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Abstract: In this paper, a wireless power transfer (WPT) system with a compact planar magnetic
coupler for an autonomous underwater vehicle (AUV) is proposed. A passive induction (PI) coil is
integrated into the circular transmitter (Tx) coil to build a uniform magnetic field (UMF), which can
guarantee the stable output of the WPT system under uncertain radial and axial misalignments for
AUV. Based on normalized magnetic induction intensity distribution analysis, a UMF constructing
method with a PI coil is given, aiming to eliminate the fluctuation of magnetic field intensity, and the
PI coil design principles and flow chart are obtained. The theoretical analysis shows the proposed in-
tegrated coil can effectively enhance the radial misalignment tolerance compared with a conventional
circular spiral coil. The zero-phase angle (ZPA) input condition can be achieved by adjusting the
series capacitor connected with the Tx coil in S-S compensation topology. Experimental results show
that the proposed magnetic coupler containing an integrated coil significantly improves the stability
of output power and power transfer efficiency within the possible radial and axial misalignments
compared with a conventional coupler. It was demonstrated that the output power changes less than
5.5% and the power transfer efficiency maintains at approximately 84.5% in arbitrary radial positions
within the possible working region with an axial transfer distance of 50 mm in saltwater.

Keywords: uniform magnetic field (UMF); autonomous underwater vehicle (AUV); wireless power
transmission (WPT); zero phase angle (ZPA)

1. Introduction

AUVs play an increasingly important role in the development and utilization of marine
resources, scientific exploration, and military applications. Power supply is the key problem
that restricts the long-term continuous operation of AUVs. The last decade has witnessed
rapidly growing extensive research on WPT technology; recently, WPT has been widely
used in electric vehicles, household appliances, and industrial devices [1]. Compared to
conventional energy supplement approaches for AUVs, such as battery swapping [2] and
wet-mate contact charging [3], which suffer from limited maneuverability, and insulation
and worn conductor issues, WPT technology has attracted increasing attention to becoming
a reliable and safe underwater charging method for AUV [4,5].

The magnetic coupler is the key component that determines the performance of a
WPT system, including output power, power transfer efficiency, misalignment tolerance,
and electromagnetic compatibility. Various magnetic couplers for AUVs with different
structures have been studied [6–13]. A three-phase WPT system for a lightweight AUV
was proposed in [6], which enhanced the system’s misalignment tolerance to rotational
offsets, but the axial and radial misalignments were not considered. Wu et al. [7] developed
a magnetic coupler structure with a quadruple Tx coil and crossed dipole Rx coil to prevent
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rotational and axial misalignment. Zeng et al. [8] proposed a novel hybrid transmitter
composed of conical and planar spiral coils. The experimental results showed that the
proposed WPT system’s output power changes were within 5.7%, and the power transfer
efficiency was maintained at approximately 86% in an excessive misalignment area with a
transfer distance of 2 cm. A magnetic coupler structure with a spiral tube type is adopted
in [10] to be compatible with the structure of AUV. In addition, Wang et al. [14] aimed
at proposing an omnidirectional and positioning-tolerant planar-type AUV docking and
charging platform, which has no constraints on AUV structures. However, two main short-
comings restricted their application—on the one hand, some couplers are unconsolidated
and space-consuming; furthermore, some magnetic couplers are incompatible with an
AUV’s hull, and modifications are inevitable, which have negative effects on the hydrody-
namic or pressure-resistant performance of AUVs. On the other hand, in most couplers’
design procedures, radial, axial, and rotational misalignments, which may be caused by
docking errors or ocean current impact, were not taken into consideration simultaneously.

In order to guarantee AUVs obtain a stable power supply from the WPT system under
uncertain misalignments, a UMF in a specified charging area should be formed. Some
scholars have conducted relevant research on the construction of a UMF with a planar elec-
tromagnetic coupling coil. Wang et al. proposed a method of using a multiple-antiparallel
square spiral structure transmitting coil to form a UMF [15]. In the literature [16], the
geometric parameters of the anti-parallel square spiral transmitting coil were optimized by
genetic algorithm, and the magnetic field uniformity factor was defined; the measurement
results showed that the magnetic field uniformity factor was reduced from 0.154 to 0.089
after optimization. Zhang et al. added a compensation structure to the circular array coil,
and extended the range of UMF [17]. A novel hybrid structure composed of a coil and a
spiral winding was proposed for enhancing the uniform magnetic field distribution over
the charging surface by Hui et al. [18]. A planar distributed multi-coil transmitter structure
composed of a chief coil and booster coils to stretch the uniformity of the magnetic field
was proposed in [19]. Transmitter arrays have also been proposed to build a UMF [20,21].
The above-mentioned UMF construction methods change the original coupling coil struc-
ture, resulting in variations in parameters such as self-inductance, which increases the
complexity of WPT system modeling and analysis.

This paper proposes a WPT system with a compact planar magnetic coupler for an
AUV. PI coil is incorporated into the circular Tx coil to generate a UMF, which enhances the
radial and axial misalignment tolerance. The magnetic coupler is suitable for an AUV’s
WPT system because of its compact planar structure, and modifications to the AUV’s hull
are unnecessary. Additionally, the circular magnetic coupler has inherent insensitivity
to rotational misalignments. Circuit analysis demonstrates that the addition of a PI coil
changes the input impedance of the WPT system with S-S compensation topology. The
ZPA input condition can be maintained by adjusting the value of compensation capacitor
C1, which allows the WPT system to remain with high efficiency when the load changes.
Theoretical analysis reveals that a PI coil improves the stability of output power; meanwhile,
it brings little effect to power transfer efficiencies of less than 3%. Experimental results
verify the proposed magnetic coupler’s performance in stability enhancement of output
power and power transfer efficiency under different radial and axial misalignments in
comparison with a conventional coupler. A comparison of some UMF construction methods
and the proposed magnetic coupler of this work is obtained, as shown in Table 1.
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Table 1. Comparison of some UMF construction methods.

References [15] [17] [8] [19] This Work

Magnetic
coupler

structure
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2. Magnetic Coupler Design
2.1. Discussion of Magnetic Field Distribution of Circular Coil

Suppose that the radius of a single-turn circular Tx coil is a; simultaneously, the
receiver (Rx) coil is located in the circular charging plane S at the gap of h, and the radius
of the S-plane is greater than the radius of the Rx coil, as shown in Figure 1.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 3 of 17 
 

 

Table 1. Comparison of some UMF construction methods. 

References [15] [17] [8] [19] This work 

Magnetic 
coupler 

structure 

     
Compact of mag-
netic coupler (vol-

ume) 
★★★★★ ★★★☆☆ ★★☆☆☆ ★★☆☆☆ ★★★★★ 

Misalignment 
tolerance 

★★★☆☆ ★★★★☆ ★★★★★ ★★★★☆ ★★★★☆ 

UMF construction 
effect 

★★★★☆ ★★★★☆ ★★★☆☆ ★★★★★ ★★★★☆ 

Easy to construct ★★☆☆☆ ★★☆☆☆ ★★☆☆☆ ★☆☆☆☆ ★★★★★ 

A higer “★” represents better performance on this item, ★★★★★ means best. 

2. Magnetic Coupler Design 
2.1. Discussion of Magnetic Field Distribution of Circular Coil 

Suppose that the radius of a single-turn circular Tx coil is a; simultaneously, the re-
ceiver (Rx) coil is located in the circular charging plane S at the gap of h, and the radius of 
the S-plane is greater than the radius of the Rx coil, as shown in Figure 1. 

 
Figure 1. Schematic diagram of charging plane S formed by the circular coil. 

Where θ  is the included angle between O l1


 and the X-axis. When the Rx coil 
moves arbitrarily in the S-plane, the power “picked” by the Rx coil is determined by the 
magnetic induction intensity BZ in the Z direction generated by the Tx coil [15]. According 
to Biot–Savart’s Law, assuming that the current flowing through the circular coil is I, the 
BZ generated at any point P on the S-plane can be expressed as 

2π
0

2 2 2 3/2
0

cos d
4 ( 2 cos )

2

z
I a axB

h a x ax
μ θ θ

π θ
−=

+ + −  (1)

where μ0 is the vacuum permeability. It can be seen from Equation (1) that the radius of 
the Tx coil a and the gap h determine the strength of BZ. The outer diameter of the Rx coil 
should fit the dimension of the AUV as closely as possible. Set the outer diameter of the 
Rx coil as 200 mm, when the AUV is recharged, the maximum radial misalignment is 30 

h

dl
θ
 

X

Y

Z

O1

l1

 Circular coil

 

 

Z'  

O2 Y'  

X'  

Charging plane S

P(x,y,h)

dθ 

l

l1

Figure 1. Schematic diagram of charging plane S formed by the circular coil.

Where θ is the included angle between
→

O1l and the X-axis. When the Rx coil moves
arbitrarily in the S-plane, the power “picked” by the Rx coil is determined by the magnetic
induction intensity BZ in the Z direction generated by the Tx coil [15]. According to
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Biot–Savart’s Law, assuming that the current flowing through the circular coil is I, the BZ
generated at any point P on the S-plane can be expressed as

Bz =
µ0 I
4π

2π∫
0

a2 − ax cos θ

(h2 + a2 + x2 − 2ax cos θ)3/2 dθ (1)

where µ0 is the vacuum permeability. It can be seen from Equation (1) that the radius of
the Tx coil a and the gap h determine the strength of BZ. The outer diameter of the Rx
coil should fit the dimension of the AUV as closely as possible. Set the outer diameter of
the Rx coil as 200 mm, when the AUV is recharged, the maximum radial misalignment is
30 mm, which means that the S-plane is a circular plane with a radius of 130 mm. When the
AUV drives into the underwater docking station for power replenishment, a misalignment
between the Tx coil and the Rx coil will inevitably occur due to the influence of ocean
current and docking error, which mainly includes the following three types: axial, radial,
and rotational misalignments. Since the circular coil has good resistance to rotational offset,
it will not be studied in this section.

To simplify the analysis, assume the current I flows through each circular coil as 1A,
the distribution of BZ in the S-plane at h = 50 mm and 70 mm, as shown in Figure 2.
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Figure 2. BZ distribution in the S-plane with different h. (a) h = 70 mm; (b) h = 50 mm.

Comparing the magnetic induction intensity distribution cloud Figure 2a,b, it can be
seen that when h is 50 mm, the BZ at the center of the S-plane is much smaller than the edge
part, which means that when the Rx coil is located at the center, the “picked” power will be
significantly less than at the edge. When h is selected as 70 mm, the magnetic induction



J. Mar. Sci. Eng. 2023, 11, 566 5 of 18

intensity distribution across the S-plane is more uniform, and the Rx coil is allowed to
“dock” or move to any position in the area with stable output power.

The BZ distribution produced by the circular coil is symmetrical, so the uniformity of
BZ distribution can be described by the degree of discretization of the magnetic induction
intensity at each point on line l1 with the center point in Figure 1. The deviation of BZ
distribution on line l1 is defined as

λ(x) =
BZ(x)− BZ(0)

BZ(0)
(x = 0, 1 . . . 130) (2)

Figure 3 describes the discretization of BZ distribution on line l1 when h = 50 mm and
70 mm, respectively, according to Equation (2).
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According to previous design experience [16], the area that the deviation of BZ dis-
tribution within 0.1 is specified as the UMF region and it is labeled as S1. It can be seen
from Figure 3 that when h = 70 mm, the distribution of BZ in the entire S-plane meets
the requirements of UMF, but when the Rx coil is located in the plane of h = 50 mm, the
received power will fluctuate sharply with the change of position.

2.2. Analysis of the Circular Coil Turns

When the outer diameter of the Tx coil is determined, the average radius of the coil
decreases as the turn numbers of the coil increase. In addition, the distribution of BZ
calculated by Equation (1) ignores the single-turn coil thickness, and the results may differ
from the actual value. By using COMSOL simulation software, the influence of different
circular coil turn numbers on the BZ distribution in the S-plane can be more accurately
analyzed. The maximum discretization of BZ and the ratio of UMF area to the total area of
the S-plane with h = 50 mm and h = 70 mm under different coil turn numbers are shown in
Figure 4.
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Figure 4. Influence of coil turn numbers N on BZ distribution.

As can be seen from Figure 4, the distribution of BZ and the area of the UMF region
at h = 70 mm is related to the turn numbers N of the circular coil. When N = 12, the
distribution of BZ in the entire S-plane meets the conditions of a UMF; at the same time, the
fluctuation of BZ is minimal. However, for h = 50 mm, as shown in Figure 4, by adjusting
the turn numbers of the circular coil, the area of the UMF region S1 always stays at a low
level. Some other methods need to be taken to increase the area of the UMF region when
h = 50 mm.

2.3. Constructing UMF with a PI Coil

In the WPT system shielding measures, there is a method of reactive resonant shielding,
which suppress the leakage magnetic field by passive coil [22]. Similarly, we can utilize the
method of adding a PI coil to enhance or weaken the magnetic field in a specific area, and
thus achieve the purpose of building a UMF.

The proposed magnetic coupler with an integrated PI coil is shown in Figure 5. When
the alternating magnetic field generated by the Tx coil passes through the PI coil, an induced
electromotive force is generated on the coil, and the induction coil will produce a magnetic
field with opposite direction. Using this property, combined with an induced magnetic
field distribution of circular coil, the parameters of the PI coil are designed to construct
a UMF.
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The induced voltage Vind generated on the PI coil can be expressed as

Vind = −dφ

dt
= −jωBzejωtS2 (3)

where ϕ is the magnetic flux through the plane PI coil located, and S2 is the area of the PI
coil. The induced current Iind in the PI coil can be expressed as

Iind =
Vind
Z2

=
Vind

jωL2 + R2
(4)

where L2 is the self-inductance of the PI coil and R2 is the parasitic resistance of the PI coil.
According to Equation (1), the magnetic induction intensity generated by the PI coil at any
point P on the S-plane can be calculated as

B′z =
Nµ0 Iind

4π

∫
L

dl × er

r2 (5)

Since the magnetic induction intensity satisfies the law of superposition, the magnetic
induction intensity at any point P on the S-plane is the sum of the magnetic induction
intensity generated by Tx coil and the magnetic induction intensity generated by the PI
coil, expressed as

B′′ z = B′z + Bz (6)

According to (3)–(6), when the parameters of the Tx coil are fixed, the area S2 of the PI
coil determines the magnetic induction intensity at point P. The direction of the current in
the PI coil can be determined by Lenz’s law, as shown in Figure 6.
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Figure 6. Cross-sectional view of the proposed magnetic coupler.

Since AUV needs to maintain a radial offset of at least 30 mm; in other words, the
inner diameter of the PI coil should be greater than 130 mm, assuming c = 130 mm. Figure 7
shows the magnetic induction intensity distribution on line l1 varying with the size of the
PI coil.
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The effect of PI coil on the BZ distribution can be concluded as per the following:

1. By adjusting the parameters of the PI coil, the fluctuation of magnetic induction
intensity can be reduced to extend the UMF area.

2. The deviation of BZ distribution on line l1 reduces with the increase in the outer
diameter of PI coil b. The outer diameter of the PI coil can be fixed to the inner
diameter of the Tx coil.

3. When the outer diameter of PI coil b is determined, the deviation of BZ distribution
on line l1 reduces as the inner diameter of PI coil c decreases.

The above discussion shows that the introduction of a PI coil can improve the unifor-
mity of the induced magnetic field distribution. The values of parameters b and c that meet
the requirements can be obtained through the flowchart shown in Figure 8.
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It is finally determined that b = 153 mm, which is the outermost turn of the PI coil
when wound tightly to the inside of the Tx coil, and the inner diameter c is selected as
130 mm. Figure 9 shows the magnetic induction intensity distribution on the S-plane when
adding a PI coil and using only circular coil.
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Comparing Figure 9a,b, it can be clearly seen that the magnetic induction intensity at
the center of the corresponding area of the plane has increased, and the distribution of the
magnetic induction intensity is more uniform after adding a PI coil.

From the above analysis, it can be seen that when the gap h between the Tx coil and the
Rx coil is 50 mm, the PI coil can improve the anti-offset ability of the system; the parameters
of the magnetic coupling mechanism are listed in Table 2. When h is 70 mm, the system
maintains good anti-offset ability, and there is no need to start a PI coil.

Table 2. The parameters of magnetic coupling mechanism.

Parameters Definitions Value

N Tx coil turn number 12
a Radius of Tx coil 200 mm

N2 Rx coil turn number 8
a1 Radius of Rx coil 100 mm
b Outside radius of PI coil 153 mm
c Inner radius of PI coil 130 mm

RS Radius of single-turn wire 1.95 mm

3. Circuit Design and Analysis
3.1. System Circuit Structure Design with a PI Coil

The proposed WPT system circuit structure with a PI coil is shown in Figure 10. The
DC voltage Uin is converted to AC voltage U1 through a full-bridge inverter consisting of
four MOSFETS (S1–S4). The power is transmitted from the primary side to the secondary
side through the resonant network and electromagnetic coupling mechanism. C1 and C3
are the compensation capacitors. The electromagnetic coupling mechanism consists of Tx
coil L1, Rx coil L3, and PI coil L2. M12, M13, and M23 represent the coupling between each
coil, respectively. Switch S5 controls the switching of the PI coil. The DC voltage on load
RL is obtained by the secondary side compensation network output voltage U3 through a
rectifier consisting of four DIODES (D1–D4). Moreover, the S-S compensation topology has
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the characteristics of simple structure and high efficiency, which is suitable for underwater
WPT applications with limited space.
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3.2. Circuit Modelling Analysis

To simplify the analysis, the fundamental harmonic approximation is used and all
higher-order harmonics are ignored. The simplified model of the proposed WPT system is
shown in Figure 11.
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The root mean square (RMS) value of the fundamental voltage component can be
expressed as

U1 =
2
√

2Uin
π

(7)

The equivalent load resistance RL can be calculated as [23]

R =
8
π2 RL (8)

When switch S5 is turned on, according to Kirchhoff’s voltage law, the following
equation can be obtained.U1

0
0

 =

jωL1 +
1

jωC1
jωM12 jωM13

jωM12 jωL2 jωM23
jωM13 jωM23 jωL3 +

1
jωC3

+ R

·
I1

I2
I3

 (9)

where ω represents the angular frequency of the WPT system. When the system is resonant,
the relationship between the circuit components is expressed as{

ωL1 = 1
ωC1

ωL3 = 1
ωC3

(10)
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By substituting (10) into (9), the current can be obtained as
I1 =

ωM2
23+L2Rj

ωM2
12R+Aj

U1

I2 = M12R−ωM13 M23 j
ωM2

12Rj−A
U1

I3 = L2 M13−M12 M23
M2

12R+Aj
U1

(11)

where A = ω(L2M2
13 − 2M12M13M23). When switch S5 is turned off, the PI coil no longer

functions, and the circuit structure becomes a typical S-S compensation.

3.3. Analysis of the ZPA Characteristics of the Proposed WPT System

Maintaining ZPA operating characteristics to avoid reactive power loss is critical to
improving the overall efficiency of the WPT system [24]. The S-S compensation structure
has ZPA operation characteristics [25], but when a PI coil is added, the input impedance of
the WPT system becomes Zin = U1

IL f 1
= Rin + jXin =

ω2 M2
12 M2

23R−AL2R
ω2 M4

23+L2
2R2 + j AωM2

23−ωM2
12R2L2

ω2 M4
23+L2

2R2

α(rad) = arctan Xin
Zin

(12)

where α represents the input impedance angle. The addition of a PI coil brings an imaginary
part to the input impedance, and ZPA can no longer be realized. As can be seen from (12),
the input impedance angle α is related to the angular frequency ω, equivalent load R, the
inductance of PI coil L2, and coupling between coils. M12, M23, and M13 are 1.9 µH, 0.1 µH,
and 7.51 µH, respectively. With the calculation of MATLAB, the relationship among the
input impedance angle α, load R and system frequency f is shown in Figure 12.
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Figure 12. The relationship between input impedance angle α and system frequency f, load R.

As can be seen from Figure 12, the input impedance angle α tends to decrease as the
load increases, but the decrease in α can be mitigated by increasing the system frequency
f. Considering that when the system frequency is higher than 300 kHz, the propagation
of high-frequency electromagnetic fields in seawater will produce large eddy current
losses [26], the system operating frequency is selected as 244 kHz.

Equation (12) is simplified to obtain the real and imaginary parts of the input impedance.
real(Zin) =

ω2 M2
12 M2

23R−AL2R
ω2 M4

23+L2
2R2

imag(Zin) =
AωM2

23−ωM2
12R2L2

ω2 M4
23+L2

2R2

(13)
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Since the value of M23 is very small, it can be omitted in the analysis. The imaginary
part of the input impedance can be expressed as

imag(Zin) = −
ωM2

12
L2

(14)

It means that the introduction of a PI coil brings an imaginary part to the input
impedance, which is related to M12. By adjusting the value of compensation capacitor C1,
the ZPA characteristics can be maintained in the WPT system and the relationship between
C1 and mutual inductance M12 is expressed as

jωL1 +
1

jωC1
=

jωM2
12

L2
(15)

Figure 13 shows the relationship between the input impedance angle and system
frequency f, load R after adjusting C1. It can be seen that when the operating frequency is
set to 244 kHz, the ZPA characteristics of the system will not be affected as the load changes.
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3.4. System Efficiency Analysis

This section focuses on the effect of a PI coil on the power transmission characteristics
of the WPT system. In the above analysis, the influence of the parasitic resistance of each
coil on the system is not taken into account because its value is very small. However, when
analyzing system efficiency, it cannot be ignored. In addition, in the marine environment,
the impact of eddy current losses caused by the propagation of electromagnetic fields in
seawater on WPT system efficiency also needs to be considered. When a PI coil is operating,
the power transfer efficiency η and system output power Pout can be expressed as η = |I3|2R

Peddy+|I1|2R1+|I2|2R2+|I3|2(R3+R)

Pout = |I3|2R
(16)

where R1, R2, and R3 are the parasitic resistance of L1, L2, and L3, respectively. The effect of
load changes on power transfer efficiency is shown in Figure 14. It can be seen that when
the load changes within 0~50 Ω, the power transfer efficiency of the WPT system after
adding a PI coil and without a PI coil are consistent, both increase sharply at first, and then
decrease slowly. Meanwhile, the introduction of a PI coil reduces the optimal efficiency of
the system by about 3%.
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4. Experimental Verification

An experimental platform is built to verify the proposed structure, as shown in
Figure 15. To reduce the skin and proximity effects, the Litz wires are employed for the
construction of Tx, Rx, and PI coils. They are wound by AWG 38 litz wires with 400 strands.
The structure of the Tx coil, Rx coil, and a PI coil are also shown in Figure 15. The water
tank is built to realistically simulate the marine environment, and the gap between coils is
filled by saltwater with a salinity of 4‰. The electronic load is used to simulate the load
change in the WPT system. The parameters of the proposed WPT system are listed in
Table 3.
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Table 3. The parameters of the proposed WPT system.

Parameters Definitions Value

L1 Inductance of Tx coil 94.38 µH
R1 Resistance of Tx coil 1105.1 mΩ
L2 Inductance of PI coil 1.68 µH
R2 Resistance of PI coil 124 mΩ
L3 Inductance of Rx coil 21.85 µH
R3 Resistance of Rx coil 303.99 mΩ
Lf1 Inductance of compensating inductor 8.93 µH

RLf1 Resistance of compensating inductor 155.49 mΩ
f System frequency 244 kHz

U1 Input voltage 100 V

4.1. Verification of ZPA Characteristics of the Proposed WPT System

The ZPA characteristics of the system are verified by measuring the phase angle of the
input voltage and current with an Oscilloscope. Considering that the internal resistance
of the batteries does not change much during the charging process, the resistance of the
electronic load gradually increases from 10 to 50 Ω. The experimental waveforms of input
voltage and current are shown in Figure 16.
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Figure 16. The input voltage and current waveform of the WPT system after adding a PI coil under
different loads.

As can be seen in Figure 16, the phase angle of input voltage and current does not
change with the variation in load resistance. Through the above analysis and experiment,
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it can be verified that the WPT system with the addition of a PI coil is still able to maintain
the ZPA characteristics after adjusting the compensation capacitor C1.

4.2. Verification of System Output Characteristics

The introduction of the PI coil changes the output characteristic of the WPT system,
and in order to compare the fluctuation of output power, the output power of the system is
normalized, as shown in Figure 17. In addition, the comparison test of the proposed WPT
system in air and saltwater is added to verify the function of the PI coil.
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Compared with the output power of the WPT system without a PI coil, the fluctuation
of output power decreases by 17% with the introduction of a PI coil, as can be seen in
Figure 17. The stability of the output power of the system is improved significantly with
the addition of a PI coil. A PI coil brings negative effects to the transmission efficiency,
which cause approximately a 3% decrease in power transfer efficiency compared with the
WPT system without a PI coil. Figure 18 shows the output power and efficiency of the WPT
system varying with radial misalignments when only a circular coil is used at the Tx coil
when h = 70 mm.
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Figure 18. The output power and system efficiency varying with radial misalignments when h =
70 mm.
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As can be seen from Figure 18, when h = 70 mm, the WPT system using only a circular
coil at the Tx coil can meet the fluctuation of output power within 0.08, while maintaining
the power transfer efficiency at 88.5%. Figure 19 shows the output power and efficiency of
the WPT system varying with rotational misalignments.
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As can be seen from Figure 19, the output power and efficiency of the WPT system
vary very little as the rotational degree changes. The introduction of a PI coil does not affect
the good resistance to rotational misalignments of the circular coil.

5. Discussion

A method to improve the anti-offset ability of the WPT system by using PI coil is
proposed in this paper, and the influence of PI coil on the magnetic field distribution of
circular coil is studied from the perspective of deviation analysis. However, the principle
and function of PI coil have not been deeply analyzed. In future work, the UMF construction
method with PI coil will be studied by accurate theoretical analysis and experimental
verification. Furthermore, mutual inductance will be taken into consideration in the
parameter optimization of PI coil to deal with intricate position misalignments in the
WPT system.

Although the stability of the output power of the system under different misalignments
has been improved with the introduction of a PI coil, it has a certain negative impact on the
power transfer efficiency. In the subsequent work, a design tradeoff among power transfer
efficiency, output power stability, and coils’ geometric layout will be investigated.

6. Conclusions

A WPT system with circular coils and a PI coil for an autonomous underwater vehicle
is proposed in this paper. A PI coil is introduced to enhance or weaken the magnetic field
in a specific area and build a UMF in a WPT system. The theoretical analysis shows that
the proposed magnetic coupler can effectively eliminate the deviation of magnetic field
distribution in comparison with traditional circular spiral coils. Experimental results show
that the addition of a PI coil significantly improves the stability of the system’s output
power and power transfer efficiency. The WPT system’s output power changes within
5.5% and the power transfer efficiency maintains at approximately 84.5% in arbitrary radial
positions with an axial distance of 50 mm in saltwater. Meanwhile, compared to the WPT
system without a PI coil, the fluctuation of output power is reduced by 17%.
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