of the formation of the GIA is shown in Figure 2.

Figure 2. Example MRC group based on the GIA.

Output values after the algorithm operation are the variables [R, Edist, Econ] ∈ ðgroup
describing the states between all agents in group (2) and the group’s estimated center
∇ ∈ ðgroup:

Edist =

|R1 − R2| − distr
|R1 − R3| − distr
|R2 − R3| − distr

Econ =

rcon − |R1 − R2|
rcon − |R1 − R3|
rcon − |R2 − R3|

 (2)

This set of parameters is used for subsequent training of the group neural network,
which is responsible for analysis and recommending further actions, either as a single agent
in the group or the entire group.
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2.2. Development of an Algorithm for the MRC Group’s Global Trajectory Planning

The designed system for the global planning trajectory formation is based on the
real-time RRT* method. The primary task of the MRC group is to move from the starting
point to the end point. To do this, we propose building up a map of random tree branches
to cover the entire considered area. This process does not take very much time, and can be
performed during the pre-launch phase.

The following input parameters are used: R is the functioning area’s size; Sp is a
starting point of the group; Fp is an end point of the group; ε is a simulation step; rr is a
coefficient describing the radius within which the search for neighbouring nodes of the tree
is performed. All calculated points are saved to the array T(i) = (t1, t2) of i × 2 dimension,
where i is the number of algorithm iterations.

During each iteration, we take a random point from Randp = Nnew1, Nnew2, . . . , which
is a random sequence. The distance from Nnew to all other points in the tree is calculated
and an array D = (Dist, id) is formed, where Dist is the distance and id is the number of
points in the tree of i ∗ 2 dimension with i being the number of algorithm iterations (3).

Dist = 2
√
(n1 − t1(i))2 + (n2 − t2(i))2 (3)

The closest point to Nnew is selected, i.e., Nnear = min(D). Thus, Nnew moves closer to
the selected point, meaning that Nnew is epsilon away from the selected point (4).

Nnew(1) = t1 + (−1) ∗ e(t1 − n1)/Dist
Nnew(2) = t2 + (−1) ∗ e(t2 − n2)/Dist

(4)

Next, points located within the circle of radius r and its the center in Nnew are selected
as Neighbours = D < r. The edge distance from F to neighbours is the Cost. The total cost
is a sum of Cost and Dist (5).

TotalCost = Cost + Dist (5)

The point with the lowest TotalCost is selected as ParentNode = min(TotalCost). After
drawing an edge from ParentNode to Nnew to produce a rewiring node and lower the cost
of the neighbours’ nodes, we say that Nnew is now the Parent node for its neighbours. Costs
are compared, which may lead to tree rebuild in the case of the new cost being lower (6).

TotalCost(Neighbours) > TotalCost(Nnew) + Dist. (6)

The process scheme used for node rewiring (finding the nearest and selecting the
“best” parent) is shown in Figure 3. R is a rewiring range; blue points are tree nodes, red
points are reward added nodes; green point Nnew is a new added point after rewiring.

An example of the algorithm ’s operation is one robot moving, as presented in the
Figure 4. The AV starts moving from the start point to the end point by following a parent
node trajectory.

Figure 4 demonstrates an agent’s motion in an unknown environment with a static
obstacle; the blue dots are the nodes of the RRT* tree branches; the black line is the actual
path traveled by the agent; the green line is the current calculated path along which the
agent is moving; the red dotted zone is the area of obstacle detection by the VS (circular
LIDAR of MRC’s VS Ωn); and the red areas are the detected obstacle boundaries.

The system recalculates the current trajectory in real time according to the information
received from the VS module. The center point is the center of the GIA ∇ ∈ ðgroup moving
along a calculated target trajectory Hgroup. A branch rebuilding function works only within
a certain radius of the agent, which in the considered simulation equals the radius of the VS
visibility zone. The blue nodes of the branches remain in the memory of the AV in case the
device encounters a complex obstacle structure and needs to search for other ways around.
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Figure 3. Rewiring process scheme.

(a) (b)

Figure 4. RRT* simulation of the agent’s motion process: (a)—simple obstacle avoidance and
(b)—obstacle avoidance in difficult trajectory.

Additionally, the motion of the tree root has been implemented along with the center
of the group, ensuring that the path remains relevant for each recalculation. In order to find
the most profitable path in our research, path search was implemented using a breadth-first
search. The cost of hitting the exact node and distance from that node to the end point
was calculated for each node. Thus, these additions significantly improve the underlying
RT-RRT* algorithm.

Using internal libraries of the ROS framework, the points received from the VS are
recalculated taking into account the heading angle and the global coordinate system. When
using the RRT algorithm, the distance of the graph points to the obstacle points is checked,
ensuring that inaccessible graph points are blocked.

An example of the algorithm’s operation is group of robots moving, as presented in
Figure 5.
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Figure 5. RRT* simulates the agent’s motion process. (Green, red and pink dots are robots positions)

In the Figure 5, red lines are the obstacle points defined by the VS. We used 600 itera-
tions (nodes) to build the tree, which is represented by the yellow lines. The blue branches
represent possible trajectories obtained as a result of the rewiring process. At output, the
algorithm produces 600 nodes, links between them, and arrays containing information
about neighbor, parent, and child nodes and the cost of each node and the point of the path
found. The path is represented by the green line.

Input data for the described RRT algorithm consist of the map dimension (n ∗ m),
number of iterations (samples), and a constantly updated array of points obtained from the
depth camera.

2.3. Development of an Algorithm for the Computer VS of an MRC Agent and Group Field of
View (GFOV)

To simulate VS operation, we used an Astra Pro Realsence camera model (available in
ROS). During operation, the depth camera produces an array of points with a resolution
of 640 × 320, which gives 204,800 points. These points are converted to the PointCloud2
type and transferred to the RRT module. To increase the processing speed, it is possible to
reduce the resolution of the depth camera. An example of the process by which images are
obtained from a camera is presented in Figure 6.

The YOLOv5 pre-trained neural network is responsible for distribution into classes [75],
and is able to successfully resolve this task. This neural network is trained on user data by
loading an additional dataset with the selected “obstacles” and “agent” classes.

Based on the data by the sensory system, the agent is able to obtain information about
the external environment. The VS is based on two main functional modules, namely, an
obstacle detection module and an object identification module. The Obstacle detection module
allows to generate a cloud of points in the visibility zone of the VS Pv = Pv1 . . . Pvn (where
n is the number of rays emitted by the VS if LIDAR is used), then sends the appropriate
command to the actuators to recalculate the local trajectory of the AV Hrk, where k is the
number of AVs in the group. The Object identification module provides identification of
an object located in the agent’s visibility zone, and is an auxiliary module that provides
additional data to the neural network of the AV. To simplify the task, only two classes are
formed, namely, “obstacles” and “agent”.
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(a) (b)

(c) (d)

Figure 6. An example of neural network operation of the VS module to determine the class of a
visible object. (a)—detection of 2 classes and 2 object: agent and obstacle in the visibility zone;
(b)—detection of 1 classes and one object–agent in the visibility zone; (c)—detection of 2 classes and
3 object: two agent and one obstacles in the visibility zone; (d)—detection of 2 classes and 3 object:
two obstacles and one agent in the visibility zone.

Because the presented work describes the planning of a system design process for a
2D setting, available TurtleBot3 models with their own set of actions were used in order to
simplify the development of a software simulation complex.

Consequently, a software simulation complex has been developed based on the ROS
framework and its Gazebo and RVIZ software components [76]. The collected array of
custom data is based on a group motion simulation of TurtleBot3 AVs [77,78] and a camera
installed on their platform, as seen in the Figure 7. In addition, the database consisted of
270 images, on which the corresponding classes of “obstacles” and “neighbouring agent”
were been marked and the necessary labels created. Training was carried out using the
following set of parameters: epoch = 500, batchsize = 16.

Figure 7. TurtleBot3 model and database of images.

The result of algorithm operation is shown in the Figure 6.
The figures above demonstrate how the system returns the class D of a certain object;

0 is the obstacle, while 1 is the agent in the group. The operation of this module as a part of
GFOV allows for aggregation of an array of data on certain classes in the field of view of
an object D, which outputs detection on each frame di, . . . , dN . Each di is a set containing



J. Mar. Sci. Eng. 2023, 11, 610 10 of 24

tuples b = (x, y, w, h, c). It denotes the detected bounding box and its confidence 0 ≤ c ≤ 1
that the box corresponds to an instance of an object of class L. Here, we use b ∈ L to denote
the case of a box being a member of a given class. The intersection condition D(L) ∈ Pv
allows an agent in the group to determine both the class of an object ahead and the distance
to it.

The second step is to obtain data on the shared field of view of the group and determine
the percentage of obstruction with respect to the VS data for each agent of the group.
A detailed description of this algorithm is considered in [79].

It should be noted that in this case a simplification is introduced, in that LIDARs were
used for the TurtleBot3 3D model with a viewing angle of 45 degrees.

Hereinafter, GPOV data ξn and data from the obstacle class identification module D
are transmitted to the input of the intelligent neural network of each agent in the group.

3. Development of the Cascade Architecture of the Neural Network Planning Module
for Agents of the MRC Group

The proposed method for forming an interacting group of robots permits data ex-
change between agents in the group based on their respective vision systems. The global
planning module based on the information of the GFOV module determines a global
motion trajectory. The GIA generation module allows the best way of rebuilding the group
to be chosen while avoiding obstacles and taking into account the distance necessary to
maintain communication between the agents. The architecture of the developed intelligent
cascade planning system, considering both the input and output parameters, is presented
in Figure 8. To generate control signals for the actuators of each agent of the group, the
internal planning logic was implemented based on an artificial neural network and a DL
method for the agents.

Figure 8. Architecture of the cascade intelligent planner for MRC group motion.

Operation of the algorithm on the basis of the cascade intelligent planner, shown in
Figure 8, is as follows. First, the available GPOV, GIA, and RRT* modules receive input
data from the navigation systems and VS of each agent in the group. As presented above,
the result of the GPOV operation is a data array describing the current state of the shared
field of view, including the classes of objects. The GIA algorithm provides data on the
current state of the formation in the form of εn and D. The auxiliary trajectory planning
module calculates the recommended trajectory in the form of Hgroup. This dataset is sent
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to the neural system for path planning of each agent of the group, which is responsible
for the action of each agent in the group during learning. Thus, each agent has its own
environment (the agent’s local environment Eagent), from which it receives feedback in
the form of an updated state S′ and reward R. At the same time, the agent is in constant
interaction with other agents in the group, meaning that its local environment is part of the
overall group environment Eagent ∈ Egroup.

In order to make adjustments with group-wide impact, the last module of the cascade
architecture to be introduced is the Overall group environment analysis module. This module
determines the intragroup state of each agent and the group-wide reward for agents for
selected actions A.

The resulting decentralized group planning system is easily implemented and scalable.
The system implements a cascade of algorithms, which together prepare and generate data
for the agents’ onboard neural network training.

3.1. Development of a Neural Network Agent Action Planner Module in the MRC Group

The data used as input for the agents’ neural network result from either the operation
itself or calculations carried out by the modules described above. A planner module is
implemented on a fully connected neural network basis. The DQN approach is used as
the main training method [61,70]. The agent has its own memory of (M) = 20,000 elements,
storing a set of values (S, R, S′, A, Q) that describe the previous state, reward, current
state, and recommended maximum best value of the selected action. The agent model is
presented in Figure 9. The rule that forms the basis for training the agent’s neural network
planner is shown in Formula (7).

rt + γ ·max
a!

Q ·
(
St+1, a′; θ−

)
−Q · (St, at; θ)2 (7)

The target network and Q-network (shown in the figure below) have an identical structure.
The architecture of the developed neural network is shown in Figure 10. The neural

network has 364 input values, which include arrays of distances between the agents of
the group, the distance and direction angle of the current agent in relation to the target,
data from the VS, the identifier of the detected object (an obstacle or an agent of the
group), and the agent’s current status. This information enters the internal block of the
neural network, which consists of three dense layers of 64 neurons each and two dropout
layers with an exclusion parameter equal to 0.2. The RMSProp optimizer with parameters
learningrate = 0.00025, ρ = 0.9, and ε = 1−6 was chosen as the activation function.

Figure 9. Agent’s neural network architecture based on DQN approach.
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Figure 10. Neural network architecture.

The agent’s neural network module provides the error calculation function based on
the Huber loss (8):

Huber loss =

{
1
2
(
y− yp

)2,
∣∣y− yp

∣∣ ≤ δ

δ
∣∣y− yp

∣∣− 1
2 δ2,

∣∣y− yp
∣∣ > δ

, (8)

where y is the current value of the AV states, yp is the predicted values of the AV states,
and δ is the error function tuning factor, which in this case is δ = 1. A previously devel-
oped software simulation complex was used as an environment to conduct training. The
interaction of the agent with the environment occurs on the basis of five possible actions,
which are presented in Figure 11.

Figure 11. Agent’s possible actions.

When interacting with the environment, an AV changes its state from (S) to (S′) based
on a reward Rr. The expression used to describe the internal policy is responsible for the
AV’s reward function is as follows (9):

Rr = Yr(A) ∗ 5 ∗ Drate

Drate = 2Dcur /Dgoal

Yr(A) = 1− 4|0.5− 0.5 ∗ α|
α = heading

(9)

where heading is the agent’s current heading, Drate , Yr(A) is the component of the reward
based on the distance and the agent’s current heading, and Dgoal is the agent’s distance to
the target.

3.2. Development of a Neural Network Correction Module for MRC Group Action Planning

The neural network correction module for planning the actions of the MRC group
is responsible for evaluating the actions performed by each agent in the group. The
primary objective of this module is to form an intragroup policy of behaviour through
the analysis of states and rewards (Sn, Rrn) for all agents in the local Eagent and overall
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group Egroup environments. The function that describes the intragroup interaction policy
of agents, which is responsible for the group reward component formation, is provided by
expression (12) below:

Rg13 =


−eD13−2.1 if D13 < 2.1
−e1.9−D13 if D13 < 1.9

3 other cases
(10)

Rg12 =


−eD12−(

√
2+0.1) if D12 >

√
2 + 0.1

−e(
√

2−0.1)−D12 if D12 <
√

2− 0.1
3 other cases

(11)

Rg1 = Rr + Rg12 + Rg13 (12)

where several scenes in the software simulation complex were implemented in order to
train a group of three agents: a scene without obstacles, one with stationary obstacles,
and one with dynamically changing obstacles. The scenes are shown in Figure 12. It
should be noted that at this stage an initial structure consisting of a wedge-type formation
was considered.

(a) (b) (c)

Figure 12. Developed scenes used to conduct a simulation of the motion planning cascade neural
system for a group of objects: (a)—a scene without obstacles; (b)—a scene with stationary obstacles;
(c) a scene with dynamically changing obstacles.

Training was conducted on a PC equipped with an NVIDIA Geforce 3060 video card
with 12 Gb RAM (considering the pre-installed CUDA 11.7), 64 Gb DDR4 RAM, and Intel
Core i9 4016 Gz processor. The elapsed training time varied for each scene: 2 h for the first
scene, 10 h for the second scene, and about 15 h for the third scene.

The graphs presented below in Figure 13 describe the learning results for the three
generated scenes. An example of training a group on the scene without obstacles with the
GIA display and its changes during motion is shown in Figure 14.

In the Figure 13, the plots (a) and (c) demonstrate the results of group training in
the environment without obstacles. As can be seen in the figures, the developed group
neural network successfully achieves (with 90% probability) accident-free group motion
after 400 training epochs (episodes), which we considered to fulfill the conditions specified
by the GIA and shared field of view algorithms for reaching the target coordinates. The
plots (b) and (c) demonstrate the results of group training in the environment with dynamic
obstacles. After 800 epochs (episodes) of training, the neural network successfully copes
(with 75% probability) with the task of group motion to reach the target coordinates while
avoiding obstacles.
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(a) (b)

(c) (d)

Figure 13. Learning outcomes of the cascade neural network planning system for the MRC group:
(a)—total score plot with the group operating in the scene without obstacles; (b)—number of suc-
cessful mission epochs in a row while operating in the scene without obstacles; (c)—total score plot
with the group operating in the scene with obstacles; (d)—number of consecutive successful mission
epochs when operating in the scene with moving obstacles.

Figure 14. An example of GIA changes when simulating group motion of objects in the environment
without obstacles.

4. Full-Scale Trials of the Developed Modules’ Operation for Planning and Intragroup
Interaction Using the Example of a Displacement MRC

In this section, we present full-scale tests of modules based on the proposed method.
In future works, we plan to use the results of full-scale trials for hardware integration of a
neural network planning system with the mathematical models of robotic systems. The set
of actions of TurtleBot3 is comparable to the set of actions of mini-boats, as in both cases
there are two engines.
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To test the developed algorithms, experimental models of crewless boats were im-
plemented. A schematic layout of the considered crewless boat’s equipment is shown in
Figure 15.

1. Module: Transceiver, RF, FSK, GFSK, LORA, OOK, 868 MHz, TTL, UART/HOPERF
2. Antenna ant gps GPS900-1 SMA-m 3M ZOGLAB
3. Lithium 3v battery
4. Two Collector engine R540- 33110 12 V (540 class)
5. UNO R3 ATMEGA328A-AU CH340G board with USB cable
6. Imu sensor with 10 degrees of freedom (troyka module)
7. Raspberry PI 4 model b+ 2 Gb microcomputer
8. D-Link DWA-137/C1A USB 2.0 Wi-Fi Network Adapter
9. Astra Pro Realsense RGBD Depth Camera

Figure 15. Crewless boat model and hardware layout.

In our systemRGBD depth cameras based on Structured light technology are used as
the main devices for obtaining information on obstacles, as it is shown in the Figure 16.
The option of using Depth from stereo technology is under consideration for future stages.
There are issues with structured light cameras, among which a few should be mentioned in
this context. The main issue is that they produce a noisy depth map in open air, as solar
radiation contains an infrared spectrum. Another issue is that they provide a large number
of reflections when used in water.

Operation trials of the group management system were carried out; it was necessary
to test the RRT algorithm as a global planning system, the system for depth map generation,
and the speed of group interaction.

Due to the unaccounted-for influence of sunlight on the data obtained from the depth
camera, we had to abandon the system test with the camera; these tests will need to be
carried out in future research.

A formalized statement of the mission assigned to a group of robots can be repre-
sented as follows: it is necessary to ensure the movement of a group of marine robotic
systems through the key points of the route, taking into account the preservation of the
group formation (in the full-scale tests, the movement of the group was in a “front”-type
formation) while taking into account obstacle avoidance and maintaining the necessary
distance to maintain a communication channel between the robots. In thie experiment, the
target distance between the robots was 2 m and the tolerance corridor between robots was
0.5 m.
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Figure 16. Astra Pro Realsense RGBD Depth Camera point cloud viewing experiment with SMTU.

The full-scale tests included the following steps:

• Study of the local and global planning performance under real conditions and in
two cases (without obstacles and with obstacles).

• Operability validation of the technical vision system and the information exchange
module (volumes of transmitted data) in order to build up a common field of view of
the group.

• Formation of a database from the VS system, which is subsequently loaded into the
neural network block in order to classify group agents.

• Integration of data obtained from the vision system into the neural network planning
system implemented on the hardware of crewless boats.

The goal of the experiment was to move the group from point A to point B. To do this,
ten observed measurements were used. The direct distance from point A to point B was
25 m. The RRT tree building time for each experiment is presented in Table 1.

The data transmitted from each crewless boat were as follows:

• Service information, navigation information, and 3D camera data = 1.2 mb;
• Service information, navigation information, and LIDAR data = 1.5 kb.

Table 1. Time and path length required to build the RRT tree.

Sample 1 2 3 4 5 6 7 8 9 10

Tree building time, sec 0.433 0.451 0.442 0.432 0.442 0.412 0.421 0.412 0.423 0.411
Path length for 1 AV, m 26.82 27.112 28.023 25.93 29.12 26.84 26.93 30.03 26.34 28.53
Path length for 2 AV, m 27.23 26.91 28.93 27.26 27.42 25.81 25.96 27.34 27.45 27.53
Path length for 3 AV, m 26.12 29.14 27.34 26.32 26.75 28.21 28.96 26.78 28.44 29.53

The software of the crewless boat was implemented on the ROS in order to simplify
the integration and porting of existing automatic control system (hereinafter referred to as
ACS) and planning modules. The full-scale experiment was carried out in the inner water
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areas of St. Petersburg, Russia and Chelyabinsk, Russia. The result of group operation of
the crewless boats is shown in Figure 17.

The conducted experiment made it possible to test the application of the developed
algorithms in a real environment, considering the use of the implemented crewless boat
hardware and software platform. An operator GUI was implemented to display the
necessary information about the crewless boat motion, target coordinates, and actual
trajectories of the agents in the group. In addition, the GUI was able to show the operation
of the RRT* algorithm in real time.

(a) (b)

(c) (d)

Figure 17. The first full-scale trials of group operation of crewless boats: (a) the group starts to
move; (b) the group moves towards the target points; (c,d) data on mission progress shown on the
operator’s GUI.

To ensure VS operation in the full-scale trials, we decided to replace the Astra Pro
Realsense 3D camera with the RPLIDAR S2 30 m TOF LIDAR, which has a visibility range
of 30 m.

It should be noted that the visibility of the LIDAR was limited in the experiment by its
visibility sector of +/− 30 degrees from the device bow. Wave motion was compensated
for by matrix transformations using the 3D compass data.

The tests consisted of system operation series with a typed obstacle. The key task
of the group, as in the simulation, was to bypass a static obstacle. The distance from the
starting point to the end point was approximately 30 m, which can be considered a small
distance taking into account the possibility of LIDAR action and the speed of the boats.
We conducted fifteen launches, three launches of which were unsuccessful. Failure of the
LIDAR and of the point cloud merging system were detected during the first and second
unsuccessful launches, respectively. During the third unsuccessful launch, there was a
problem with the GPS, causing the robots to crash into an obstacle. The RRT tree building
time for each experiment is presented in Table 2.
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Table 2. RRT tree building time and path length.

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Tree building

time, sec
0.433 0.451 0.442 0.432 0.442 0.412 0.421 0.412 0.423 0.411 0.413 0.411 0.441 0.421 0.403

Path length for 1

robot, m
38.79 46.46 46.75 39.92 39.1 39.84 42.88 47.5 40.13 45.42 42.77 43.8 40.9 45.57 45.83

Path length for 2

robot, m
44.38 41.67 40 37.78 39.02 44.26 37.58 44.35 41.87 40.09 43.05 44.78 47.72 41.56 37.49

Path length for 3

robot, m
47.38 46.4 38.74 41.57 45.94 40.35 41.06 42.93 46.13 41.84 44.03 47.48 37.78 37.22 41.45

The full-scale trials with an obstacle is shown in Figure 18.

(a) (b)

(c) (d)

Figure 18. The second full-scale trials of mini-boat group motion considering obstacle avoidance:
(a,b)—avoidance of the obstacle; (c,d)—operator’s UI showing the trajectories of the mini-boats.

In Figure 18, Figure 18a,b demonstrate group motion and avoidance of the detected
obstacle, while Figure 18c,d demonstrate the operator’s GUI, showing the motion trajec-
tories of a group of robots (the operation of the global planning algorithm is displayed).
Figure 19 demonstrates the full-scale trials results in RVIZ in real time; the red, yellow, and
green circles are the GPS coordinates of the agents, while the red solid line is the obstacle
detected by the RPLIDAR S2.

Our experiment demonstrates the possibility of using the developed complex for
further study of path construction algorithms, as well as for further study of neural network
technologies for group interaction of MRCs. The database of images accumulated during
the experiment, which includes models of the crewless boat and planned obstacles, makes
it possible to train the developed neural network (a part of the GPOV module). We intend
to carry out training of the neural network on real objects and use these results in our
subsequent studies on full-scale models of the proposed complex.
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Figure 19. Trajectories of the mini-boats in group motion considering obstacle avoidance. Blue,
red and green dots corresponding to the trajectory of the first, second and third robot in the
group accordingly.

5. Conclusions

The present article provides a detailed example of a cascade intelligent system imple-
mentation for path planning of a marine AV group. The primary design stages and basic
modules of the developed architecture are described.

The proposed system is based on modules that combine neural network approaches
and machine learning methods, modules that form a group’s single field of visibility repre-
sentation, an area of intragroup interaction, and an auxiliary global RRT* planner module.

The developed combination of reinforcement learning algorithms and graphs allows
more efficient exploration of the space of possible solutions. The agent can explore both
deterministic and probabilistic policies of interaction with the environment.

The available dataset enables deep learning by the neural network of each agent in
the group. In addition, constant data exchange with respect to the states of neighbours in
the group and subsequent analysis allow a scalable and decentralized system structure
to be implemented for intragroup interaction. An additional policy for intragroup state
evaluation involves a corrective impact on the training of the cascaded neural network
action planner.

A software simulation complex based on the ROS, RVIZ, Gazebo, and ML libraries was
developed, making it possible to conduct research on the developed models and planning
methods. The obtained simulation results demonstrate the performance of the proposed
neural network planning algorithms.

All source code was written in the Python programming language, chosen for this
research due to its ease of use and because of the large number of available auxiliary
libraries. On the other hand, Python is an interpreted language that is considered slow.
When a fully working prototype of this system is ready (using the full-scale models), we
plan to migrate to C++ in order to increase the speed of the entire system.

The presented methods and algorithms for group interaction, along with the practical
cases, demonstrate the possibility of using an intelligent system as part of the MRC in
2D environments. The existing architecture and the modular principle of building up
the planning system make it possible to carry out additional adaptation in order to use
this system as part of the AUV, considering the existing limitations and features of AUV
operation in a 3D environment.

The simulation model demonstrated a 90% probability of successful group motion
mission completion when applying the algorithms in an environment without obstacles
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and a 75% probability in an environment with moving obstacles. An important issue is
to improve the quality of the neural network in environments containing obstacles. One
possibility is to consider the use of convolutional layers in the architecture of the neural
network of the agent.

Furthermore, we carried out software and hardware implementation to lay further
groundwork. An alpha version of a GUI for monitoring and managing a group of MRCs
based on the ROS system was implemented. Models of crewless boats were selected as the
objects of control, on which the necessary software and hardware, communication, and
navigation modules were installed. The conducted full-scale experiment demonstrates the
efficiency of the developed algorithms in real-world application conditions. It should be
noted that the propulsion parameters of the crewless boats must be improved to ensure
greater maneuverability. To permit the subsequent training of the VS module’s neural net-
work and for the developed neural network’s full operation during full-scale experiments,
a database was generated using the data collected from the VS.

Further work is aimed at developing the architecture of the cascade intelligent path
planner system, specifically, by introducing data on branches from the RRT* auxiliary
planning module into the neural network group module and forming an “advantage”
system for the agent’s neural network. The modified architecture is shown in Figure 20.

Figure 20. Architecture of the cascade intelligent path planner of the MRC group, taking the predictive
impact into consideration.

The “advantage” system is to be based on a policy responsible for analyzing each
training epoch for a group of agents, the actions they have taken, and the states they have
received, as well as the rewards. In addition, analysis of the constructed and used nodes of
the RRT* tree should be carried out by this module. We expect the introduction of such a
system to lead to an increase in the quality of group neural network training [80].
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