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Abstract: Active sonar target classification remains an ongoing area of research due to the unique
challenges associated with the problem (unknown target parameters, dynamic oceanic environment,
different scattering mechanisms, etc.). Many feature extraction and classification techniques have
been proposed, but there remains a need to relate and explain the classifier results in the physical
domain. This work examines convolutional neural networks trained on simulated data with a known
ground truth projected onto two time-frequency representations (spectrograms and scalograms).
The classifiers were trained to discriminate the target material type, geometry, and internal fluid
filling, while the hyperparameters were tuned to the classification task using Bayesian optimization.
The trained networks were examined using an explainable artificial intelligence technique, gradient-
weighted class activation mapping, to uncover the informative features used in discrimination.
This analysis resulted in visual representations that allowed the CNN choices to be related to the
physical domain. It was found that the scalogram representation provided a negligible classification
accuracy increase compared with the spectrograms. Networks trained to discriminate between target
geometries resulted in the highest accuracy, and the networks trained to discriminate the internal
fluid of the target resulted in the lowest accuracy.

Keywords: automatic target recognition; continuous wavelet transform; convolutional neural
network; elastic wave classification; explainable artificial intelligence

1. Introduction

There are two types of sonar systems: passive and active. The former is when a hy-
drophone is recording sound within the ocean, and the latter occurs when a pulse of sound,
or a ping, has been sent out to a target of interest in an attempt to determine a target’s
information. This research is specific to active sonar. Active sonar target recognition and
classification has numerous maritime applications, such as harbor monitoring, autonomous
underwater vehicle vision, and seabed characterization. However, classification suffers
from feature uncertainties due to unpredictable or unknown environmental (salinity, tem-
perature, sound speed profile, etc.) and target parameters (size, shape, orientation, etc.) [1].
Different forms of obstructions, such as fish or bubbles, or oceanic noise may also be present
within a sonar’s return path and can further entangle a received response [2]. These effects
combine and degrade the target-specific informative features used for discrimination.

Machine learning algorithms are commonly used to perform classification of sonar
data [3–11]. Many of these classification pipelines employ convolutional neural networks
(CNNs). Williams demonstrated classification of sonar images using a 10 layer CNN [3].
Wang et al. used weights found with a deep belief network and then replaced the randomly
initialized CNN weights to perform classification of various sonar images [12]. CNNs
were used for feature extraction rather than classification by Zhu et al., who used AlexNet
to extract sonar image features prior to classification using a support vector machine [7].
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Sonar image feature extraction through edge detection was additionally proposed by Wang
et al., who created three different CNNs with skip connections and demonstrated its ability
to find continuous edges [13]. However, many of these networks are deep and rely on
a large number of samples for training. A large amount of public domain experimental
field data for training is challenging and costly to obtain [9]. Many approaches, such
as feature engineering or extraction [10], transfer learning [4], pretrained networks [6,7],
synthetic data generation [4–6], and employing many tiny classifiers [11], have been used to
mitigate this challenge. This work is a combination of synthetic data generation, two time-
frequency representations, and the employment of moderately sized classifiers that have
been optimized for various sonar target recognition tasks. The signals used throughout this
work are simulated from known models, giving complete control over the ground truth
and simulation options. This allows interpretation of the informative features used by the
classifier for discrimination to be related back to the physical domain.

Signal segmentation is performed prior to the projection of simulated target backscat-
tered responses onto two two-dimensional representations. The use of two-dimensional
(2D) analysis in conjunction with machine learning techniques is common within the under-
water community [10,14–19]. An in-depth review of the feature extraction and classification
methods is provided in [20]. Choi et al. employed cross-spectral density matrices as inputs
to a variety of classifiers trained to discriminate against submerged or surface ships. In
most cases, CNNs provided increased classification, with a lowest binary misclassification
rate of 0.92% [15]. Power cepstrums were used as CNN inputs trained to perform detection
and ranging of vessels in a variety of SNRs [14]. Other reported research describes a novel
chirp wavelet [16] using a three-channel spectrogram CNN classfier [17], or using binary
features extracted from acoustic spectra [10,18]. An interesting approach was taken by
Luo et al. They used multiple spectrograms at various resolutions as a three-channel input
in conjunction with a ResNet-inspired network, achieving up to a 96.32% classification
accuracy in ship noise classification [19]. This research differs in the use of simulated
signals with a known ground truth, a comparison of the short-time Fourier transform and
the continuous wavelet transform representations and their impact on classification, and
examination of the classifiers post training to explain the classifier choices.

Deep learning techniques are considered to be state of the art and provide increased
classification when compared with traditional approaches [21]. However, these networks
suffer from a lack of explainability and interpretability of their results due to their com-
plexity [22]. This creates a lack of trust and transparency in a classifier and is sometimes
referred to as a ‘black box’. When incorrect classification may result in harmful real-world
outcomes (as is the case in sonar classification), there exists the need for explainable artifi-
cial intelligence (XAI) [23]. Explainable artificial intelligence (XAI) is an emerging area of
study aimed at increasing the interpretability of machine learning choices. XAI attempts
to build transparency and increase trust in a classifier algorithm by making the classifier
choices interpretable to humans [24]. There are many different approaches to XAI, and the
one employed in this work is gradient-weighted class activation mapping (Grad-CAM),
which uses the gradients of test images sent through the trained network to determine
which feature is the most important one [25]. This technique can be used to find discrimi-
native, class-specific features and has been used to explore trained networks in the medical
field [26,27].

Spectrograms and scalograms are two-dimensional representations that describe how
the frequency content of a signal changes over time. These representations have been
chosen as they are two standard representations that are commonly used. The goal of this
research is not to find the optimum time-frequency distributions for classification but rather
to interpret the classifier choices and relate the decisions back to the physical domain. A
spectrogram has a fixed window size that forces a constant time-frequency resolution, while
scalograms have a scaling parameter that allows the contraction and dilation of the window.
This provides a varied resolution. The fixed resolution results in spectrograms being an
adequate representation of stationary signals and a poor representation of non-stationary
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signals. The variable resolution associated with scalograms allows them to be a good
representation of non-stationary signals. A comparison between the two representations
through classification accuracy is reported within this work. This work is a continuation
and expansion of the comparison of spectrogram and scalogram representations of the
simulated backscattered responses reported in [28]. This research differs from the previous
iteration by updating the signal segmentation, the inclusion of additional simulated targets,
the usage of a convolutional neural network that has been optimized for classification,
and the examination of the trained classifier to explain its choices and relate them to the
physical domain.

A large amount of experimental sonar field data for training is challenging and costly
to obtain, but advances in feature extraction and machine learning have been creatively
mitigating this problem. However, classifiers lack interpretation to the physical domain.
This work uses simulated data that have a known ground truth and a CNN for classification.
The hyperparameters are tuned using Bayesian optimization. After training, the networks
are examined to determine the important features used by the network for classification.
This work is an examination and comparison of two common time-frequency representa-
tions, both preceding and following classification. The networks were trained to perform
classification for a variety of tasks in order to determine any dependencies between the
classification task and optimized hyperparameters. The post-classification examination is
performed using an XAI technique to reveal the target-specific features that a CNN uses for
discrimination. The key contribution of this work is in the examination of the networks
trained on common time-frequency representations and the explanation of the network
choices in the physical domain. This post hoc analysis allows for informed decisions to
be made for future classification pipelines to intuitively bias networks by forcing them to
prioritize influential features. The analysis can additionally be used to examine the failure
modes of classifiers and create mitigation strategies.

2. Materials and Methods

In this section, the simulated data generated for this research are described first,
followed by the two-dimensional feature representations and classifier. The classification
metrics used to compare the performance are reported, and finally an explainable artificial
intelligence technique is described. This research was coded and developed using MATLAB
2022a v9.12.0 with the Deep Learning Toolbox [29].

2.1. Data Generation

Elastic targets have both rigid and elastic scattering. The rigid scattering is typically
associated with specular or geometric reflections, while the latter is due to the elastic
material properties of the target. The common reflections associated with solid elastic
spheres are the specular or geometric reflection and the Rayleigh and whispering gallery
surface waves [30]. Specular reflection waves are the first component seen in a response,
followed by the Rayleigh surface waves. The whispering gallery waves are a smaller
contribution. A shell response consists of specular reflections and Lamb surface waves [31].
A Lamb wave propagates around the outside of a shell.

These responses are described by the partial-wave series and have been studied in
depth using Sommerfeld–Watson transformation [30,32] and resonant scattering theory
(RST) [33,34]. The data used throughout this research have been simulated for a monostatic
plane wave incident to elastic spheres and shells using RST. The backscattered response
for a solid sphere was generated as described in [33], and the backscattered response for a
shell was generated as described in [34].

Backscattered responses were simulated using the following materials: aluminum,
stainless steel 347, tungsten carbide, and granite. The longitudinal and shear speed of
sound in the materials examined throughout this research were taken from the Engineering
Toolbox [35] and are reproduced in Table 1. In practice, typically a probe pulse such as
a linear frequency-modulated (LFM) waveform is transmitted to the target of interest.
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The measured scattered response is then match filtered. A deconvolution may be per-
formed, but the match-filtering operation itself is approximately equivalent to a finite band
deconvolution.

Table 1. Material properties used for simulating backscattered responses. Data from the Engineering
Toolbox [35].

Material Density (kg/m3) Longitudinal (m/s) Shear (m/s)

Aluminum 2712 6420 3040
Granite 2700 4500 3500

Stainless Steel 347 7900 5790 3100
Tungsten Carbide 13,800 6860 4185

A sampled version of the continuous-time backscattered response was simulated.
The solution was sampled based on the dimensionless frequency ka. There were 4096 di-
mensionless frequencies linearly spaced between the real frequency values of 500 Hz and
15.6 kHz for each material. The RST solution resulted in the continuous time solution. Two
different fluids filled the shells: air and oil octane. The corresponding material properties
were reproduced from the Engineering Toolbox in Table 2.

Table 2. Interior material properties used for simulating backscattered responses. Data from the
Engineering Toolbox [35].

Material Density (kg/m3) Speed of Sound (m/s)

Air 1.2 343
Octane 702 1171

The thickness of the shell greatly impacts the amount of resonance in the response.
This parameter is quantified by h = (ro − ri)/ri, where ro is the outer radius and ri is the
inner radius. An example of this impact is shown in Figure 1, where Figure 1a,b shows a
thick (h > 0.1) and thin (h < 0.01) shell, respectively. There are clear and distinct resonances
in the thin shell compared with the thick shell. In Figure 1, the specular reflection is the
main component seen in the thick shell, while resonance is the main component in the
thin shell. The shell’s outside radii were set to 0.5 m, while the shell thickness was set
to 50 linearly spaced values between 0.001 and 0.901. The thickness of the shell was
varied for 200 linearly spaced thickness parameter h = (ro − ri)/ri values within the range
h = [0.001–0.901]. The radii on the solid spheres were 50 linearly spaced values between
0.4995 m and 0.0495 m, This is denoted in Table 3.

Table 3. Target properties used for simulating backscattered responses.

Geometry Interior Radius Thickness Responses
Generated

Shell Air, Octane Oil 0.5 m 0.001–0.901 400

Sphere

Aluminum,
Granite,

Stainless Steel,
or Tungsten

Carbide

0.4995–0.0495 m - 200

Independent and identically distributed (i.i.d.) complex Gaussian noise was added to
the simulated backscattered signals. Noise was added for two different signal-to-noise-ratio
(SNR) cases: 5 dB and 20 dB. The definition of the SNR in this work is SNR = 10 log10(Ps/σ)
for the signal power Ps and Gaussian standard deviation σ. A higher SNR will result in
increased classification due to less signal contamination. After the inclusion of additive
noise, the backscattered responses were normalized to the unit of energy.
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(a) Simulated thick shell response, h = 0.499 (b) Simulated thin shell response, h = 0.001

Figure 1. The normalized magnitude of simulated (a) thick and (b) thin backscattered responses for
an aluminum shell filled with octane. The specular reflection is the main component seen in the
(a) thick shell, while resonance is the main component in the (b) thin shell. The signals have been
normalized to the unit of energy, and responses have been zoomed in to the area of interest. There
was no noise added to these signals.

2.2. Signal Segmentation

The starting and stopping indices of the signal were estimated using an alternating
hypothesis: Page’s test [36]. The estimator was based on the cumulative sum of the
logarithm of the ratio of the probability distribution function (pdf) of the signal present
to the noise pdf. A brief description is presented here. Estimation was performed for
the magnitude of the data squared. In the case of the noise-only signal, this becomes
chi-squared distributed as the sum of the squared i.i.d. standard normal random variables
(NR = NI ∼ N (0, 1)) is a chi-squared distribution with two degrees of freedom:

Y = |N|2 = N2
R + N2

I ∼ χ2
2, (1)

The distribution takes the reduced form of

f0(x) =
1
2

e−x/2. (2)

When the signal is present, the distribution can be described by an i.i.d. complex
Gaussian with constant means and variances, where SR = SI ∼ N (µ, σ2). The random
variable will have a non-central chi-squared distribution with two degrees of freedom and
a non-centrality parameter δ = 2(µ/σ)2. The density function can be written as

f (x; δ) =
∞

∑
k=0

δke−δ/2xke−x/2

(k!)222k+1 . (3)

A locally optimal detector was employed as an approximation of the log-likelihood
ratio due to the infinite summation. This is a linear function of the data, as only the first
two terms of the summation are nonzero [36]. A bias was determined by using Dyson’s
method [36]. The signal was segmented using a cumulative summation of the data, which
takes the iterative form of

Tk = max[0, Tk−1 + g(x)] (4)

where T0 = 0 and g(x) is the locally optimal detector with bias. When Tk is greater than
some threshold, the signal has been detected. A similar method can be used to find the end
of the signal. Due to the cumulative summation, there is a delay associated with the start
of the signal. To mitigate loss of the start of the signal, an empirically chosen 1 ms value
was selected for the start of the signal index. Figure 2 shows an example of the segmented
signals for the granite solid, shell filled with air, and shell filled with oil.
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(a) Solid granite sphere (b) Shell filled with air

(c) Shell filled with octane oil

Figure 2. Simulated backscattered responses’ start and stop signal indices for the granite (a) sphere
with a radius of 0.499 m, (b) shell filled with air, and (c) shell filled with octane oil, with an SNR level
of 5 dB. The shells had an outside radius of 0.5 m and inside radius of 0.499 m. The simulated signal
is shown in solid blue, and the starting and stopping indices are shown in black dashed lines. Signals
have been normalized to the unit of energy.

2.3. Time-Frequency Representations

After the data generation, the backscattered responses of the targets were projected
into time-frequency representations. Two time-frequency representations were employed:
spectrograms generated from STFTs and scalograms generated from the CWT. The STFT
and CWT representations were chosen, as they are two standard methods commonly
used. The continuous-time STFT is described below to demonstrate the similarities to the
continuous wavelet transform. The STFT of a signal x(t) is defined as follows:

STFT(τ, ω) =
∫ +∞

−∞
x(t)w(t− τ)e−jωtdt (5)

where τ and ω correspond to the time and frequency, respectively, and w(t) is a windowing
function used to reduce spectral leakage. The Hamming window function of length of
50 samples was used in this application. A 90% overlap was employed with an FFT
equivalent to the next power of two of the length of the signal. Typically, this was a 2048
point FFT. The spectrogram is the squared magnitude of the STFT, or

S(τ, ω) = |STFT(τ, ω)|2. (6)

The spectrograms of the segmented backscattered responses generated from stainless
steel 347 with a 20 dB SNR are displayed in Figure 3. The spectrograms are depicted for a
shell filled with air in Figure 3a, a shell filled with oil in Figure 3b—both having an outside
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radius of 0.50 m and inside radius of 0.49 m—and a solid sphere with a radius of 0.49 m in
Figure 3c. Figure 3d shows the spectrogram for a shell with an inner radius of 0.343 m filled
with air. This inset was included to demonstrate the morphing of resonances as a function
of the target size. Notice how the resonances varied depending on the target geometry
(shell or solid), the inside material (air, octane oil, or solid), and the target size. For example,
there were distinct and localized resonances between 0 and 10 kHz for the shell filled with
air (Figure 3a), while there were complex resonances across the simulated frequency band
for the shell filled with oil (Figure 3b). When visually comparing a shell filled with air at
different thicknesses (Figure 3a,d), the resonances spread across the simulated frequency
band when the shell was thick. The thick shell spectra (Figure 3d) was most similar to the
solid sphere (Figure 3c), consisting of a strong specular reflection and wide resonances in
this case.

The CWT for the scale parameter a > 0 and translation parameter b is

CWT(a, b) =
1√
|a|

∫ +∞

−∞
x(t)ψ∗

(
t− b

a

)
dt. (7)

where the previously mentioned notation holds and ψ(·) is the wavelet that can contract
and dilate, allowing for a variable time-frequency resolution. The Morlet wavelet was
employed in this research and can be described as

ψ0(t) = π−1/4ejω0te−t2/2 (8)

for a frequency ω0 = 2π f0 and time t. The Morlet wavelet belongs to the class of analytic
wavelets due to its complex oscillation. This wavelet is sometimes referred to as a Gabor
wavelet and is a Gaussian-modulated with a plane wave [37]. The oscillation provides
frequency localization, while the Gaussian envelope provides time localization [38]. The
scalogram is the magnitude squared of the CWT:

C(a, b) = |CWT(a, b)|2. (9)

The scalograms of the segmented, backscattered responses generated from stainless
steel 347 with a 20 dB SNR are displayed in Figure 3e–h. Scalograms are depicted for a
shell filled with air in Figure 3e, a shell filled with oil in Figure 3f—both having an outside
radius of 0.50 m and inside radius of 0.49 m—and a solid sphere with a radius of 0.49 m
in Figure 3g. Figure 3h shows the scalograms for a shell with an inner radius of 0.343 m
filled with air. This inset was included to demonstrate the morphing of resonances as a
function of the target size. Notice how the resonances varied depending on the target
geometry (shell or solid), the inside material (air, octane oil, or solid), and the target size.
Similar visual patterns described when examining the spectrogram representations held
in describing the scalogram representations. The white lines on the scalograms indicate
the cone of influence (COI). Features present outside of the COI should be questioned, as
they may be caused by edge effect artifacts and boundary effects due to the wavelet being
stretched outside the observation interval.

The constant window size force spectrograms have a fixed resolution and may not
accurately capture information on non-stationary signals. The scalograms had variable
resolutions due to the scaling and translation parameter. This manifested as high-frequency
components having good time resolutions but poor frequency resolutions and vice versa.
This trade-off can be seen in Figure 3e–h, where the low-frequency component is spread
over time and high-frequency component is localized at a time. Typically, scalograms are a
more accurate representations of non-stationary signals.
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(a) Shell filled with air (b) Shell filled with oil (c) Solid sphere (d) Shell filled with air

(e) Shell filled with air (f) Shell filled with oil (g) Solid sphere (h) Shell filled with air

Figure 3. Spectrograms (a–d) and scalograms (e–h) of the segmented backscattered responses generated from stainless steel 347 with a 20 dB SNR. The white
lines on the scalograms represent the cone of influence. Spectra are depicted for a shell filled with air ((a) spectrogram and (e) scalogram), a shell filled with oil
((b) spectrogram and (f) scalogram), and a solid sphere with a radius of 0.49 m ((c) spectrogram and (g) scalogram). All shells had an outside radius of 0.50 m and
inside radius of 0.49 m. The inset (d) depicts the spectrogram, and the other inset (h) depicts the scalogram of a shell filled with air with an inside radius of 0.343 m.
Notice how the resonances vary depending on the geometry (shell vs. solid) and inside fluid used for the simulation (air vs. octane oil). The resonances also morph
as a function of the target size, as can be seen when comparing insets (a–d) and (e–h). The unit is decibels and in reference to the highest pixel intensity.



J. Mar. Sci. Eng. 2023, 11, 571 9 of 21

2.4. Multi-Class Classification

A convolutional neural network (CNN) was used for classification. Other deeper
network architectures, such as YOLO, ResNet, and iterations of them, have been used for
similar tasks (as described in [8,39,40]). However, satisfactory classification results were
achieved using the following network structure while explaining the network choices and
relating the interpretation into the physical domain. The filter size was set to 5× 5. Batch
normalization was used after each two-dimensional convolution, and a max pooling layer
with a ReLU activation function followed [41]. The max pooling decreased the output size
by a factor of two. After the last ReLU activation was a max pooling layer followed by a
dense layer with 128 neurons. Lastly, a fully connected layer with the number of neurons
equal to the number of classes and a softmax activation were included.

All data were resized to 128× 128 via bicubic interpolation along with a low-pass
anti-aliasing filter prior to training and testing using MatLab’s imresize function [29].
The data were split as 80% for training and validation and 20% for testing. A common
random seed was used. The networks were trained using the Adam optimizer with the
default parameters [42]. Early stopping was employed to combat overfitting [43]. The
early stopping strategy employed in this work was patience-based for the validation loss;
that is, if the validation loss increased across 10 training cycles, then training terminated.
The validation loss was calculated for every other training cycle. The cross-entropy loss
function was minimized. The multi-class cross-entropy loss function for the true label y
and predicted output ŷc

n at observation n for class c is defined as follows:

L(y, ŷ) = − 1
N

N

∑
n=1

C

∑
c=1

(yc
n ln ŷi

n) + (1− yc
n) ln(1− ŷc

n). (10)

The number of convolutional layers, number of filters, and the initial learning rate
were determined through Bayesian optimization by assuming a prior Gaussian process [44].
The acquisition function employed was expected to show improvement and iterated
15 times [44]. The 80% subset of training data was split into 5 cross-validation folds.
Each iteration of the Bayesian optimization was performed on the five folds. The average
loss across the five folds was minimized. This allowed for the network topology to be
optimized for the classification task while ensuring generalizability. More information on
the Bayesian optimization method employed in this research is included in Appendix A.
Bayesian optimization was chosen over random searches for hyperparameter tuning to min-
imize the network tuning time [45]. Figure 4 depicts an example of the network structure,
where N f and Nl are the number of filters and the number of layers determined through
Bayesian optimization, respectively.

Networks with the goal of classifying material types (aluminum, tungsten carbide,
stainless steel 347, or granite), target geometries (solid or shell), and the interior fluid
of the target (solid, air, or octane oil) were trained and tested. This was carried out to
determine which components of the representations were most influential in the classifier
decisions and to uncover any relations between the network structure and classification
task. Tables 4–6 show the hyperparameter search space and the optimizer results for the
networks. The hyperparameters reported in Tables 4–6 were used to generate the results
discussed.

Upon examination of the selected hyperparameters in Tables 4–6, the networks trained
on scalograms typically required fewer layers and filters. This may be due to the scalogram
representation having better discriminatory features when compared with the spectrogram
representation. The spectrogram networks have increased capacity, as the network requires
additional parameters in order to decode the spectra. A similar remark can be made for
the networks with regard to the SNR, as a lower SNR requires typically requires increased
network capacity. This is due to the network needing to filter out the noise prior to finding
discriminatory features.



J. Mar. Sci. Eng. 2023, 11, 571 10 of 21

Figure 4. A network structure example. The number of filters N f and the number of convolutional
layers Nl were determined through Bayesian optimization. Each convolutional layer was followed
by batch normalization, max pooling, and an ReLU activation function. The second-to-last layer was
a fully connected layer with 128 neurons. The last layer was a fully connected layer with a number of
neurons equal to the number of classes (four in this depiction).

Table 4. Number of convolution layers and filters and the initial learning rates (LRs) for the CNN
chosen through Bayesian optimization for classification of the geometry (sphere or shell). The
hyperparameter search space is also reported.

Spectrogram Scalogram

SNR Layers Filters LR Layers Filters LR

Search
Space [1, 4] [2, 9] [1× 10−5,

1× 10−1]
[1, 4] [2, 9] [1× 10−5,

1× 10−1]

5 dB 2 4 2.48× 10−4 1 6 7.36× 10−4

20 dB 4 9 2.01× 10−3 1 4 4.24× 10−4

Table 5. Number of convolution layers and filters and the initial learning rates (LRs) for the CNN
chosen through Bayesian optimization for classification of the interior filling (solid, air, or oil octane).
The hyperparameter search space is also reported.

Spectrogram Scalogram

SNR Layers Filters LR Layers Filters LR

Search
Space [1, 4] [2, 9] [1× 10−5,

1× 10−1]
[1, 4] [2, 9] [1× 10−5,

1× 10−1]

5 dB 4 5 5.24× 10−3 2 3 7.68× 10−3

20 dB 1 9 6.51× 10−4 1 3 9.80× 10−4

Table 6. Number of convolution layers and filters and the initial learning rates (LRs) for the CNN
chosen through Bayesian optimization for classification of the material (aluminum, granite, stainless
steel 347, or tungsten carbide). The hyperparameter search space is also reported.

Spectrogram Scalogram

SNR Layers Filters LR Layers Filters LR

Search
Space [1, 4] [2, 9] [1× 10−5,

1× 10−1]
[1, 4] [2, 9] [1× 10−5,

1× 10−1]

5 dB 4 9 9.61× 10−4 2 4 6.67× 10−4

20 dB 2 6 1.13× 10−4 2 8 9.37× 10−4
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Computations were performed in Matlab 2022a v9.12.0 with the Deep Learning Tool-
box [29] using an Intel(R) Core(TM) i9-10900K CPU with 32 GB of RAM and an NVIDIA
Quadro P1000 GPU. There were 15 iterations of the optimization process, resulting in a total
of 75 trained networks (across 5 folds) per hyperparameter search. Each optimization took
roughly 35 min to perform, and these are reported in Tables 7 and 8 for the 5 dB and 20 dB
SNRs, respectively. While the optimization times do not facilitate real-time applications,
the parameters reported within Tables 4–6 may aid future researchers by reducing their
hyperparameter search space.

Table 7. Hyperparameter optimization time for networks trained on data with 5 dB SNR.

Classification Task Spectrogram Time (min:s) Scalogram Time (min:s)

Geometry 38:11 35:47
Interior material 33:11 35:05

Material type 35:44 34:00

Table 8. Hyperparameter optimization time for networks trained on data with 20 dB SNR.

Classification Task Spectrogram Time (min:s) Scalogram Time (min:s)

Geometry 36:10 33:12
Interior material 35:41 32:29

Material type 42:05 32:39

2.5. Performance Metrics

The overall accuracy (OA) can be used to determine on average how well a classifier
is performing. It is defined as the number of correctly classified responses divided by the
total number of attempted classified responses and multiplied by 100%:

OA =
# correctly classified

# attempted classified
· 100%. (11)

Confusion matrices were used to see the incorrectly classified predictions for each
class. On one axis is the true label, while the other has the predicted label. The values
indicate the amount of responses classified at that specific instance. A classifier that is 100%
accurate will have values only on the diagonal. The confusion matrices in this work were
row-normalized so that the value depicted was a percentage of the true class label.

2.6. Gradient-Weighted Class Activation Mapping (Grad-CAM)

Selvaraju et al. developed an explainable technique: gradient-weighted class ac-
tivation mapping (Grad-CAM) [25]. Other XAI techniques, such as local interpretable
model-agnostic explanation (LIME) [46] or CNN feature map examinations [11], have been
employed to explain sonar classification choices. This work takes a similar approach in
the explanation but uses a model-specific technique to relate the classifier choices to the
physical domain. Grad-CAM falls in the general class of gradient-based techniques and
uses backpropagation on trained networks to explain network choices. Grad-CAM is a
generalization of class activation mapping (CAM), described in [47], and does not require a
specific network structure.

Following the notation in [25], Grad-CAM calculates an input relevance score by first
sending a test image through the trained network, resulting in an output score yc for class
c. The gradient of the output score ∂yc/∂Ak, with respect to the kth feature map activation
Ak of a specified convolutional layer, is then computed. Typically, the last convolutional
layer is chosen. The gradients are then global average-pooled across the channel depth,
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essentially averaging all pixels in the feature map. These averaged gradients αc
k can be

thought of as weights

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(12)

for the width and height indices i and j, respectively, with Z total pixels. The global
average-pooling is apparent through the two summations and the division of Z. The
averaged gradient weights are then multiplied by the corresponding feature activation
maps. The ReLU activation is used for rectification and ensures only positive influences are
considered [25]. The output of the ReLU function is of the same size as the convolutional
layer and is upsampled to the input image size.

Intuitively, when a gradient is large, the output score depends on this location. This is
essentially what Grad-CAM is depicting. Visualization is performed by using a heat map
to highlight class-specific features and provide a relevance value for the input pixels.

3. Results

The overall classification results for the material type, geometry, and interior fill are
reported for the different SNRs. Next, the interesting confusion matrices are examined.
Lastly, the trained classifiers are examined, using Grad-CAM to explain the network choices
and relate the informative features to the physical domain.

3.1. Overall Accuracy

The overall accuracy and standard deviation for the CNNs trained on the simulated
data to classify target geometry are in Table 9, while those for the interior material are
shown in Table 10, and those for the material type are in Table 11. The reported results
were generated by training a network using the hyperparameters listed in Tables 4–6 on the
training and validation data used for the cross-validation Bayesian optimization. Testing
was performed using the disjointed 20% data subset. The reported results are from across
10 random seeds to determine a statistical description of the network.

Table 9. The overall accuracy and standard deviation for classification of geometry of the target (solid
or shell). The largest average overall accuracy (OA) and corresponding standard deviation (Std. Dev.)
are denoted in bold.

Spectrogram Scalogram

SNR|Metric OA (%) Std. Dev. (%) OA (%) Std. Dev. (%)

5 dB 96.83 1.34 97.75 1.19
20 dB 97.75 0.68 97.91 1.93

Table 10. The overall accuracy and standard deviation for classification of the inside of the target.
The largest average overall accuracy (OA) and corresponding standard deviation (Std. Dev.) are
denoted in bold.

Spectrogram Scalogram

SNR|Metric OA (%) Std. Dev. (%) OA (%) Std. Dev. (%)

5 dB 78.50 2.82 76.67 2.18
20 dB 78.58 2.18 78.16 1.29

Typically, a higher SNR results in a higher average classification accuracy and lower
standard deviation. The scalograms tend to have a higher average classification accuracy.
However, there was no discernible trend in the corresponding standard deviations. Both
trends were expected, as the increased SNR provided a cleaner representation for the
network to classify, and the scalogram representation provided increased localization
of the robust features due to the contraction and dilation of the wavelets. There was a
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negligible difference between the two SNR classification accuracies, accounting for the
standard deviation of the random seeds. This demonstrates the CNNs’ ability to perform
noise suppression across a difference of 15 dB. In future work, this can be taken to the
extreme, and analysis across different SNR levels can be used to determine the failure
mode of the classifier. Given these results, and by leveraging the knowledge learned in the
hyperparameter optimization, while scalograms provide negligible increased classification
accuracy compared with their spectrogram counterpart, the scalogram networks typically
have fewer layers and filters, which decreases the number of learned parameters, the
complexity of the network, and the network training time.

Table 11. The overall accuracy and standard deviation for classification of material type. The largest
average overall accuracy (OA) and corresponding standard deviation (Std. Dev.) are denoted in bold.

Spectrogram Scalogram

SNR|Metric OA (%) Std. Dev. (%) OA (%) Std. Dev. (%)

5 dB 83.50 1.79 89.25 2.40
20 dB 83.50 1.91 90.91 1.32

3.2. Confusion Matrices

The confusion matrices for the highest average accuracies reported Tables 9–11 are
shown in Figures 5–7. The confusion matrices list the classification results across the
10 random seeds. The units of the confusion matrices have been row-normalized to easily
determine a percentage per class of correct or incorrect classification. For example, in
Figure 5, 3.3% of the shells were misclassified as solid spheres.

Figure 5. Confusion matrix for the CNN trained to classify geometry (shell or solid) with the
highest classification accuracy (Table 9). The network was trained using the scalogram representation
with a 20 dB SNR, resulting in a 97.91% average overall accuracy. This network consisted of one
convolutional layer with four feature maps per layer (Table 4). The blue boxes indicate correct
classification while the orange boxes indicate incorrect classification.

The highest classification accuracy occurred when the network was instructed to
train based off of the target geometry (solid or shell). The lowest accuracy occurred when
the network was instructed to discriminate between the interior materials (air, oil, or
solid). These trends were a result of the simulated shells having similar acoustic spectra,
regardless of the internal fluid, when the shells were thick. We recall that the radii of
the shells were randomly split across the training and testing dataset, as described in
Section 2.4. These classification results represent an average across the randomly separated
radii. However, the classification result may still be explained through examination of
the different feature representations. An example of this similar response can be seen in
Figure 8, where the spectrograms were generated with a thick shell (h ∼ 0.9) made from
tungsten carbide. Figure 8a was generated by using air as the internal fluid, while Figure 8b
used octane oil. There is little visual difference between the two spectra, which in turn
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confused the classifier. When the shells had a reduced thickness, as seen when comparing
the images in Figure 3a,b, the classifier was able to distinguish between the interior fluid.
The thickness where the visually similar acoustic spectra began to differ occurred sooner
in the scalogram representation. This gave the network more variability in the spectra
providing the increased accuracy when the network was trained on the scalograms. A
classifier trained to discriminate between a solid and shell will automatically group the air-
and oil octane-filled shells in a class, resulting in the increased classification accuracy seen
in Table 9.

Figure 6. Confusion matrix for the CNN trained to classify interior material (air, octane oil, or
solid) with the highest classification accuracy. The network was trained using the spectrogram
representation with a 20 dB SNR, resulting in a 78.58% average overall accuracy (Table 10). This
network consisted of one convolutional layer with nine feature maps per layer (Table 5). The blue
boxes indicate correct classification while the orange boxes indicate incorrect classification.

Figure 7. Confusion matrix for the CNN trained to classify material (aluminum, granite, stainless
steel 347, or tungsten carbide) with the highest classification accuracy. The network was trained
using the scalogram representation with a 20 dB SNR, resulting in a 90.91% average overall accuracy
(Table 11). This network consisted of two convolutional layers with eight feature maps per layer
(Table 6). The blue boxes indicate correct classification while the orange boxes indicate incorrect
classification.

3.3. Grad-CAM

Grad-CAM was used to determine what the CNN was selecting as the most influential
features for each classification task. The Grad-CAM results are presented as heat maps
that show the spatial locations of large gradients. The axes are in units of pixels and
representative of the time and frequency axes. The color bar was normalized between 0 and
1. The heat maps are accompanied by the corresponding input image. Note that the input
images are not in a decibel scale, as the networks were trained using normalized linear
units. The advantage to using Grad-CAM is the location of the class-specific influence
on the spectra can be found. These are the locations of the largest gradients. This can
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provide insight on feature extraction algorithms (i.e., intuitively bias the classifier by forcing
it to focus on informative features) and aid in classifier debugging. Examination of the
Grad-CAM heat maps on the simulated data allows relations to be drawn between the
important features and physical scattering mechanisms.

(a) Thick shell filled with air (b) Thick shell filled with oil

Figure 8. Similar spectrograms generated from tungsten carbide with a 20 dB SNR for thick shells
filled with (a) air and (b) octane oil. The similar spectra results in the interior classification network
had decreased accuracy. Units are in decibels and are in reference to the largest pixel intensity.

Grad-CAM was performed on the CNNs for the reported confusion matrices. The
resulting heat maps were visually similar to the input images for the classification of
the interior material and target geometry. This was due to the initial convolution layers
detecting semantically meaningful objects, and both networks were one convolutional layer
deep. An example of these heat maps and the corresponding test images are shown in
Figure 9. The heat maps depicted are for the correctly classified air-filled shell (Figure 9a),
octane oil-filled shell (Figure 9b), and an air-filled shell that was incorrectly classified as
an octane oil-filled shell (Figure 9c). The corresponding input test images are depicted in
Figure 9d–f, respectively. The corresponding classification scores are listed in the title of
the Grad-CAM heat maps.

The CNN depends on the first feature component, typically due to specular or geo-
metric scattering, when choosing the air class and higher-order, more complex resonances
when choosing the octane oil-filled shell class. This is evident in the comparison of the heat
maps in Figure 9a,b. Insight into the CNN model’s failure in misclassification can be gained
through examining Figure 9c. Figure 9d–f depict the corresponding input test image. This
test image was incorrectly classified as an octane oil-filled shell and had a classification
score of 0.560, which was split between the two classes. The CNN found a similar oil
structure within the input image but also relied on features external to the resonances, as is
evident from the highlighted features on the exterior of the image. To mitigate this failure
mode of the CNN, a segmentation processing step could be included in the classification
pipeline. This would likely increase the classification accuracy and decrease the training
time, since the network mainly relies on semantic clues within the image.

Figure 10 depicts the heat map for the CNN trained on spectrograms to recognize
the target geometry. The input test image was the same as the octane oil input image in
Figure 9e. A comparison between Figures 9b and 10 provides insight into the features that
are important to different classification tasks. The classifier used to discriminate between
interior materials depends on higher-order, more complex resonances (Rayleigh or Lamb
surface waves), while the classifier trained to discriminate between the target geometries
relies on the shape of the specular scattering and first resonance. This can be leveraged
when designing a classification pipeline, as the classification task must be taken into account.
If the target geometry is being classified, then the feature representation can focus on the
start of the signal and the specular reflection rather than its entirety. This provides an
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automatic dimensional reduction in the signal truncation, resulting in decreased classifier
complexity and training time.

(a) Air heatmap (b) Octane oil heatmap (c) Incorrect classification

(d) Air input (e) Octane oil input (f) Incorrect input

Figure 9. Grad-CAM heat maps for the CNN trained to classify the interior material. Correct
classification results are shown for the (a) air and (b) octane oil interior fillings. An incorrect
classification heat map (c) where an air-filled shell was incorrectly classified as an octane oil-filled
shell is also shown. Insets (d–f) depict the input test image. All units are linear and have been
normalized between 0 and 1.

Figure 10. Grad-CAM heat map for the CNN trained on spectrograms to discriminate between shell
and solid, generated from the same test image in Figure 9e.

To determine how the varying random seed impacted the classification accuracy,
Grad-CAM was performed on the CNNs trained on the scalograms with a 20 dB SNR to
classify the material type. The resulting heat maps for the first five random seeds and
the test image are shown in Figure 11. Figure 11a–e depicts the Grad-CAM heat maps for
various random seeds, and Figure 11f depicts the corresponding test image. The remaining
five seeds were omitted due to space constraints. We recall that this network consisted
of two convolutional layers with eight feature filters, meaning the network still relied on
semantically meaningful objects. In all cases, the CNN depended on the tungsten carbide
specular reflection for discrimination. The CNN was additionally using the resonances
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caused by Rayleigh or Lamb surface waves, but they were not as influential. In some cases,
the CNN relied on additional low-frequency features (Figure 11a,c), while others depended
on localized resonances (Figure 11b,d,e). An additional processing step could be included
in the classification pipeline to highlight the high-frequency resonances and force the CNN
to depend on these features, which are known from this analysis to be consistent across
random seeds and impact classification.

Throughout examination of the Grad-CAM results, in order to highlight features that
were determined to be relevant, various forms of augmentation could be used to increase
the dataset and robustness of the network. Additionally, the insight gained from the heat
maps allow recommendations to be made when designing different classifiers. For example,
if the target geometry is to be classified, then the majority of the information relevant to the
network is within the specular scattering, as seen in Figure 10. This places less relevancy
on the end of the return, and the signal detector can be adjusted to focus on the initial
return. This would automatically decrease the input dimensionality and focus the network
beforehand on the relevant features, thereby intuitively positively biasing the results and
decreasing the training time.

(a) Random seed 1 (b) Random seed 2 (c) Random seed 3

(d) Random seed 4 (e) Random seed 5 (f) Input image

Figure 11. Grad-CAM heat maps for the CNN trained to classify the target material initialized using
(a–e) random seeds 1–5, respectively. All seeds resulted in the correct classification of the (f) tungsten
carbide input image. The classification scores are listed in the titles. All units are linear and have been
normalized between 0 and 1.

4. Conclusions

Simulated backscattered responses of various materials, shapes, and sizes were gener-
ated prior to projection onto two time-frequency representations: spectrograms generated
using the short time Fourier transform and scalograms generated using the continuous
wavelet transform. Multiple convolutional neural networks were trained to classify the ma-
terial type, target geometry, and interior material of the target. Bayesian optimization was
used to determine the number of layers, number of feature maps per layer, and the initial
learning rate. This resulted in classifiers that were optimized for the specified classification
task. The trained networks were examined by using an explainable artificial intelligence
technique—gradient-weighted class activation mapping (Grad-CAM)—to determine the
post-training features used for classification. The Grad-CAM results were depicted using
heat maps, representing the spatial locations of large positive gradients.
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The scalogram representation provided a negligible increase in the average classifica-
tion accuracy over the spectrograms. The networks trained to discriminate between target
geometries resulted in the highest classification. The networks trained to discriminate the
target’s interior material had the lowest accuracy. The main feature highlighted when ex-
amining the CNNs trained to classify the interior of the material was the specular reflection,
with a small portion of the resonances being used for classification. This network contained
one convolutional layer. Typically, the initial layers of the network will lock onto spatially
important features (such as contours), while deeper layers separate out things that are not
visually apparent. The CNN used to classify the material type was two convolutional layers.
These CNNs highlighted the resonances for discrimination, but the specular component
was also still being used. The analysis performed throughout this investigation can be
leveraged when designing classification pipelines by amplifying the meaningful scattering
mechanisms and suppressing the less-informative features. Possible classifier failure mode
mitigation techniques were discussed, and recommendations for how to intuitively and
positively bias classifiers were provided.

Future work can further relate the network-determined features through first simu-
lating the modal rigid and soft residuals. The Bayesian optimization topology can have
increased classification to follow the best practices in CNN topology, such as by increasing
the number of filters with each additional convolutional layer. Additional complexities can
be included in the classification pipeline, such as coating the shell and simulating cylinders
and investigating different additive noise models at different SNRs. The latter analysis
would further investigate the impact of the SNR on the network analysis and explainability
technique. The thickness of the shell and relation to the classification results can be further
investigated. Deeper networks can be trained and examined to see if separation between
the different scattering mechanisms occurs. Lastly, the analysis of the trained networks can
be expanded. The results presented were qualitative through visual examination of the
Grad-CAM heat maps. An image similarity measurement, such as the structural similarity
index measure (SSIM) [48] or feature similarity index (FSIM) [49], could be used to quantify
intra-class features and compare them to inter-class features.
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Abbreviations
The following abbreviations are used in this manuscript:

2-D Two-dimensional
ARD Automatic relevance determination
Grad-CAM Gradient-weighted class activation mapping
CM Confusion matrix
CNN Convolution neural network
COI Cone of influence
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CWT Continuous wavelet transform
OA Overall accuracy
ReLU Rectified linear unit activation function
RST Resonant scattering theory
SNR Signal-to-noise ratio
STFT Short-time Fourier transform
i.i.d. Independent and identically distributed

Appendix A. Bayesian Optimization

Bayesian optimization seeks to find a set of globally optimal parameters x̂ that mini-
mizes an objective function f (x) across some parameter search space A of x:

x̂ = arg minx∈A f (x). (A1)

There are two main components in Bayesian optimization: (1) the surrogate function
and (2) the acquisition function. The surrogate function is used as a model of the objective
function. The objective function is the CNN. The acquisition function is used to determine
which sets of parameters should be sent through the objective function next.

In this case, the surrogate function is modeled using a Gaussian process. A Gaussian
process assumes the function can be modeled as a multivariate Gaussian distribution and
depends solely on the mean and a covariance function. The covariance function is referred
to as the kernel. MatLab’s default, the automatic relevance determination (ARD) Matern
5/2 kernel [44], was used. The surrogate function is a probabilistic model of the objective
function and is used to determine which parameters will likely result in increased accuracy.
It uses Bayes’s theorem to update a posterior distribution from a prior distribution by using
the scores from the objective function. The score of the objective function is determined by
averaging the scores across the five folds. This ensures the generalized hyperparameter
selection through cross validation.

The Gaussian process parameters are updated by using the expected improvement
plus the acquisition function. The expected improvement is calculated by taking the expec-
tation of the objective function’s improvement. There is a trade-off between exploitation
and exploration when performing the optimization. Exploitation is driven by the mean of
the model and explores new values close to the best results, while exploration is driven by
the standard deviation and tries to explore previously unseen regions.

The parameter search spaces specified in Tables 4–6 were uniformly distributed. The
learning rate was uniformly distributed over a logarithmic space. After the optimizer is
complete, the hyperparameters with the lowest classification score are chosen. A final
network is then trained using the selected hyperparameters and all the training data.
The network was tested using the disjointed subset of data selected. These classification
accuracies are reported in Tables 9–11.
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