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Abstract: The possibility of controlling localized fields in multimode shallow water waveguides
based on the principle of interference invariance was studied. Within the framework of the numer-
ical experiments in a wide frequency range of 100–350 Hz and range intervals of 10–100 km, the
possibilities of focusing the sound field by wavefront reversal and controlling of the focusing of the
focal spot by frequency tuning in shallow water waveguides was analyzed. The focal spot scanning
was carried out by frequency tuning with a fixed distribution of the sound field at receiving and
transmitting vertical antenna apertures. A comparative analysis of the features of focusing and focal
spot control for summer and winter stratification of the water layer was carried out. It is shown that
the parameters of the focal spot during frequency tuning were more stable in the winter waveguide.
It is demonstrated that the sound frequency tuning had a piecewise continuous character and was
carried out on a domain of one continuous track and jump-passing on the other track in accordance
with the waveguide interference fringes in the range–frequency domain.

Keywords: shallow water; sound field; modes interference; field focusing; focusing control

1. Introduction

The problem of the localization of the field at a given point of a regular ocean waveg-
uide based on the principle of phase conjugation (wavefront reversal (WFR)) was apparently
first discussed in [1,2]. The WFR spatial focusing consists of recording the sound field from
a distant probe source by a receiving and transmitting vertical antenna (RTA), reversing
the recording signals by phase conjugation and propagating the reversed signal back in
the ocean waveguide. As a result, the sound field is spatially focused by WFR at the probe
source location.

The studies of WFR in ocean waveguides were developed in [3–16]. In [3], the behav-
ior of acoustic phase-conjugate arrays was illustrated in several examples, some highly
idealized and some more realistic. The effects of apertures size and inhomogeneities in
the propagation medium were treated for both the near-field and far-field regions. It was
concluded that phase-conjugate arrays offer an attractive approach to some long-standing
problems in underwater acoustics. In [4], the theoretical narrow-band performance of
acoustic phase-conjugate arrays in the presence of static and dynamic random media was
presented. For a static random medium, analytical formulas were derived for the mean
focus field of a Gaussian-shaded volumetric phase-conjugate array. In [5,6], the temporal
and spatial focusing properties of time-reversal mirrors were studied in a waveguide. The
width of the focal spot and the spatial and temporal sidelobe levels were experimentally
and numerically analyzed with respect to the characteristics of the waveguide. In [7], an
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experiment conducted in the Mediterranean Sea in April 1996 demonstrated that a time-
reversal mirror (or phase conjugate array) can be implemented to spatially and temporally
refocus an incident acoustic field back to its origin. In [8], the waveguide time-reversal
mirror technique was extended to refocus at ranges other than that of the probe source.
This procedure was based on the acoustic-field-invariant property in the coordinates of fre-
quency and range in an oceanic waveguide. In [9], an example of active focusing within the
waveguide using the first invariant of the time-reversal operator was presented, showing
the enhanced focusing capability. Furthermore, the localization of the scatterers in the water
column was obtained using a range-dependent acoustic model. In [10], a time-reversal
mirror refocused back at the original probe source position. The goal was to refocus at
different positions without model-based calculations. In [11], a method was introduced
for using a pair of RTAs to produce time-reversal focusing fields at any location in a range-
independent shallow ocean waveguide. In [13], the problems of the structure formation of
the acoustic field in multimode waveguides were considered in more detail. In [14], the
control of localized fields in multimode waveguides on the basis of interference invariance
was proposed. The efficiency of sound field focusing and scanning for long ranges and
low frequencies was analyzed in [15]. Reverberation control by sound field focusing in a
shallow water waveguide was considered in [16].

The practical needs of the remote sensing of the inhomogeneities of the oceanic
environment lead to the task of controlling the focusing (localization) of sound fields in
planar multimode shallow water waveguides. The application of the traditional approach to
scanning the ocean with a focal spot at range and depth, combined with the rearrangement
of the field distribution at the aperture, leads to a considerable complication and an increase
in the cost of large-scale experiments. This situation forces us to investigate and test
fundamentally new approaches to this problem that are realistic from an experimental
point of view. The principle of interference invariance, for example, fulfills this goal [17–21].
This principle is based on the idea that the phase changes of a group of similar modes
caused by variations in the observation conditions can be compensated by shifting the
radiation frequency. The theory of interference invariance was constructed and confirmed
by numerous experiments with respect to a point source. Its generalization to the case of
an extended vertical antenna, where the same type of mode groups is excited differently at
different horizons, is not obvious and deserves a detailed study. In this paper, which is a
further development of the ideas of [17–21], the results of the numerical simulation of the
control of localized wavefields by adjusting the radiation frequency without changing the
distribution of the initial field along the aperture are presented.

The aim of the paper was to present the results of a study of the possibility and
effectiveness of focusing control based on WFR by frequency tuning without changing the
distribution of the reversed field at the RTA. The focal spot controlling at long distances
from the RTA (up to 100 km) was analyzed. As is known, low-frequency sound waves
propagate over long distances. The low-frequency sound field (100–300 Hz) was considered
in our paper. The focal spot controlling method was based on waveguide dispersion, which
makes it possible to equalize changes in the phase modes by changing the frequency of
radiation. The paper consists of five sections. Section 1 is the Introduction. In Section 2,
the general principles of focusing the sound field based on the WFR are considered. The
parameters of the focal spots that are used to characterize the quality of the localization of
the wave field are determined. The results of a comparative analysis of the localization of
the sound field in the summer waveguide and winter waveguide are presented. In Section
3, the comparative analysis structure of the interferogram and the hologram of the sound
field in the vicinity of the focal spot in the summer waveguide and winter waveguide is
considered. In Section 4, the possibility of scanning a focal spot by frequency tuning is
analyzed. The nature of the radiation frequency adjustment is established. The effect of the
spatial repeatability of focal spots is analyzed. Section 5 gives the conclusion.
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2. Sound Field Focusing Parameters in Shallow Water Waveguide

Let us consider an oceanic waveguide in a Cartesian coordinate system (r, z) as a
layer of water bounded in depth by the sea surface (z = 0) and the flat bottom surface
(z = H). The oceanic waveguide model and problem geometry are shown in Figure 1. The
depth-dependent refractive index and density of the water layer are n(z) and ρ(z). The
constant refractive index and density of the bottom are nb (1 + iα) and ρb. The parameter α
is determined by the absorption properties of the bottom.
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Figure 1. Sound field focusing by wavefront reversal in shallow water.

The receiving and transmitting antenna (RTA) is located at the coordinate origin (r = 0)
(see Figure 1). It consists of non-directional point receiving and transmitting elements
that are equidistant at depths zi = (i− 1)dA, (i = 1, 2, . . . , NA), where dA is the antenna
element spacing and NA is the number of antenna elements. The upper element is located
on the surface, z1 = 0, and the lower element of the antenna is on the bottom, zNA = H. It
was assumed that the point monochromatic probe source is located in the reference point
(RP) of the field focus Q(r0, z0).

Let us describe the distribution of the sources in the case of focusing the array field on
the RP Q0. We represent the vertical field distribution with frequency f0 at the coordinate
origin generated by a point source at RP Q0 in terms of a finite sum of normal modes of a
discrete spectrum:

w0(0, z) =
M

∑
m=1

wm(0, z), (1)

where

wm(0, z) =
√

ρ0c0
ψm(r0, z0)ψm(0, z)√

qm( f0)r0
exp

( iπ
4

)
exp

[
iqm( f0)r0

]
. (2)

Here, ρ0 = ρ(r0, z0) and c0 = c(r0, z0) are the water density and the sound speed at distance
r0 and depth z0, ψm(r, z) and qm(r) are the eigenfunctions and the propagation factor of the
m-th mode, while M is the number of propagating modes. In Equation (2), the power of
the source is assumed to be equal to one. The principle of phase conjugation assumes that
the sound field radiated from the i-th element of the antenna array is phase conjugate to
the received sound field w0(0, zi), Equation (1), at the i-th element point, i.e., the radiated
sound field is

Wi = η0 |w0(0, zi)|2 W0. (3)

In the absence of interactions between the array elements, the expression for the propor-
tionality coefficient η0 can be obtained from the normalization condition ∑I

i=1 Wi = W0
given by Equation (3) in the form:

η0 =
[ I

∑
i=1
|w0(0, zi)|2

]−1
. (4)
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Such a phase distribution of sources produces a conjugate field, i.e., a field converging
to the RP Q0. Let us sum up the fields of the point sources. In this case, the radiation field
of the array u(r, z) can be reduced to the following form using Equations (3) and (4):

u(r, z) =
M

∑
m=1

um(r, z), (5)

where

um(r, z) = am
ψm(r, z)
√

qmr
exp

[
iqmr

]
, (6)

with

am =
√

η0W0 exp
( iπ

4

) NA

∑
i=1

√
ρici w∗0(0, zi)ψm(0, zi). (7)

The focusing of the field by wavefront reversal (WFR) at frequency f0 at the reference
point is as follows. The field G(r0, 0; z0, zi) generated by the probe source is registered at
the RTA at frequency f0. A source distribution is generated at the RTA aperture that is
phase-conjugate with the received field KG∗(0, r0; zi, z0). The coefficient is then assumed
to be K = 1. Such a distribution of the field at the aperture of the RTA excites an inverted
wave localized at the point Q(r0, z0):

Ψ(r, z, f ) =
NA

∑
i=1

G∗(0, r; zi, z; f ) G(r0, 0; z0, zi; f0). (8)

The complex sound pressure of RP, Q(r0, z0) in points of RTA elements, zi = (i− 1)dA,
(i = 1, 2, . . . , NA), can be written as follows:

G(r0, 0; z0, zi; f0) =
i e−iπ/4

ρ(z0)
√

8π

M

∑
m=1

ψm(z0, f0)ψm(zi, f0) exp[iqm( f0)r0]√
qm( f0)r0

. (9)

Thus,

G(0, r; zi, z; f ) =
i e−iπ/4

ρ(zi)
√

8π

M

∑
m=1

ψm(zi, f )ψm(z, f ) exp[iqm( f )r]√
qm( f )r

. (10)

Let us now consider the parameters of sound field focusing. The quality of the
localization of the field is determined by the focusing factor g, the bandwidth ∆ f , and the
geometrical dimensions of the focal peak: horizontally ∆r and vertically ∆z (see Figure 2).
The focusing factor characterizes the excess of the mean (background) level |Ψ| near the
focal spot level at frequency f0:

g( f ) =
|Ψ(r0, z0, f )|
|Ψ|

. (11)

The magnitude of the focusing factor characterizes the contrast of the focal spot in
relation to the sound field. The value of the average level of the sound field is determined
by the neighborhood in the plane of the waveguide:

|Ψ| = 1
2∆r H

∫ r0+∆r

r0−∆r

∫ H

0
|Ψ(r, z, f0)| dzdr. (12)

The width of the band and the geometrical dimensions of the focal spot characterizing
its blur are determined by a fixed level from the maximum value of the field near the
localization point. Another parameter of the sound field focusing is δz(r), the absolute
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value of the difference between z0 (the depth of the reference point Q) and z′0 (the depth of
the interference maximum nearest Q):

δz = |z0 − z′0|. (13)
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Figure 2. The sound field focal point structure and its parameters in a shallow water waveguide. The
three plots show: (a) range–depth domain; (b) frequency–range domain; (c) range–frequency domain.

Let us consider the characteristics of field focusing by WFR in a shallow water waveguide.
We considered the influence of water layer stratification and absorption at the waveguide
bottom on the quality of sound field focusing for different ranges and depths of the localization
point Q and for different sound frequencies. As an example, we considered a shallow water
waveguide with parameters corresponding to the experiments of JUSREX (1992) [22] and
SWARM (1995) [23]. The water stratifications of these experiments are shown in Figure 3.
Figure 3a corresponds to JUSREX (1992). Figure 3b corresponds to SWARM (1995). Curve 1 in
Figure 2 is the water stratification in the winter season—winter waveguide (WW). Curve 2 in
Figure 2 is the water stratification in the summer season—summer waveguide (SW). The water
layer depth is H = 72 m. Bottom parameters: cb = 1700 m/s, ρb = 1.8 g/cm3, αb = 0.02. RTA
parameters: dA = 3 m, NA = 25. Sound radiation frequencies: f1 = 150 Hz, f2 = 300 Hz.
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(a) (b)

Figure 3. Sound speed profile c(z). (a) JUSREX (1992) experiment [22]; (b) SWARM’95 experiment
(1995) [23]. Curve 1—winter waveguide (WW). Curve 2—summer waveguide (SW).

Let us consider the following reference points: Qij(ri, zj), where r1 = 10 km, r2 = 50 km,
r3 = 100 km, z1 = 10 m, z2 = 35 m, and z3 = 60 m. The results of the numerical modeling
for the reference points Qij are shown in Figures 4–8. Figures 4 and 5 show the bright-
ness patterns of the normalized sound field |Ψ(r, z)| in the vicinity of the localization point
Qi1(ri, z1 = 10 m) for the WW and SW at different distances (r1 = 10 km, r2 = 50 km,
r3 = 100 km) from the RTA. Figure 4 corresponds to f1 = 150 Hz and Figure 5 to f2 = 300 Hz.

(1)

(2)

(a) (b) (c)

Figure 4. Normalized sound field distribution near focal point |Ψ(r, z)| at a frequency of f1 = 150 Hz.
(1) SWARM’95 (WW). (2) SWARM’95 (SW). (a) Q(r1 = 10 km, z1 = 10m); (b) Q(r2 = 50 km, z2 = 10 m);
(c) Q(r3 = 100 km, z3 = 10 m).
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(1)

(2)

(a) (b) (c)

Figure 5. Normalized sound field distribution near focal point |Ψ(r, z)| at a frequency of f1 = 300 Hz.
(1) SWARM’95 (WW). (2) SWARM’95 (SW). (a) Q(r1 = 10 km, z1 = 10 m); (b) Q(r2 = 50 km, z2 = 10 m);
(c) Q(r3 = 100 km, z3 = 10 m).

As can be seen from Figures 4 and 5, as the distance from the localization point of the
field Q(r0, z0) increases, the longitudinal and transverse dimensions of the focal spot increase.
For example, for the SW at a distance of r1 = 10 km at a frequency of f1 = 150 Hz, the
dimensions of the focal spot are ∆z = 7.7 m and ∆r = 80 m. For a frequency of f2 = 300 Hz:
∆z = 3.9 m and ∆r = 30 m. For a distance of r3 = 100 km and a frequency of f1 = 150 Hz, the
dimensions of the focal spot are ∆z = 16.4 m and ∆r = 224 m. For a frequency of f2 = 300 Hz:
∆z = 9.6 m and ∆r = 126 m.

A similar behavior of the focal spot parameters was also observed for the WW. This
effect is explained by the manifestation of bottom absorption, by which, with increasing dis-
tance, the fraction of modes with high numbers, responsible for the small-scale structure of
the field, decreases. As a result, the spatial distribution of the field in the localization region
becomes smoother with increasing distance. This, in turn, leads to a decrease in the contrast
of the focal spot, i.e., a decrease in the focus factor. For an SW at a distance of r1 = 10 km
at a frequency of f1 = 150 Hz, g = 5.11, and at a frequency of f2 = 300 Hz, g = 8.73. At
a distance of r3 = 100 km at a frequency of f1 = 150 Hz, g = 2.47, and at a frequency of
f2 = 300 Hz, g = 4.14.

Figure 6 shows the dependence of the focusing factor g(r) (a) and the horizontal size
∆r(r) of the focal spot (b) on the distance to the localization point. The results are related
to the SW. Note that such a characteristic decrease of the focusing factor and an increase
of the transverse dimension ∆r(r) is practically independent of the depth of the focusing
point and the channel stratification.

Figure 7 shows the dependence of the longitudinal size ∆z(r) of the focal spot on the
distance to the localization point. Figure 7a corresponds to the WW and Figure 7b to the SW.
As can be seen, faster growth is observed in the WW than in the SW. This is explained by the
less uniform depth distribution of the modes in the waveguide with summer stratification.

In a shallow water waveguide, with the increase of the geometrical dimensions of the
focal spot ∆r, ∆z and with the decrease of the focusing factor g, another effect was observed.
It consists of the displacement of the focal spot from the position of the localization point
in depth. To illustrate this effect, Figure 8 shows the dependence δz(r) on the absolute
value of the difference between z0 (the depth of RP Q) and z′0 (the depth of the interference
maximum closest to Q). As can be seen, the focal spot is most displaced from the RP
position near the free surface of the sound channel at frequencies of f1 = 150 Hz and
f2 = 300 Hz: Q01(r0, z0 = 10 m).

Moreover, in the sound channel with summer stratification, this effect is the most
pronounced. At a distance of 100 km for a frequency of f1 = 150 Hz, the shift of the focal
spot from Q(r0, z0 = 10 m) in the SW is ∆z = 27 m. This is approximately twice as much
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as compared to the WW, in which ∆z = 14 m. At the same time, at a high frequency
f2 = 300 Hz, the displacement does not exceed two meters in the WW for all considered
depths. This situation persists over the entire distance range considered, from 10 km to
100 km. A similar situation was also observed in the SW for localization points below the
thermocline, but for Q(r0, z0 = 10 m), it increases abruptly to the value of ∆z = 17 m at a
distance of 100 km. Such behavior is explained by the manifestation of bottom absorption,
by which, with increasing distance, the fraction of high modes decreases. As is known, the
high modes form the focal spot near the surface in the SW.

(a) (b)

Figure 6. Distance dependence of focusing factor g (a); longitudinal size ∆r (b) of the focal spot. SW,
Q(r, z = 35 m).

(a) (b)

Figure 7. Dependence of the transverse size of the focal spot ∆z on the distance for the observation
point Q(r, z = 35 m): (a) WW; (b) SW.

(1)

(2)

(a) (b)

Figure 8. The dependence of the displacement of the focal spot δz on the distance: (a) f1 = 150 Hz,
(b) f2 = 300 Hz. (1) WW; (2) SW. Curve 1—Q(r, z = 10 m); Curve 2—Q(r, z = 35 m); Curve
3—Q(r, z = 60 m).
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3. Interferogram and Hologram of the Sound Field in the Focusing Point

The intensity of a field of frequency ω at a horizontal distance r from the source can
be represented as the sum of propagating interacting modes:

I(r, ω) = p(r, ω)p∗(r, ω), (14)

where
p(r, ω) = ∑

n
Cn(r), exp

[
i
∫ r

0
qn(ω, r′) dr′

]
.

Here, Cn is the mode amplitude and qn is the horizontal wavenumber of the n− th
mode. The value β determined by the slope angle of the interference lines ϑ0 near the point
(ω0, r0) in the range–frequency coordinates has the following form [18]:

β =
∆ω/ω0

∆r/r0
= (r0/ω0)tg ϑ0 = − r0

ω0

∂I(r0, ω0)/∂r
∂I(r0, ω0)/∂ω

. (15)

Here, ∆ω = ω − ω0 and ∆r = r − r0 are the frequency and distance increments
corresponding to the shift of the considered field extremum on the distance–frequency
plane. The value β is called the waveguide interference invariant (II) of the sound field.

3.1. Differential Approach

Most work examining various aspects of β uses the definition of β in terms of a
differential approach. As is well known, the conditions of sound propagation in the
ocean [18,19] are such that a local interference structure that is resistant to changes in
propagation conditions is effectively formed by a small number of constructively interfering
modes of the same type. Assuming that the amplitude of the modes is a slower function of
their arguments than the phase, one can obtain an expression for the magnitude [18,19]:

β0 = βm(ω0) = −
[

cgm(ω0)

cpm(ω0)

]2 dcpm(ω0)

dcgm(ω0)
, (16)

where cpm = ω/qm and cgm = dω/dqm are the phase and group velocities of the reference
m-th mode, in the vicinity of which the modes are in phase. As follows from Equation (16),
the value thus-determined depends on the number of reference modes m. It should be
noted that Equation (16) makes it possible, knowing II, to determine the number of m-th
mode, which plays a crucial role in the formation of II.

As an example, consider a typical water layer stratification observed in the shelf region
of the ocean—WW and SW (see Figure 3). Figure 9 shows the II value dependencies (βm)
on frequency f calculated using Equation (16) for the stratifications shown in Figure 3.
From Figure 9, it can be seen that for the WW and SW, the II value βm of the first mode is
negative and approximately equal, β1 ≈ −1. For the WW, all modes (m = 3− 12) have
almost the same value, βm ≈ 1. The value β2 ≈ 0.7 slightly deviates from this value of 1. In
the behavior of βm for the SW (Figure 9(1)), there is a clear dependence on the number m.
For the group of bottom surface modes (6–12), the behavior of βm is similar to the behavior
in the WW (βm ≈ 1). These bottom surface modes are not very sensitive to the expression
of the type of sound speed profile. There is a significant increase in the value of βm for the
bottom modes in the SW compared to the corresponding modes in the WW (β2 ≈ 1.75,
β3 ≈ 2.5, β4 ≈ 3.0). As the frequency increases, the mode number m = 5, which lies at
the boundary between the bottom and bottom surface modes, begins to change from one
group of modes to another. At the same time, the value βm starts to increase. At a certain
frequency, it assumes a maximum value and then falls. This behavior of the II modal
value βm is related to the transformation of the mode in the SW with increasing frequency.
The difference in the behavior of the II modal values βm should also manifest itself in the
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different slope of the fringes of the interference structure in the WW and SW. We analyzed
this difference in the framework of the integral (spectral) approach [24–28].

(1)

(2)

(a) (b)

Figure 9. Dependence of value βm on frequency f at different mode numbers: (a) JUSREX (1992);
(b) SWARM (1995); (1) SW; (2) WW.

3.2. Integral Approach

We considered the sound field intensity distribution u(r, f ) (interferogram)
Equation (14) in the range–frequency domain (r, f ) in the window r0 − ∆r ≤ r ≤ r0 + ∆r,
f0 − ∆ f ≤ f ≤ f0 + ∆ f :

u(r, f ) = I(r, f )− I(r, f ), (17)

where I(r, f )—sound field intensity Equation (14). Here, I(r, f ) denotes the smoothing
over the range–frequency window r0 − ∆r ≤ r ≤ r0 + ∆r, f0 − ∆ f ≤ f ≤ f0 + ∆ f . We
supposed that u(r, f ) = 0 outside of this window. Let us consider a hologram of the sound
field ũ(κ, τ). The hologram is a result of the two-dimensional Fourier transform (2D-FT)
to the interferogram u(r, f ) (Equation (17)) in the range–frequency domain (r, f ). As an
example, the interferogram u(r, f ) and the hologram ũ(κ, τ) for the SWARM (1995) winter
and summer waveguides are presented in Figure 10. Within the framework of the integral
approach, the angular distribution Φ(β) of the hologram ũ(κ, τ) is analyzed.

Φ(β) =
∫ ∞

0
|ũ(ρ cos ϑ, ρ sin ϑ)|2ρ dρ, (18)

where κ = ρ sin ϑ; τ = ρ cos ϑ, (ρ, ϑ)—polar coordinates in the (κ, τ) domain;
β = (r0/ω0)tgϑ.

The maximum Φ(β) falls at the value ϑ = ϑ0 corresponding to the β0-II value. The
width ∆β of the function Φ(β) (Figure 11) determines the error in specifying the position of
the maximum of the function Φ(β), i.e., the “blurring” of the direction of observation of
the interference fringe. The significance ∆β increases as the number δl of constructively
interfering modes decreases. The next width ∆β was evaluated at the level 0.5Φ(β0).
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(1)

(2)

(a) (b)

Figure 10. Normalized interferogram (1) and normalized hologram (2) at reference frequency f = 150 Hz:
(a) SWARM (1995) WW; (b) SWARM (1995) SW;

Figure 11. The sound field focal point parameters: width ∆β of the (normalized) function Φ(β).

The width ∆β in the first approximation is equal to

∆β =

√
Φ(β)

d2Φ(β)/d2β

∣∣∣∣
β=β0

. (19)

The width value ∆β (Equation (19)) describes the stability of the interference structure
of the sound field in the shallow water waveguide. While the width value ∆β is insignificant,
the interference structure of the sound field is stable. While the width value ∆β becomes
more significant, the interference structure of the sound field loses stability. Thus, the value
∆β can be considered as a measure of the stability of the interference structure of the sound
field as a function of distance and frequency variations. The increase in the width value ∆β
is due to two factors. The first is a decrease in the contribution of the high modes (mode
attenuation) in the structure of the sound field. The second factor is a decrease in the length
of the interference fringes in which the phases of the field modes are preserved.

The results of the analysis of the interference structure in the framework of the integral
approach are shown in Figures 12–14. These figures show the results of computing the
distribution of the normalized dependence Φ̂(β) = Φ(β)/ max[Φ(β)]. Figure 12 corresponds
to the WW. Figure 13 corresponds to the SW. Numerical estimates of the values β0j and ∆β j
corresponding to the dependencies Φ(β) in Figures 12 and 13 are given in Tables 1 and 2,
respectively. The dependencies of the quantities β0j(r) and ∆β j(r) on the distance are shown
in Figure 14.

Let us consider the results for the WW. The value β0 for the WW is practically inde-
pendent of the frequency range and distance. It remains close to β0j ≈ 1 throughout the
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considered range. The value ∆β j increases with increasing distance. This effect is explained by
the “extinction” of modes with high numbers responsible for the small-scale structure of the
distribution u(r, f ). This leads to an increase in the contribution of modes with low numbers
to the field structure responsible for the large-scale structure of the distribution u(r, f ). At
short distances (∼10 km), the magnitude ∆β j increases slightly with increasing frequency (see
Figure 10(2) and Table 1). Already at a distance (∼50 km), the frequency dependence changes.
This is due to the fact that the mode structure shows a faster “depletion” at 100 Hz than at
300 Hz. As a result, at a distance ≥50 km, the width ∆β j decreases with increasing frequency.

The results corresponding to the SW (Figure 13) demonstrate the complexity of the
interference structure of the sound field compared to the WW. In the addition Φ(β), several
maxima are observed, resulting from the superposition of interference fringes with different
tilt angles. These fringes correspond to different groups of modes.

(1)

(2)

(3)

(a) (b) (c)

Figure 12. The dependence of the normalized function Φ̂ from parameter β for the SWARM
(1995) WW in the neighborhood of distances: (a) r0 = 10 km; (b) r0 = 50 km; (c) r0 = 100 km;
(1) ∆ f1 = (150–170) Hz; (2) ∆ f2 = (250–270) Hz; (3) ∆ f3 = (350–370) Hz.

Table 1. Values β0j and ∆β j corresponding to the dependencies Φ(β) in Figure 12.

(a) (b) (c)

(1) β01 ≈ 0.97,
∆β01 ≈ 0.15

β01 ≈ 1.03,
∆β01 ≈ 0.73

β01 ≈ 1.01,
∆β01 ≈ 0.91

(2) β02 ≈ 0.99,
∆β02 ≈ 0.25

β02 ≈ 0.98,
∆β02 ≈ 0.3

β02 ≈ 1.04,
∆β02 ≈ 0.84

(3) β03 ≈ 0.97,
∆β03 ≈ 0.23

β03 ≈ 1.01,
∆β03 ≈ 0.24

β03 ≈ 1.03,
∆β03 ≈ 0.52
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(1)

(2)

(3)

(a) (b) (c)

Figure 13. The dependence of the normalized function Φ̂ from parameter β for the SWARM (1995) SW
in the neighborhood of distances: (a) r0 = 10 km; (b) r0 = 50 km; (c) r0 = 100 km; (1) ∆ f1 = (150–170) Hz;
(2) ∆ f2 = (250–270) Hz; (3) ∆ f3 = (350–370) Hz.

Table 2. Values β0j and ∆β j corresponding to the dependencies Φ(β) in Figure 13.

(a) (b) (c)

(1) β01 ≈ 0.98,
∆β01 ≈ 0.25

β01 ≈ 2.03,
∆β01 ≈ 1.97

β01 ≈ 2.50,
∆β01 ≈ 2.02

(2) β02 ≈ 1.18,
∆β02 ≈ 0.4

β02 ≈ 1.85,
∆β02 ≈ 1.73

β02 ≈ 2.47,
∆β02 ≈ 1.88

(3) β03 ≈ 0.92,
∆β03 ≈ 0.4

β03 ≈ 2.15,
∆β03 ≈ 2.43

β03 ≈ 2.36,
∆β03 ≈ 2.07

At short distances from the source (∼10 km), the bottom surface modes play a crucial
role in the formation of the mode structure of the sound field. As a consequence, at short
distances, the quantity β0j ≈ 1 over the entire frequency range. As the distance from
the source increases, the contribution of the bottom surface modes decreases significantly
and the contribution of the bottom modes increases. As a result, at a distance (∼50 km),
the II value β0j ≈ 2 increases. At such distances, the function Φ(β) exhibits, in addition
to the main maximum, secondary maxima corresponding to different groups of modes.
This is particularly pronounced at higher frequencies (Figure 13(3b)). Over long distances
(∼100 km), the sound field is formed only by bottom modes. This leads to an even stronger
increase in the magnitude of II: β0j ≈ 2.5. In this case, the side maxima of the dependencies
Φ(β) corresponding to the extinct mode groups disappear. After the distribution u(r, f ),
they acquire a spotted structure. In this case, the tilt angle of the interference fringes ϑ0 is
larger in the SW than in the WW. The value ∆β j increases with increasing distance. As in
the WW, this is due to the “extinction” of modes with high numbers. In the SW, a certain
range of distances is observed where ∆β j increases sharply. For example, for the frequency
range ∆ f3 = (350–370) Hz, at a distance ∼50 km, the width reaches ∆β3 ≈ 2.4. This is due
to the fact that, at such distances, the bottom modes and the bottom surface modes make
approximately the same contribution to the formation of the sound field. As the distance is
further increased, the contribution of the bottom modes becomes dominant. As a result, the
width of the function Φ(β) decreases to the value ∆β j ≈ 2. At short distances (∼10 km),
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the magnitude ∆β j increases more with increasing frequency than in the WW. At longer
distances (≥50 km), the width ∆β j decreases with increasing frequency.

The above conclusions were confirmed by the dependence graphs β0j and ∆β j from
the distance shown in Figure 14 for different frequency ranges.

(a)

(b)

(c)

(1) (2)

Figure 14. Value dependence β0j and ∆βj from distance r: (a) ∆ f1 = (150–170) Hz; (b) ∆ f2 = (250–270) Hz;
(c) ∆ f3 = (350–370) Hz. Curve 1—WW. Curve 2—SW.

4. Sound Field Focusing Control by Frequency Tuning

In this section, the results of the work [14] are further developed and the efficiency of
controlling the field focusing by frequency tuning in a regular waveguide with different
types of water layer stratification (WW and SW) is investigated.

The sound field is localized by the RTA field at frequency f0 at RP Q0(r0, z0). When
moving to the point Q(r, z) with frequency f0, the focal spot is destroyed due to the mode
dephasing caused by the distance and depth values. The alignment of the mode phases,
i.e., the restoration of the sound field focal point, is performed by frequency tuning f
(δ f = f − f0—frequency shift). The frequency tuning allows shifting the undestroyed focal
spot to the point Q(r, z) without changing the original distribution of the sound field on the
RTA. At the point Q(r, z), the maximum of the sound field |Ψ(Q)| is reached at frequency
f . At frequencies deviating from the value f , the sound field value |Ψ(Q)| assumes a
lower value.

As an example, we considered a shallow water waveguide (WW and SW) with pa-
rameters corresponding to the experiments of JUSREX (1992) [22] and SWARM (1995) [23].
Localization points Qij (ri, zj) were placed r1 = 10 km, r2 = 50 km, r3 = 100 km, z1 = 10 m,
z2 = 35 m, and z3 = 60 m. The frequency band is f − δ f ≤ f + δ f , where δ f = 10 Hz. The
range domain is r− δr ≤ r + δr, where δr = 2 km.

The results of modeling the sound field focusing control by frequency tuning are
shown in Figures 15–21. Figures 15 and 16 show the value distribution of the sound field
focused on RP Q0(r0, z0) at reference frequency f0. Figure 15 corresponds to the reference
frequency f1 = 150 Hz and Figure 16 to the reference frequency f2 = 300 Hz.
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(1)

(2)

(a) (b) (c)

Figure 15. Normalized field distribution |Ψ( f , z)| at frequency f1 = 150 Hz in the vicinity of
Qi3(ri, z3 = 60 m): (a) r1 = 10 km, (b) r2 = 50 km, (c) r3 = 100 km; (1) WW; (2) SW.

(1)

(2)

(a) (b) (c)

Figure 16. Normalized field distribution |Ψ( f , z)| at frequency f2 = 300 Hz in the vicinity of
Qi3(ri, z3 = 60 m): (a) r1 = 10 km; (b) r2 = 50 km; (c) r3 = 100 km; (1) WW; (2) SW.

It can be seen that the frequency band ∆ f of the focal spot does not behave mono-
tonically with increasing distance r. First, ∆ f increases and then decreases. This can
be observed especially in the range of higher frequencies. f2 = 300 Hz. For the WW:
∆ f1 = 1 Hz, ∆ f2 = 2 Hz, and ∆ f3 = 1.5 Hz. For the SW: ∆ f1 = 1.37 Hz, ∆ f2 = 5.2 Hz, and
∆ f3 = 3.8 Hz.

Another feature can be seen in the distributions in Figures 15 and 16. At constant
depth, there is a spatial periodicity of the focal points that is most evident in the distri-
butions for distances r2 = 50 km and r3 = 100 km. This effect is a consequence of the
property of multimode waveguides providing spatially periodic (though somewhat poorer)
images [29]. Naturally, the magnitudes of the subsequent focal points gradually become
blurred, and the amplitude decreases due to the increasing dephasing of the modes. To illus-
trate the noticed features of the periodicity of the focal spots, we considered the parameters
of the interference structure of the sound field in the coordinates (r, f ). The field distribu-
tions in the coordinate system (r, f ) at the frequency change at depth z = 60 m are shown in
Figure 17. The field localization regions are a sequence of the interference fringes of differ-
ent slopes due to the periodic repetition of the focal points. The value of II β and the space
period Dl corresponding to Figure 17 are given in Table 3.

As can be seen from Figure 17, the angle of the interference fringes θ decreases with
increasing range r. The values tgθ for the SW exceed the corresponding values for the WW
by more than twice. The same relation was observed for the II value β related to the SW
and WW.
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(1)

(2)

(3)

(4)

(a) (b) (c)

Figure 17. Normalized field distribution |Ψ(r, f )| in the vicinity of Qi3(ri, z3 = 60 m): (a) r1 = 10 km;
(b) r2 = 50 km; (c) r3 = 100 km; (1) f1 = 150 Hz (WW); (2) f1 = 150 Hz (SW); (3) f2 = 300 Hz (WW);
(4) f2 = 300 Hz (SW).

Table 3. Interference patterns parameters in Figure 17

(a) (b) (c)

(1) tgθ ≈ 18 Hz/km,
β ≈ 1.2, D3 ≈ 918 m

tgθ ≈ 3 Hz/km,
β ≈ 1.0, D3 ≈ 918 m

tgθ ≈ 1.5 Hz/km,
β ≈ 1.0, D3 ≈ 918 m

(2) tgθ ≈ 40 Hz/km,
β ≈ 2.7, D3 ≈ 738 m

tgθ ≈ 8 Hz/km,
β ≈ 2.7, D3 ≈ 738 m

tgθ ≈ 4 Hz/km,
β ≈ 2.7, D3 ≈ 738 m

(3) tgθ ≈ 36 Hz/km,
β ≈ 1.2, D3 ≈ 965 m,

tgθ ≈ 6 Hz/km,
β ≈ 1.0, D3 ≈ 965 m

tgθ ≈ 3 Hz/km,
β ≈ 1.0, D3 ≈ 965 m

(4) tgθ ≈ 80 Hz/km,
β ≈ 2.7, D3 ≈ 723 m,

tgθ ≈ 16 Hz/km,
β ≈ 2.7, D3 ≈ 723 m

tgθ ≈ 8 Hz/km,
β ≈ 2.7, D3 ≈ 723 m

Figure 18 shows the dependence of the tuning frequency f (r) on the distance r as the
focal spot moves to an arbitrary point Q(r, z0).

For given dependencies f (r), radiation frequency tunings are piecewise continu-
ous. The dashed line marks the values of the distance at which the frequency undergoes
a jump. The frequency f (r) was calculated as follows. Along the interference fringe
(Figure 17), in the region where the reference point Q0(r0, z0, f ) is located, the frequency
values f corresponding to the maximum amplitude of the field |Ψ(r, f )| were determined.
After passing to the boundaries of the current frequency tuning band f , the transition to the
neighboring band was performed with a frequency jump, and along this band, the process
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of calculating the tuning frequency was repeated, and so on. The f (r) calculation algorithm
was terminated when the limits of the distance change r were reached. Thus, it is possible
to control localized fields within a given frequency tuning band by jumping from one band
to another. The piecewise continuity of the tuning frequency f (r) is a consequence of the
limited area of the focal spot within which the phase relations are preserved.

At the boundary of the region, the phase undergoes a discontinuity, which causes the
frequency jump necessary to compensate for the change in the phases of the modes as they
transit to another region of the field focusing. Scanning by focusing occurs on average
along straight lines, with slope coefficients tgθ decreasing with increasing distance. This
property of the evolution of the slope of the straight lines is related to the variance of the
II value with respect to the distance and the radiation frequency. This continuous region
of focal spots corresponds to a dark band in which the reference point and the reference
frequency of the radiation are located in the distributions of Figure 17. There are practically
no frequency jumps within this band. The slope coefficients corresponding to these bands
are close to the values given above (see Table 3). Thus, scanning with a focal spot in a
section of a continuous trajectory is in agreement with the behavior of the II value β. The
frequency of focal spot repetition apparently makes it possible to control localized fields
at large distances with a narrow frequency band of the source. The limiting distances are,
of course, limited by the width of the interval of constructively interfering modes, which
provide an acceptable quality of focusing.

As an example, we show the structure of the field in coordinates (r, z) near the focal
spot, shifted by frequency tuning. In Figure 19 is shown the distribution of the sound
field for the reference point with coordinates Q(50 km, 60 m). The sound field frequency
corresponding to Figure 19 is given in Table 4.

Table 4. Sound field frequencies corresponding to Figure 19.

(1) (2) (3)

(a) f = 146 Hz f = 150 Hz f = 154 Hz
(b) f = 142 Hz f = 150 Hz f = 158 Hz
(c) f = 292 Hz f = 300 Hz f = 308 Hz
(d) f = 284 Hz f = 300 Hz f = 316 Hz

For the value f1 = 150 Hz, when the focal spot is shifted by a distance of ±1 km, the
frequency must be tuned to±8 Hz in the SW and to±4 Hz in the WW. For the value f2 = 300 Hz,
the frequency must be tuned to±16 Hz in the SW and to±8 Hz in the WW. These numerical
values of frequency tuning are in good agreement with the parameters of the interference
structure of the sound field (Figure 17) in the vicinity of the focal spot. As can be seen from
Figure 19, scanning with a focal spot by frequency tuning practically does not change the
structure of the sound field in coordinates (r, z) in the vicinity of the focal point.

Let us consider the dependence of the focal spot parameters on the scanning distance,
taking into account the longitudinal ∆r(r) and transverse ∆z(r) focal spot sizes, as well as
the relative focusing factor q(r). By the relative focusing factor is meant the value:

q(r) = |Ψ(r, z0, f (r))|/|Ψ(r0, z0, f1,2)|. (20)

Here, |Ψ(r, z0, f (r))| denotes the field amplitude at a point Q(r, z0), focused by chang-
ing the radiation frequency f ; |Ψ(r0, z0, f1,2)| is the amplitude of the focused field at the refer-
ence point Q0 at the reference frequency f1,2. f1,2 denotes one of the two cases: f1 = 150 Hz,
f2 = 300 Hz. The dependence of the focal spot parameters on the distance is shown in
Figures 20 and 21. The reference point depth is 60 m.
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(a)

(b)

(c)

(d)

(1) (2) (3)

Figure 18. Dependence of the tuning frequency on the range r to control the focal spot Qi3(ri, z3 = 60 m):
(1) r1 = 10 km; (2) r2 = 50 km; (3) r3 = 100 km; (a) f1 = 150 Hz (WW); (b) f1 = 150 Hz (SW);
(c) f2 = 300 Hz (WW); (d) f2 = 300 Hz (SW).

As can be seen, the parameters of the focal spot are smoother (more stable) during
frequency tuning in the WW. This can be explained by the fact that the interference structure
in the SW consists of modes with significantly different spatial scales. The focal spot
parameters are more stable at low frequencies than at high frequencies. Moreover, the
instability of the focal spot parameters decreases with increasing distance from the reference
point as the fraction of the bottom surface modes decreases. Regions with strong changes
in magnitude q correspond to neighborhoods of tuning frequency jumps f . It should also
be noted that the value q increases as the focal spot Q 6= Q0 is shifted forward to the RTA.
There are two processes that affect the value of q: the dephasing and the attenuation of the
sound modes. The dephasing of the sound modes is due to the shift of the focal spot. The
dephasing of the modes leads to a decrease in the focal spot value q for both cases: shift
towards the RTA and shift from the RTA. The attenuation of the modes leads to an increase
of the focal spot value in the case of a shift towards the RTA and to a decrease of the focal
spot value in the case of a shift from the RTA.

The process caused by the modes’ attenuation is stronger than the process caused by
the modes’ dephasing for short range (r = 10 km). As a result, the focal spot shift to the
RTA leads an increase of the focal spot value q. In contrast to a short range (r = 10 km), at a
long range (r = 100 km), the focal spot value q(r) decreases for both cases: shift forward
the RTA and shift from the RTA. This is due to a decrease of the high modes’ contribution
(modes’ attenuation) in structure of the sound field with the range increasing.
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(a)

(b)

(c)

(d)

(1) (2) (3)

Figure 19. Focal spot scanning Q23(r2 = 50 km, z3 = 60 m): (a) f1 = 150 Hz, WW; (b) f1 = 150 Hz,
SW; (c) f2 = 300 Hz, WW; (d) f2 = 300 Hz, SW; (1) Q(r = 49 km, z = 60 m); (2) Q(r = 50 km,
z = 60 m); (3) Q(r = 51 km, z = 60 m).

(a)

(b)

(c)

(d)

(1) (2) (3)

Figure 20. The dependence of the focal spot parameters from r for f1 = 150 Hz: (1) q(r); (2) ∆r(r);
(3) ∆z(r); (a) r1 = 10 km, WW; (b) r1 = 10 km, SW; (c) r2 = 50 km, WW; (d) r2 = 50 km, SW.
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(a)

(b)

(c)

(d)

(1) (2) (3)

Figure 21. The dependence of the focal spot parameters from distance r for f2 = 300 Hz: (1) q(r);
(2) ∆r(r); (3) ∆z(r); (a) r2 = 50 km, WW; (b) r2 = 50 km, SW; (c) r3 = 100 km, WW; (d) r3 = 100 km, SW.

5. Conclusions

The possibility of controlling localized fields in multimode shallow water waveguides
based on the principle of interference invariance was studied. Within the framework of
the numerical experiments in a wide frequency range of 100–300 Hz and range intervals of
10–100 km, the possibilities of focusing the sound field by WFR and controlling the focusing
of the focal spot by frequency tuning in shallow water waveguides were analyzed. The
spatial focusing by WFR consists of recording the sound field from a distant probe source
by the RTA, reversing of the recording signals by phase conjugation, and propagating
the reversed signal back in a shallow water waveguide. As a result, the sound field is
spatially focused at the probe source location. The focal spot scanning was carried out
by frequency tuning with a fixed distribution of the sound field at the RTA aperture. A
comparative analysis of the features of focusing and focal spot control for summer and
winter stratification of the water layer was carried out. It was shown that the focal spot
parameters are more stable during frequency tuning in the winter waveguide. It was
demonstrated that the sound frequency tuning has a piecewise continuous character and
was carried out on a domain of one continuous track and jump passing on another track in
accordance with the waveguide interference fringes in the range–frequency domain.

The conclusions presented do not refer to the specific model of this shallow water
waveguide. The behavior of the focal spot is qualitatively preserved in different waveguides.
The proposed method of controlling the focal spot by frequency tuning is feasible in
waveguides that form an interference pattern of the sound field. This means that the
criterion for the feasibility of the proposed method is the criterion used for interference
invariance [18]. This criterion determines the limits for both the waveguide parameters
and the focal spot control range.
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