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Abstract: A new stiffened composite pipe pile was developed for improving the foundation of
reclaimed ground in ocean engineering. To study the bearing capacity of the stiffened composite
pipe pile group, a combination of field test and finite element method was used. Firstly, field tests
were performed on the proposed single stiffened composite pipe pile. The single stiffened composite
pipe pile model was verified by comparing the numerical simulation results with the field test results.
The load transfer mechanism from the stiffened core to the cemented soil and the surrounding soil
was clarified. Further, a 3D finite element model of the stiffened composite pipe pile group was
established based on the single stiffened composite pipe pile model. Finally, the bearing capacity of
the pile group and the stress distribution of each pile were analysed and the influence of the pile
spacing on the pile bearing capacity was discussed. The results showed that the axial stress of both
the side and corner piles decreased rapidly with an increase in the pile spacing, and the stress-bearing
ratio decreased. The stress-bearing ratio of the central pile increases with an increase in pile spacing.
The smaller the pile spacing, the larger the load proportion of the composite pile group and the larger
the foundation settlement. The optimal design scheme was a composite pile with a 500 mm stiffened
core diameter, 700 mm outer cemented soil diameter, and a spacing between piles of four times the
cemented soil diameter (2.8 m) considering the group pile bearing capacity and the economic benefits
of the project. These results provide a reference for the design and construction of stiffened composite
piles for ground improvement projects.
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1. Introduction

Stiffened composite piles have been widely used in ocean engineering as a new form
of composite piles for soft ground improvement [1–8]. Composite material piles, such as
fiber-reinforced plastic (FRP) and structure-reinforced plastic (SRP), are unique solutions
to problems including wooden pile deterioration and steel corrosion in tradition [9]. A
stiffened composite pile is a new type of composite pile with a prefabricated stiffened core
embedded in cemented soil. Because of the existence of the aforementioned prefabricated
stiffened core, the cross-sectional stiffness of the composite pile is improved. The load was
first applied to the pile top, then transferred from the stiffened core to the cemented soil,
and finally from the cemented soil to the soil around the pile. The transfer path solves the
problem that cemented soil is prone to stiffened destruction, and the material performance
of the lower part of the pile is fully utilized. Research shows that the vertical bearing
capacity of SCP (Stiffened composite pipe) piles with a concrete core is 1.3~1.5 times that of
cast-in-place concrete piles at the same cost [10].

With the wide application of SCP piles, the interface contact of SCP piles has been
studied widely. At present, the shear process of the interface between cemented soil and
concrete is generally divided into two stages: bond failure stage and friction slip stage [11].
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Jamsawang et al. [12] studied the interface characteristics of stiffened core and cemented
soil and found that the two interfaces performed best when the cement content was 15%.
Relevant scholars have studied the bearing mechanism and characteristics of SCP piles
under vertical [13–15] and lateral loads [16,17]. The load transfer mechanism of SCP piles
under vertical load is studied by numerical simulation. It has been found that the load
transferred to the pile end is less than 7% of the pile top load. Based on this, it is considered
that SCP piles can be regarded as friction piles [18]. In addition, studies found that the
settlement value of cement sand mixing piles under the ultimate load is smaller than that
of cemented soil mixing piles [19], which indicates that the type of cemented soil also has
an impact on settlement. Therefore, researchers studied the deformation influencing factors
and failure models of SCP piles in highway engineering through numerical simulation
and field tests [20–22]. The stiffened core is set as solid pile considering the soil plug effect
in most studies. However, it cannot reflect the actual situation of the composite pile and
neglects the function of cemented soil. Therefore, it is necessary to study the load transfer
mechanism between the cemented soil and the soil around the pile. However, most current
studies set SCP piles as solid pile, which cannot reflect the actual situation of composite
pile. Moreover, there are few studies on the bearing capacity of SCP piles group.

In this study, a combination of field test and the finite element method is used to
study the bearing capacity of the stiffened composite pipe pile group. The axial force of
the stiffened core and cemented soil, friction resistance between the stiffened core and
cemented soil, and friction resistance between the cemented soil and soil around the pile
are analysed. The load transfer mode and the influence of the distance and pile diameter
on pile group bearing capacity is discussed. It is emphasised that the relationship between
the stiffened core diameter, pile spacing and settlement are clarified so that the optimum
design scheme can be obtained to save project costs. The results can provide a reference for
improving the foundation of reclaimed ground in ocean engineering.

2. Design of Field Test

Based on the project of the Mawan Cross-sea Passage, located in the Guangdong–
Hong Kong–Macao Greater Bay Area, a field test of the foundation improvement using the
stiffened composite pipe pile in reclaim strata was performed. The geological conditions of
the strata are presented in Table 1.

Table 1. Geological condition of the reclaim strata.

Stratigraphic Division Stratigraphic Division Depth (Elevation)
(Thickness) (m)
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2.1. Technological Process of Stiffened Composite Pipe Pile

The technological process of a composite pipe pile is shown in Figure 1. The soil is
first cemented by using down-hole-impact jet grouting. Then, a submersible hole hammer
and high-pressure water are used to improve the impact and damage ability of drilling
in the strata. After the hole drilling is completed, the high-pressure water is switched to
high-pressure cement slurry, and a high-pressure jet is used to grout the cement slurry into
the surrounding soil. A rigid core pipe pile is then inserted into the cement soil. Finally, a
stiffened composite pipe pile is formed.
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Figure 1. Technological process of the stiffened composite pipe pile: (a) drilling hole; (b) grouting for
cemented soil; (c) implant stiffened core; (d) forming of the stiffened composite pipe pile.

2.2. Test Preparation

To test the bearing capacity of a single stiffened composite pipe pile, test preparations
were completed as follows before the test:

(1) The soil at the test site was cemented by the down-hole-impact jet grouting of the
designed diameter and length.

(2) According to the site requirements, the test pile would be placed at a designated
position by the crane. To ensure that the setting-out lines were reasonable and straight,
the core piles were marked symmetrically on both sides. A cutting machine was then
used to cut the grooves along the marked lines. After the grooves were finished, the
grooves were cleaned by a blower and checked for straightness and smoothness.

(3) The optical fibre was implanted along the grooves, and an adequate length of optical
fibre was reserved at the top of the pile. The optical fibre was fixed with strong glue.

(4) After the optical fibre was fixed, ethyl polyurethane was used as a backfill to protect
the optical fibre.

(5) After the completion of the above steps, the pile was transferred to the designed
position and then planted into cemented soil to a specified depth using a machine.

The single pile test layout procedure is shown in Figure 2.
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Figure 2. Single pile test layout procedure.

2.3. Test Loading Condition

The stiffened composite pipe pile was composed of three parts: the stiffened pipe pile,
inner and outer cemented soil. The length of the test piles was 12 m. The core pile had inner
and outer diameters of 210 mm and 400 mm, respectively. The corresponding diameter of
the cemented soil was selected to be 700 mm. Figure 3 shows the structure of the test pile.
In the test, the load was applied to the pile top step-by-step through steel plates with a jack
(shown in Figure 2). The first-step load was 660 kN, and the load of each subsequent step was
330 kN higher than that of the previous step, with the last step loading up to 3300 kN. The
detailed loading in each step and time interval is presented in Table 2. The bearing capacity
of composite pipe piles were tested according to the procedures of China national industry
standard of JGJ106-2014 (Technical code for testing of building foundation piles). The loading
value of each stage was 1/10 of the maximum test load (3300 kN), which is 330 kN.
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Table 2. Loading condition.

Step Load (kN) Load Time (min)

1 660 120
2 990 120
3 1320 120
4 1650 150
5 1980 270
6 2310 900
7 2640 420
8 2970 990
9 3300 600

3. Analysis of Single Pile
3.1. Numerical Model

The finite element model of the single pile field test was established. The model was
15 times the outer stiffened core diameter in the horizontal direction with a length of 10.5 m.
In the vertical direction, 2.5 times the pile length was taken with a depth of 30 m, as shown
in Figure 4. The coarseness factor of pile and cap was 0.5, the coarseness factor of soil was
1.0, and the element was 10-node tetrahedral cell. Coarseness means the fineness of the
division grid. The model had 23,326 units and 39,297 nodes.
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The X and Y directions are along the width and length direction of the model, re-
spectively; the Z direction corresponds to the depth direction of the model. The two side
boundaries in the x-direction and y-direction are restrained in the horizontal direction,
respectively. The bottom boundary is assumed to be fixed in the horizontal and vertical
directions while the top boundary is free. Generally speaking, when the size of the model is
4–5 times the pile cap size, the influence of the model boundary on the numerical simulation
results can be avoided. A large piled-raft foundation on clay soil was studied [23,24]. The
model size was five times the size of the cap, and the bottom of the model kept a sufficient
distance from the pile base. In this model, the size of the cap is 0.7 m, the width of the
model is 10.5 m, and the bottom of the model keeps 18 m from the pile base. Based on
studying the formation displacement distribution after the geostress balance, the forma-
tion displacement is very uniform, indicating that the boundary effect is very small and
the model setting is reasonable. The Hardening Soil Small (HSS) constitutive model is
used for the simulation of ground soil, which can comprehensively describe the important
mechanical properties of the soil [25]. Simultaneously, the different friction interfaces are
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set in the model to reflect the interaction between the cemented soil and soil around the
pile, stiffened core, and cemented soil. According to a site survey report, the stratum was
simplified into three layers. Loading was applied to the top of the stiffened composite pile
in steps based on the test conditions (shown in Table 2). The specific material parameters of
the soil and pile used in the simulation are listed in Tables 3 and 4, which come from the
geological prospecting report.

Table 3. Parameters of the soil in simulation.

Material Name Thickness
γ/

kN·
m−3

E50/
MPa

Eoed/
MPa

Eur/
MPa

C/
kPa

ϕ/
◦ N m γ0.7

G0/
MPa Rinter

silty clay 3.5 18.3 8.0 8.0 32.0 25.0 28.0 0.2 0.8 0.0002 160 1.0
sandy clay 8.5 21.0 12.0 12.0 48.0 30.0 35.0 0.2 0.8 0.0002 180 1.0

fully weathered granite 18 22.0 30.0 25.0 100.0 35.0 40.0 0.2 0.5 0.0002 360 1.0

Table 4. Parameters of the tested composite pipe pile.

Material Name E/GPa ν Rinter

Stiffened core (pipe pile) 8.0 0.15 0.3
Cemented soil 1.2 0.25 0.3

Steel plates on pile head 30 0.2 1.0

3.2. Pile Displacement

Figure 5 shows a comparison of the load-settlement curves of the numerical simulation
and field test. The vertical displacement or settlement at the top of the stiffened core pile
is 23.73 mm and 20.62 mm in numerical analysis and field test, respectively. The trends
of the two curves are similar. The displacement of the numerical simulation result is
slightly larger than that of the measured displacement. The reason for this is that the
friction model selected for the contacts cannot completely reflect the properties of the
actual interface because the cemented soil has a bonding effect on the concrete contact
surface and the pile-surrounding soil, and the contact model in the numerical simulation is
a friction model, which cannot reflect the real characteristics of the soil. The bonding effect
is reflected by increasing the friction coefficient, and the analysis results are least affected.
It is difficult to accurately simulate the different interface properties by only the control
friction coefficient [26,27].
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Figure 6a,b shows the strain distribution of the pile and soil in the vertical section
along the depth when the final loads are 1650 kN and 3300 kN, respectively. When loading
to 1650 kN, the settlement at 0–6 m of the pile body changes from 7.8 mm to 1 mm, and
the settlement at 6–12 m of the pile body changes from 0.99 mm to 0.07 mm. The strain
mainly occurs in the upper part of the pile, and the load is gradually transferred from the
core pile to the soil through the cemented soil. When the load increases to 3300 kN, the
settlement at 0–12 m of the pile body changes from 23.79 mm to 1.422 mm. The strains of
both the pile and soil increase further. The plastic strain of the soil at the bottom of the
core pile is produced at a final load of 3300 kN. This further increase in the deformation of
the soil indicates that the stress is further transferred from the pile to the soil. As the load
increases and transfers continuously, the friction resistance between the reinforced core and
cemented soil and between the cemented soil and the soil around the pile continues to act,
and the deformation parts gradually extend downward with the increase in depth along
the pile. It can be shown that the bearing mechanism of the composite pile is the transfer of
the load from the stiffened core to the soil through cemented soil.
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3.3. Axial Stress of Stiffened Core

Figure 7 shows the axial stress of the stiffened core along the depth of the numerical
simulation and the field test results. The axial stress of the stiffened core of the simulation
and test results can be matched well, which also verifies the rationality and reliability
of the numerical simulation. As the load increases, the axial stress of the stiffened core
increases. The axial stress decreases with increasing depth along the pile. This is because
the pile is stressed from the top, and the axial stress is transferred from the top down.
The axial stress is transferred to cemented soil by friction resistance between the stiffened
core and cemented soil in the process of transmission. Moreover, the contact area between
the stiffened core and cemented soil gradually increases with the increase in pile depth.
Therefore, the increase in friction contact surface makes the lower pile axial stress less than
the upper pile axial stress. In general, the variation trend in the axial stress of a stiffened
core is similar to that of a traditional pile [28].
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3.4. Axial Stress of Cemented Soil

Figure 8 shows the axial stress of the cemented soil. It can be seen from Figure 8 that
the axial stress of cemented soil first increases along the depth, with peak values at depth
of 4.5–7.5 m, and then decreases. The stiffened core is mainly used to bear the load, and
the cemented soil can effectively transfer the axial force from the stiffened core to the soil
around the pile via friction resistance [29,30].

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 8. Simulation results of axial stress of cemented soil. 

  
(a) (b) 

Figure 9. Stress distribution of pile: (a) loading to 1650 kN; (b) loading to 3300 kN. 

3.5. Friction Resistance between the Stiffened Core and Cemented Soil 
The friction resistance between the stiffened core and cement soil is shown in Figure 

10. The results of the numerical simulation and field test for both exhibit the same trends. 
As the depth along the pile increases, the friction resistance of the stiffened core decreases. 
Overall, the friction resistance increases with an increase in load. When the load was rel-
atively small, the field test results were inconsistent with the simulation results. This is 
because when the load is small, the error caused by the friction coefficient will be ampli-
fied. The lateral friction resistance between the stiffened core and cemented soil is not 
transferred to the pile end. Therefore, the measured value of the friction resistance at the 
pile end is 0. When the load was gradually increased to 3300 kN, the results of the simu-
lation and test gradually coincided, confirming the correctness of the transmission path of 
the stiffened composite pile. 

Figure 8. Simulation results of axial stress of cemented soil.

Therefore, at the initial stage of loading, the load is mainly carried by the stiffened
core, and the cemented soil carries only a small part of the load. The load is transferred
from the stiffened core to the cemented soil in the form of friction resistance, and the axial
stress of the cemented soil increases mainly in the upper part of the pile. As the settlement
of the pile increases, the interface area between the cemented soil and the soil increases.
The load is gradually transferred from the cemented soil to the soil around the pile through
the friction resistance. Therefore, the axial force of the cemented soil increases above 7.5 m
of the depth along the pile body and then decreases.

Figure 9 shows the stress distribution in the vertical section. When the load is 1650 kN
and 3300 kN, the stress at 6 m of the soil 0.15 m from the cemented soil is 24 kPa and
292 kPa, respectively; the vertical stress of the soil around the pile is small. In addition,
the change in stress at the lower part of the pile is small, indicating that the load is mainly
transferred from the stiffened core to the bottom of the pile. When the load is increased to
3300 kN, the stress at 12 m of the soil 0.15 m from the cemented soil is 215 kPa and 853 kPa.
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The vertical stress of the soil around the lower part of the pile increases gradually. This
explains why the load transfer path is from the core to the cemented soil and soil.
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When the load is initially loaded to the pile top, the stiffened core bears most of the
load, corresponding to an axial stress of the cemented soil close to 0 kPa. As shown in
Figures 10 and 11, friction resistance between the stiffened core and cemented soil and
friction resistance between the cemented soil and soil the pile load transfers, respectively,
can be explained. With the increase in friction resistance between the stiffened core and the
cemented soil, the load of the stiffened pile is gradually transferred to the cemented soil in
the form of friction resistance. The friction resistance and the axial stress of the stiffened
pile decrease, and the axial force of the cemented soil increase along the pile with a peak
value at depth of about 6 m. In the lower part of the pile body, due to the increase in the
contact surface, friction resistance gradually develops, and the axial force of the core pile
decreases rapidly.
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3.5. Friction Resistance between the Stiffened Core and Cemented Soil

The friction resistance between the stiffened core and cement soil is shown in Figure 10.
The results of the numerical simulation and field test for both exhibit the same trends. As
the depth along the pile increases, the friction resistance of the stiffened core decreases.
Overall, the friction resistance increases with an increase in load. When the load was
relatively small, the field test results were inconsistent with the simulation results. This is
because when the load is small, the error caused by the friction coefficient will be amplified.
The lateral friction resistance between the stiffened core and cemented soil is not transferred
to the pile end. Therefore, the measured value of the friction resistance at the pile end is 0.
When the load was gradually increased to 3300 kN, the results of the simulation and test
gradually coincided, confirming the correctness of the transmission path of the stiffened
composite pile.

3.6. Friction Resistance between the Cemented Soil and Soil

Owing to the limitations of the field test, the lateral friction resistance between the
cemented soil and soil was obtained by numerical simulation, as shown in Figure 11. The
friction resistance increased with the depth along the pile and reached its maximum value
at the pile end. The friction resistance of the cemented soil gradually increased with an
increase in load. The end friction resistance reached 120 kPa when loading to 3300 kN.
Nevertheless, the value is still less than the friction resistance between the stiffened core
and cemented soil, which indicates that the stiffened core transfers most of the load and
plays a regulatory role. However, it is necessary to consider the continued increase in
the friction resistance between the cemented soil and soil at the pile end when the load is
greater than 2970 kN.

4. Analysis of the Group Piles
4.1. Finite Element Model of Pile Group

The rationality of the model was verified by comparing the numerical simulation
and test results for a single stiffened composite pile. Subsequently, a finite element model
of the pile group with a stiffened composite pile was established. To easily apply the
load, a large bearing platform was built on top of the pile group. The composition and
parameter settings of the pile group were the same as those of the single pile. The cap–soil
interface and the cap–pile interface was considered as a smooth contact with a strength
reduction factor (Rinter) of 1 [24]. The Rinter indicates the strength of the interface element
as a percentage of the shear strength of adjacent soil. The pile body contacted with the
pile-surrounding soil and the cap base, which are connected with each other by way of
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friction surface contact. A finite element model of the stiffened composite pile group and
ground soil is shown in Figure 12. The dimensions of the model are 20 m × 20 m × 30 m.
The pile group consists of nine piles distributed by 3 × 3 piles. The bearing capacity of the
stiffened composite pile group was investigated by applying a vertical load to the bearing
platform. The entire vertical load was applied step-by-step from 5000 kN, with an increase
of 5000 kN in each step, until it reached 25,000 kN. The pile displacement and axial stress
at different load steps were extracted.
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4.2. Bearing Capacity of Pile Group

Figure 13 shows the axial stress and vertical displacement of each pile under vertical
loading. It can be observed from the Figure that the change trend in the axial stress of the
central, side, and corner piles is almost the same, which is similar to the case of the single
stiffened composite pile. The axial stress of each pile is large at the top and small at the
bottom, which indicates that the friction resistance transfers most at the upper part of the
pile, and the cemented pile transmits the load. In the pile group, the axial stress of the side
pile was the largest, followed by that of the corner pile, and the axial stress of the central
pile was the smallest. The q–s curves of the three piles are similar, indicating that the load
transfer mechanism does not change with the variation in the pile location in a group.

4.3. Influence of Pile Cap

Figure 14a shows the friction resistance of the central pile, side pile, and corner pile
under the load of 25,000 kN. As can be seen from the figure, the decrease rate of the friction
resistance of the core pile is greater than that of the side pile, and the decrease rate of the
side pile is bigger than that of the central pile. The corner pile first reaches the neutral point,
the side pile is the second, and the middle pile reaches it last. This is due to the existence of
the cap, which limits the relative displacement of the subsoil within 6 m in depth of the
cap stage. At the same time, because the central pile is affected by the packing effect of
the side pile and corner pile, the friction resistance of the central pile is difficult to play, so
the position of its neutral point is lower than those of the side pile and corner pile. On the
contrary, the side pile and the corner pile are close to the edge of the cap, and its lateral
friction resistance develops rapidly. When the range exceeds 6 m outside the cap, the lateral
friction resistance of the three piles gradually increases. Figure 14b shows the axial stress
of the central pile, side pile, and corner pile under the load of 25,000 kN. The axial stress
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of the corner pile is greater than that of the side pile, and the axial stress of the side pile
is greater than that of the corner pile. Because the displacement of the soil between piles
within 6 m of the cap is limited by the pile, the friction resistance development speed is
slow, which leads to the slow change in axial stress. When the range exceeds 6 m outside
the cap, the change in axial stress gradually accelerates. The influence of the cap on the
axial stress and the friction resistance indicates that the cap plays a weak role in the act of
friction resistance within 6 m of the cap.
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4.4. Influence of Pile Base Resistance

Figure 15 shows the curve of the friction resistance of the middle pile base, changing
with settlement. It can be seen that when the relative displacement of the pile and soil is
equal to zero, the friction resistance has not yet begun to act, and the base resistance is
equal to zero. The load of the pile body is transferred to the soil around the pile through
friction resistance, so that the soil at the pile base is compressed and the base resistance is
gradually played.
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Figure 16 is the ratio curve of end resistance to average friction resistance. As can
be seen from the figure, when the load is small, the load is mainly transferred by friction
resistance; the end resistance value is relatively small. With the gradual increase in the load,
the load is continuously transmitted downward through friction resistance, the relative
displacement between the soil and the pile continues increasing, and the soil at the pile end
is compressed to produce base resistance, which is manifested as increasing base resistance.
This reveals that the friction resistance acts earlier than the base resistance.
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4.5. Influence of Pile Spacing

Figure 17 shows the axial stress distribution of the pile group with different pile
spacing. It can be seen from the Figure that the axial stress of the side and corner piles
decreases rapidly with an increase in the pile spacing. This is because the soil around the
pile bears more load with an increase in the pile spacing. The axial stress of the central
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pile first increases with an increase in the pile spacing and then fluctuates. Generally, the
greater the pile spacing, the smaller the axial stress of the pile [31]. The stress-bearing ratio
(Rb) represents the ratio between the axial stress of each pile of the stiffened composite
pile group and the average axial stress of the pile at the top. Figure 18a shows the change
in the stress-bearing ratio of each pile with pile spacing. Figure 18a indicates that the
axial stress of the side and corner piles decreases rapidly with an increase in pile spacing
and that the stress-bearing ratio decreases. The stress-bearing ratio of the central pile
increases with an increase in the pile spacing, indicating that the central pile bears more
of the upper load when the pile spacing is larger. The side and corner piles play the main
role in bearing the load when the pile spacing is small. This is because when the pile
spacing increases, the pile group effect from the corner and side piles on the central pile is
gradually reduced. Therefore, the central pile can bear a higher load, resulting in a gradual
increase in its stress-bearing ratio. In contrast, the axial stresses of the side and corner
piles decrease owing to the large bearing ratio of the central pile. Figure 18b shows the
change in the pile–soil load-sharing ratio (Rs) with the change in the pile spacing of the pile
group. With an increase in pile spacing, the load shared by the stiffened core and cemented
soil gradually decreases, whereas the load shared by the soil around the pile gradually
increases. This is because the expansion of the pile spacing leads to the expansion of the
cap area, and the force of the pile group is more uniform.
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4.6. Influence of Stiffened Core Diameter

Figure 19 shows the load-displacement curves for different stiffened core diameters.
Figure 19 shows that the pile top settlement decreases with the increase in the inner core
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pile diameter under the same pile spacing and load. This is because the elastic modulus of
the stiffened core is greater than that of the outer cemented soil. When the diameter of the
outer cemented soil does not change, the increase in the inner core diameter is equivalent
to the increase in the elastic modulus of the stiffened composite pile section. Under the
same load, the deformation of the stiffened composite pile with the larger diameter of the
inner stiffened core diameter is the smaller.
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Figure 20 shows the influence of stiffened core diameter and pile spacing on the
settlement of the pile group. It can be observed from the Figure that when the stiffened
core diameter remains unchanged, the settlement of the pile top decreases with an increase
in pile spacing. When the pile spacing remains unchanged, the settlement of the pile top
can be reduced by increasing the diameter of the stiffened core. However, the pile-tip
settlement does not change significantly when the pile spacing is 2d1. When the stiffened
core diameter increases from 400 mm to 500 mm, the settlement change rate of the pile
top is greater than that of the stiffened core diameter from 500 mm to 600 mm. It is clear
that a pile with a larger core diameter uses more concrete than a pile with a smaller core
diameter. In practical engineering, the cost of concrete is higher than that of cement soil.
Considering the economic benefits, the pile group with a pile spacing of 2.8 m (four times
the pile diameter), a stiffened core diameter of 500 mm, and a cemented soil diameter of
700 mm is the optimal scheme for this ground improvement project.
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5. Conclusions

To study the bearing capacity of a stiffened composite pipe pile group, a combination
of field test and the finite element method was used. A single stiffened composite pipe
pile model was verified by comparing the numerical simulation results with the field test
results. The model is further expanded into a pile group to analyse the bearing capacity of
pile groups. The conclusions drawn are as follows.

(1) The axial stress of the stiffened core decreased with the increasing depth along the
pile. The axial stress of the cemented soil increased with an increase in the depth
along the pile and reached a peak value at 4.5–7.5 m. The friction resistance between
the stiffened core and cemented soil decreased gradually with an increase in the depth
along the pile. The lateral friction between the cemented soil and the soil around the
pile increased along the depth of the pile.

(2) The load was transmitted downward along the stiffened core of the pile in the form of
axial force. With an increase in depth along the pile, the axial stress of the core was
gradually transferred to the outer cemented soil in the form of friction resistance. Part
of the load was transferred to the end of the pile along the cemented soil in the form
of axial stress, and the other part was transferred to the soil around the pile in the
form of friction resistance.

(3) In the square distribution pile group, the axial stress of the side pile was the largest,
followed by that of the corner pile, and the axial stress of the central pile was the
smallest. The q–s curves for each pile in the group were similar. The central pile was
significantly affected by the group pile effect, and the bearing capacity was relatively
low compared with that of the other piles.

(4) The axial stress of the side and corner piles decreased rapidly with an increase in pile
spacing, and the stress-bearing ratio decreased. The stress-bearing ratio of the central
pile increased with an increase in pile spacing. The side and corner piles played the
main roles in bearing the load when the pile spacing was small.

(5) The smaller the pile spacing, the greater the proportion of the load shared by the piles
and the smaller the bearing capacity of the foundation. When the pile spacing was
two times the pile diameter, the q-s curve dropped sharply.

(6) The coupling effects of different stiffened core diameters and pile spacings were
compared, and the optimal parameters in this ground improvement project were
se-lected as the pile group with a pile spacing of 2.8 m (four times the pile diameter),
stiffened core diameter of 500 mm, and cemented soil diameter of 700 mm.
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