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Abstract: Normal mode models are commonly used to simulate sound propagation problems in
horizontally stratified oceanic environments. Although several normal mode models have been
developed, the fundamental techniques for accurately and efficiently solving the modal equation
are still under development. Since the standard three-point central finite difference scheme (SFD)
for the modal equation has a relatively large numerical error, at least twenty sampling grid points
per wavelength should be set in the depth direction. Herein, a novel finite difference scheme (NFD)
is developed to further improve the accuracy of the mode solution, and the resulting linear system
still has a tridiagonal structure similar to that of the SFD. To compare the performance of the NFD to
that of the SFD, the NFD has been implemented in the open-source normal mode model KrakenC,
and three acoustic propagation cases have been carried out, including the plane-wave reflection, the
Pekeris waveguide, and the Munk waveguide. Test results show that the NFD presented in this paper
is more accurate than the SFD, and can be used to reduce the number of grid points needed in the
depth direction for solving the modal equation in normal mode models.

Keywords: normal modes; KrakenC; the modal equation; underwater acoustic propagation; computa-
tional ocean acoustics

1. Introduction

Acoustic waves are the primary carriers for long-distance transmission of underwa-
ter information, so it is crucial to develop underwater acoustic models for numerically
simulating the propagation of sound waves in oceanic media. Acoustic models include
mathematical formulas describing sound waves and program codes that can be used to
calculate and visualize the sound field by computers. So far, most underwater acoustic
problems can be simulated using normal mode models (commonly abbreviated as normal
modes), fast-field (wavenumber integration) models, parabolic equation models, or ray
models, depending on the particular approximations to the wave equation that can be
made for the problem [1]. Although the acoustic models mentioned above have been
relatively mature, some algorithms and techniques used in these models are still being
improved and developed. At low frequencies, normal modes are commonly used to solve
sound propagation problems in horizontally stratified oceanic environments. One of the
earliest papers on normal modes was published in 1948 by Pekeris, who developed the
theory for a simple medium model consisting of two homogeneous layers of seawater and
sediment [2]. Since then, much progress has been made in the development of normal
modes, as summarized in M. Porter’s report [3].

So far, several normal modes have been developed [4], and the applications of these
models have been extended to range-dependent marine environments [5,6]. However,
key techniques of normal modes are still developing, such as advanced algorithms for
solving the unforced depth-separated equation (modal equation) more accurately and effi-
ciently. Common difficulties in solving the modal equation include numerical instabilities
for certain types of environments and failures to compute some propagation modes [3].

J. Mar. Sci. Eng. 2023, 11, 553. https://doi.org/10.3390/jmse11030553 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11030553
https://doi.org/10.3390/jmse11030553
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-5362-340X
https://orcid.org/0000-0002-6752-0436
https://doi.org/10.3390/jmse11030553
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11030553?type=check_update&version=1


J. Mar. Sci. Eng. 2023, 11, 553 2 of 18

Therefore, robust and accurate algorithms for solving the modal equation are of great
value in improving the accuracy of normal modes. The modal equation can be solved
using theoretical or numerical methods. Theoretical methods divide the grid line in the
depth direction into several segments and approximate the sound speed profile to a simple
form within each piece [7]. For underwater acoustic environments, the simplest form is a
constant sound speed, and the piecewise linear approximation to the square of the index of
refraction is also commonly used [8]. By contrast, numerical methods can deal with more
general sound speed profiles, including the finite difference method (FDM) [9,10], the finite
element method (FEM) [11], and the spectral method [12,13]. The FDM is relatively simple
compared to the latter two methods, and the obtained sparse linear systems can be solved
efficiently. Thus, the FDM is widely used in normal modes, such as the KrakenC code, a
version of Kraken that searches for eigenvalues in the complex plane [3].

KrakenC is one of the open-source normal mode programs developed by Michael
Porter as part of the Acoustic Toolbox [14], which uses the standard three-point central
finite difference scheme (SFD) to discretize and solve the modal equation. In KrakenC,
shooting methods [15] are used to search for the approximate eigenvalues of the complex
tridiagonal matrix obtained by the SFD, and the Richardson extrapolation process [16,17] is
utilized to determine the eigenvalues more accurately. Then, the eigenvector (eigenfunction)
corresponding to each eigenvalue is computed using inverse iteration methods [18,19].
Generally, KrakenC is robust and is extensively used to simulate underwater acoustic
propagation [20]. However, due to the SFD’s relatively low second-order accuracy, at
least twenty sampling grid points per wavelength (PPW) should be set to reduce the
numerical error [3]. To improve the accuracy of the finite difference (FD) scheme used in
KrakenC, herein, a novel finite difference scheme (NFD, initially studied in computational
mathematics [21]) was developed by applying the Taylor expansion, where the second
and higher derivatives of the eigenfunction were converted to the first derivatives and
eigenfunction terms using the modal equation. The attractive features of the NFD include
its higher accuracy than the SFD with the same grid step size, and the resulting linear
system still having a tridiagonal structure similar to that derived from the SFD.

Section 2 details the mathematical models of the SFD and the NFD. To compare the
performance of the NFD to that of the SFD, three acoustic test cases were carried out
in Section 3, including the plane-wave reflection, the Pekeris waveguide, and the Munk
waveguide. Finally, the discussion about the NFD was presented in Section 4.

2. Mathematical Models

The pressure field excited by a time-harmonic point source in horizontally stratified
oceanic environments can be modeled using Hankel integral transforms. Then, the sound
pressure can be constructed by summing the contributions from individual components
called normal modes, and each mode is associated with one of the solutions to the modal
equation. The modal equation has an infinite number of solutions, and each solution (mode)
is characterized by a mode shape function (eigenfunction) and a horizontal wavenumber
(eigenvalue). Then, the acoustic pressure at any point in the cylindrical coordinate system
can be calculated as the sum of the contributions of all the found modes [1]:

P(r, z) =
πi

ρ(zs)

[
M

∑
n=1

ϕ̂n(zs)ϕ̂n(z)H(1)
0 (kr,nr)

]
(1)

ϕ̂n(z) =
ϕn(z)√

iϕ2
n(H)/(2ρkz,n)∞ +

∫ zN
z0

ϕ2
n(z)/ρdz

(2)

where P is the complex sound pressure in the frequency-domain; r is the range coordinate
from the source; z is the vertical coordinate; zs and H are the depths of the sound source
and lower boundary of the sound field, respectively; the imaginary unit number i (iota)
is equal to the square root of −1; H(1)

0 is the zero-order Hankel function of the first kind;
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kr and kz =
√

ω2/c2 − k2
r are horizontal and vertical wavenumbers, respectively, where

ω = 2πf and f is the frequency of the sound source; ρ and c are the density and sound
speed of the medium as functions of the depth z; the number of found modes, M, should
be large enough to ensure the calculation result has sufficient precision; kr,n and ϕn are the
nth eigenvalue and its corresponding eigenfunction, respectively.

As shown in Figure 1, the densities of water and sediment are commonly treated as
constants in marine environments, and thus the modal equations in the water and sediment
layers can be separately formulated as

ϕ(2)(z) +
(

ω2/c2
w − k2

r

)
ϕ(z) = 0, z ∈ (0, D) (3)

ϕ(2)(z) +
(

ω2/c2
s − k2

r

)
ϕ(z) = 0, z ∈ (D, H) (4)

where ϕ(n)(z) denotes the nth derivative of ϕ(z) at a depth of z; D is the depth of the water
column (D ≤ H); the subscripts of “w” and “s” stand for the water and sediment medium,
respectively. The interface condition can be given by

ρ−1
w ϕ(1)(D−) = ρ−1

s ϕ(1)(D+
)

(5)

where ϕ(1)(D±) denotes the limiting value of the first derivative of ϕ(z) at the interface as
approached from z > D (D+) and z < D (D−), respectively. Furthermore, acoustic half-space
(Sommerfeld radiation) conditions are introduced at the top and bottom boundaries of the
sound field, respectively given by

ρ−1
w ϕ(1)(0+) = −ikz,0ρ−1

0 ϕ(0) (6)

ρ−1
s ϕ(1)(H−

)
= ikz,∞ρ−1

∞ ϕ(H) (7)

where the subscripts “0” and “∞” indicate the homogenous half-space medium above and
below the region of the sound field, respectively. If the upper half-space is assumed to be a
vacuum (ρ0 = 0), the top boundary condition can be correspondingly simplified to

ϕ(0) = 0 (8)
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According to the modal equation of Equation (3), we have 
( ) ( ) ( ) ( )2 2 2 2

w/ rD c k Dϕ ω ϕ− = − −  (10)

Then, Equation (9) can be rewritten as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2
1 w1 1 2

1
1 1

/ / 2rD h c k DD h
D O h

h h
ϕ ω ϕϕ

ϕ −
− −− −

= + +  (11)

By applying a similar process as that used to derive Equation (11), we can obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2
2 s1 2 2

2
2 2

/ / 2rD h c k DD h
D O h

h h
ϕ ω ϕϕ

ϕ +
− + −+

= + +  (12)

Substituting Equations (11) and (12) into Equation (5), the interface condition can be 
approximated by the following FD scheme 

( ) ( ) ( ) ( ) ( )
2 2 2 2
1 ,w 2 ,s1 2 2 2

1 2
w 1 w 1 s 2 s 2

2 2
+

2 2
z zh k h kD h D h

D O h O h
h h h h

ϕ ϕ
ϕ

ρ ρ ρ ρ
 − −− +

− + = +  
 

(13) 

2.1.2. Boundary Schemes 

Media 1: 
ρ = ρ1
c = c(z)
β = 0

Media 0: ρ0, c0, β0

Media ∞: ρ∞, c∞, β∞ 

1

2

…

N1+1

Top boundary

Bottom boundary

interface

N1

N1+2

N1+3

N1+N2

N1+N2+1
(N+1)

…

z

r

Media 2:
ρ = ρ2
c = cs
β = βs

zs (source)

h1

h2

O

Figure 1. Sketch of the horizontally stratified marine environments.

The FDM is applied to the modal equation, and its principle is to employ a Taylor
series expansion to discretize the derivatives of the function ϕ. We can then build a system
of linear algebraic equations involving the unknown solution values at grid points in the
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vertical direction, which can be solved numerically by direct or iterative methods. As
illustrated in Figure 1, the water and sediment layers are divided into N1 and N2 equal
intervals, respectively, and grid step sizes in the two medium layers can be calculated by
h1 = D/N1 and h2 = (H − D)/N2, respectively, where N1 and N2 are positive integers and
should be set large enough to adequately sample the modes; for instance, at least twenty
points per wavelength should be set in KrakenC.

2.1. The SFD

Although the interior point scheme of the SFD is well known, the modal equation also
contains the interface condition and Sommerfeld radiation boundary condition. Therefore,
we will briefly deduce the SFD, including FD schemes corresponding to the interface
point, the boundary point, and the interior point. In addition, this section will help one to
understand the connection and differences between the NFD and the SFD more clearly.

2.1.1. Interface Scheme

The function ϕ at the point just above the interface (zN1+1 = D) can be expressed as

ϕ(D− h1) = ϕ(D)− h1 ϕ(1)(D−)+ h2
1

2!
ϕ(2)(D−)+ O

(
h3

1

)
(9)

According to the modal equation of Equation (3), we have

ϕ(2)(D−) = −(ω2/c2
w − k2

r

)
ϕ(D) (10)

Then, Equation (9) can be rewritten as

ϕ(1)(D−) = −ϕ(D− h1)

h1
+

ϕ(D)− h2
1
(
ω2/c2

w − k2
r
)

ϕ(D)/2
h1

+ O
(

h2
1

)
(11)

By applying a similar process as that used to derive Equation (11), we can obtain

ϕ(1)(D+
)
=

ϕ(D + h2)

h2
+
−ϕ(D) + h2

2
(
ω2/c2

s − k2
r
)

ϕ(D)/2
h2

+ O
(

h2
2

)
(12)

Substituting Equations (11) and (12) into Equation (5), the interface condition can be
approximated by the following FD scheme

ϕ(D− h1)

ρwh1
−
(

2− h2
1k2

z,w

2ρwh1
+

2− h2
2k2

z,s

2ρsh2

)
ϕ(D) +

ϕ(D + h2)

ρsh2
= O

(
h2

1

)
+ O

(
h2

2

)
(13)

2.1.2. Boundary Schemes

At the bottom of the acoustic field (zN+1 = H), the backward difference formula similar
to Equation (11) can be used to approximate ϕ(1)(H−)

ϕ(1)(H−
)
=
−ϕ(H − h2)

h2
+

ϕ(H)− h2
2k2

z,s ϕ(H)/2
h2

+ O
(

h2
2

)
(14)

Then, the Sommerfeld radiation condition of Equation (7) at the bottom of the sound
field can be approximated as

ϕ(H − h2)

ρsh2
−
(

2− h2
2k2

z,s

2ρsh2
+
−ikz,∞

ρ∞

)
ϕ(H) = O

(
h2

2

)
(15)
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Symmetrically with the treatment of the bottom boundary condition, the forward
difference formula similar to Equation (12) can be used to approximate ϕ(1)(z+1 ) at the top
of the acoustic field (z1 = 0)

ϕ(1)(z+1 ) = ϕ(z1 + h1)

h1
+
−ϕ(z1) + h2

1
(
ω2/c2

w − k2
r
)

ϕ(z1)/2
h1

+ O
(

h2
1

)
(16)

Then, the Sommerfeld radiation condition of Equation (6) at the top of the sound field
can be approximated as

ϕ(z1 + h1)

ρwh1
−
(

2− h2
1k2

z,w(z1)

2ρwh1
+
−ikz,0

ρ0

)
ϕ(z1) = O

(
h2

1

)
(17)

In underwater acoustics, the top boundary commonly indicates the sea surface, and
then the pressure-release condition of Equation (8) can be directly used (ϕ(z1) = 0).

2.1.3. Interior Point Scheme

In the water layer (0 < z < D), the coordinates of grid points in the z-direction can be
expressed as zj = (j-1)h1 (1 < j ≤ N1+1). By applying the Taylor expansion, the functions
ϕ(zj + h1) and ϕ(zj − h1) have a power series representation about z = zj

ϕ
(
zj + h1

)
= ϕ

(
zj
)
+ h1 ϕ(1)(zj

)
+

h2
1

2!
ϕ(2)(zj

)
+ . . . +

hn
1

n!
ϕ(n)(zj

)
+ . . . (18)

ϕ
(
zj − h1

)
= ϕ

(
zj
)
− h1 ϕ(1)(zj

)
+

h2
1

2!
ϕ(2)(zj

)
+ . . . + (−1)n hn

1
n!

ϕ(n)(zj
)
+ . . . (19)

Adding Equations (18) and (19), we have

ϕ
(
zj + h1

)
− 2ϕ

(
zj
)
+ ϕ

(
zj − h1

)
− h2

1 ϕ(2)(zj
)
= O

(
h4

1

)
(20)

From the modal equation in the water layer (Equation (3)), the SFD at an interior grid
point zj can be obtained

ϕ
(
zj + h1

)
−
(

2− h2
1k2

z,w

)
ϕ
(
zj
)
+ ϕ

(
zj − h1

)
= O

(
h4

1

)
(21)

To be consistent with the interface scheme and boundary schemes, we introduce a
scaling factor of 1/(ρwh1) in Equation (21)

ϕ
(
zj + h1

)
ρwh1

−
2− h2

1k2
z,w

ρwh1
ϕ
(
zj
)
+

ϕ
(
zj − h1

)
ρwh1

= O
(

h3
1

)
(22)

The SFD at an interior point in the sediment medium (D < z < H) is similar to Equa-
tion (22) (replacing ρw, h1, and kz,w with ρs, h2, and kz,s, respectively).

2.1.4. Linear System

Using Equations (13), (15), (17) and (20), a linear system corresponding to the SFD can
be constructed, which is given by

ASFDϕ = 0 (23)



J. Mar. Sci. Eng. 2023, 11, 553 6 of 18

where ASFD is a complex symmetric tridiagonal matrix defined by (N = N1 + N2)

ASFD =



d1 e2
e2 d2 e3
· · · · · · · · ·

eN1 dN1 eN1+1
eN1+1 dN1+1 eN1+2

eN1+2 dN1+2 eN1+3
· · · · · · · · ·

eN dN eN+1
eN+1 dN+1


(24)

and the coefficients are given by

d1 = −
[
1− h2

1k2
z,w/2− ikz,0h1ρwρ−1

0

]
/(ρwh1) (25)

dw = −
(

2− h2
1k2

z,w

)
/(ρwh1), w = 2, 3, . . . , N1 (26)

dN1+1 = −
[(

2− h2
1k2

z,w

)
/(2ρwh1) +

(
2− h2

2k2
z,s

)
/(2ρsh2)

]
(27)

ds = −
(

2− h2
2k2

z,s

)
/(ρsh2), s = N1 + 2, N1 + 3, . . . , N (28)

dN+1 = −
[
1− h2

2k2
z,s/2− ikz,∞h2ρsρ−1

∞

]
/(ρsh2) (29)

ew = 1/(ρwh1), w = 2, . . . , N1 + 1 (30)

es = 1/(ρsh2), s = N1 + 2, N1 + 3, . . . , N + 1 (31)

Because the horizontal wavenumber kr cannot be known in advance, Equation (23)
needs to be solved by shooting methods. Note that if the top boundary condition is the
pressure-release condition (meaning that ρ0 = 0 and ϕ(0) = 0), ρ−1

0 in Equation (25) goes to
infinity, and then d1 and e2 need to be changed to d1 = 1 and e2 = 0, respectively.

2.2. The NFD

From the modal equation in the water layer (Equation (3)), we have

ϕ(2)(z) = −k2
z,w(z)ϕ(z) (32)

ϕ(3)(z) = −
(

k2
z,w(z)

)(1)
ϕ(z)− k2

z,w(z)ϕ(1)(z) (33)

where (
k2

z,w(z)
)(1)

=
d
(
ω2/c2

w(z)− k2
r
)

dz
= ω2 d

(
c−2

w (z)
)

dz
= −2ω2c−3

w (z)
dcw(z)

dz
(34)

For shallow water acoustics, the commonly used value of the sound speed in water
is a constant of 1500 m/s (such as the Pekeris waveguide problem), meaning dcw/dz = 0.
For deep water acoustics, as the sound speed typically changes weakly with depth, the

absolute value of
(
k2

z,w(z)
)(1) is commonly small enough to be safely ignored. For instance,

the Munk sound speed profile is widely used in deep water acoustics and has an analytical
formula of

cw(z) = 1500
[
1 + 0.00737

(
z̃− 1 + e−z̃

)]
(35)
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where z̃ = 2(z− 1300)/1300. Then, the derivative of the sound speed with respect to z can
be formulated as

dcw(z)
dz

= 1500× 0.00737× 2
1300

(
1− e−2(z−1300)/1300

)
(36)

For the low-frequency sound field, we have∣∣∣∣(k2
z,w(z)

)(1)∣∣∣∣ ≈ ∣∣∣∣−2ω2

15003
dcw(z)

dz

∣∣∣∣ ≤ ∣∣∣∣2ω2 0.00737× 2
15002 × 1300

(
e2 − 1

)∣∣∣∣ = 6.44e−11ω2 ≈ 0 (37)

Therefore, the
(
k2

z,w(z)
)(1) term is ignored in this paper, and the second and higher

derivatives of the function ϕ can be converted into terms of the function or its first deriva-
tive, meaning

ϕ(2n)(z) = (−1)nk2n
z,w(z)ϕ(z) (38)

ϕ(2n+1)(z) = (−1)nk2n
z,w(z)ϕ(1)(z) (39)

Furthermore, Equations (18) and (19) can be respectively rewritten as

ϕ
(
zj + h1

)
=

[
∞
∑

n=0
(−1)n h2n

1 k2n
z,w(zj)
(2n)!

]
ϕ
(
zj
)
+

[
∞
∑

n=0
(−1)n h2n+1

1 k2n+1
z,w (zj)

(2n+1)!

]
ϕ(1)(zj)
kz,w(zj)

= cos
(
h1kz,w

(
zj
))

ϕ
(
zj
)
+ k−1

z,w
(
zj
)
sin
(
h1kz,w

(
zj
))

ϕ(1)(zj
) (40)

ϕ
(
zj − h1

)
= cos

(
h1kz,w

(
zj
))

ϕ
(
zj
)
− k−1

z,w
(
zj
)
sin
(
h1kz,w

(
zj
))

ϕ(1)(zj
)

(41)

2.2.1. Interface Scheme

Using Equation (41), the function ϕ at the point just above the interface (zN1+1 = D)
can be expressed as

ϕ(D− h1) = cos
(
h1kz,w

(
D−
))

ϕ(D)− k−1
z,w
(

D−
)
sin
(
h1kz,w

(
D−
))

ϕ(1)(D−) (42)

and thus

ϕ(1)(D−) = − ϕ(D− h1)− cos(h1kz,w(D−))ϕ(D)

k−1
z,w(D−) sin(h1kz,w(D−))

(43)

Similarly, using Equation (40), we have (cs is commonly treated as a constant)

ϕ(D + h2) = cos(h2kz,s)ϕ(D) + k−1
z,s sin(h2kz,s)ϕ(1)(D+

)
(44)

and thus

ϕ(1)(D+
)
=

ϕ(D + h2)− cos(h2kz,s)ϕ(D)

k−1
z,s sin(h2kz,s)

(45)

then, Equation (5) can then be approximated by the following FD scheme

ϕ(D− h1)

ρwk−1
z,w(D−) sin(h1kz,w(D−))

−
(

cot(h1kz,w(D−))
ρwk−1

z,w(D−)
+

cot(h2kz,s)

ρsk−1
z,s

)
ϕ(D) +

ϕ(D + h2)

ρsk−1
z,s sin(h2kz,s)

= 0 (46)

If ρw = ρs, cw = cs, and h1 = h2, then the interface condition scheme of Equation (46)
will be equivalent to the interior scheme of Equation (53). If the unnormalized sinc function
is used in Equation (46), mathematically defined as

sinc(x) =
{

1 for x = 0
sin(x)/x otherwise

(47)

then Equation (46) can be transformed into
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ϕ(D− h1)

ρwh1sinc(h1kz,w(D−))
−
(

cos(h1kz,w(D−))
ρwh1sinc(h1kz,w(D−))

+
cos(h2kz,s)

ρsh2sinc(h2kz,s)

)
ϕ(D) +

ϕ(D + h2)

ρsh2sinc(h2kz,s)
= 0 (48)

2.2.2. Boundary Schemes

At the bottom of the acoustic field, the backward difference formula similar to
Equation (43) can be used to approximate ϕ(1)(H−)

ϕ(1)(H−
)
= − ϕ(H − h2)− cos(h2kz,s)ϕ(H)

k−1
z,s sin(h2kz,s)

(49)

Then, the Sommerfeld radiation condition of Equation (7) at the bottom of the sound
field can be approximated as

ϕ(H − h2)

ρsh2sinc(h2kz,s)
−
[

cos(h2kz,s)

ρsh2sinc(h2kz,s)
+
−ikz,∞

ρ∞

]
ϕ(H) = 0 (50)

Symmetrically with the treatment of the bottom boundary condition, the forward
difference formula similar to Equation (45) can be used to approximate ϕ(1)(z+1 ) at the top
of the acoustic field (z1 = 0)

ϕ(1)(z+1 ) = ϕ(z1 + h1)− cos(h1kz,w(z1))ϕ(z1)

h1sinc(h1kz,w(z1))
(51)

Then, the Sommerfeld radiation condition of Equation (6) at the top of the sound field
can be approximated as

ϕ(z1 + h1)

ρwh1sinc(h1kz,w(z1))
−
[

cos(h1kz,w(z1))

ρwh1sinc(h1kz,w(z1))
+
−ikz,0

ρ0

]
ϕ(z1) = 0 (52)

If the top boundary indicates the sea surface, the pressure-release condition can be
directly used, meaning ϕ(z1) = 0.

2.2.3. Interior Point Scheme

The FD scheme at an interior grid point zj in the water layer can be obtained by adding
Equations (40) and (41)

ϕ
(
zj + h1

)
− 2 cos

(
h1kz,w

(
zj
))

ϕ
(
zj
)
+ ϕ

(
zj − h1

)
= 0 (53)

The FD scheme at an interior point in the sediment medium (D< z < H) is similar to
Equation (53) (replacing h1 and kz,w with h2 and kz,s, respectively).

2.2.4. Linear System

Using Equations (48), (50), (52), and (53), a linear system according to the NFD can be
built, given by

ANFDϕ = 0 (54)
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where ANFD is a complex asymmetric tridiagonal matrix defined by (N = N1 + N2)

ASFD =



d1 e2
1 d2 1
· · · · · · · · ·

1 dN1 1
eN1+1 dN1+1 eN1+2

1 dN1+2 1
· · · · · · · · ·

1 dN 1
eN+1 dN+1


(55)

and the coefficients are given by

d1 = −[cos(h1kz,w(z1))/(ρwh1sinc(h1kz,w(z1)))− ikz,0/ρ0] (56)

dw = −2 cos(h1kz,w(zi)), w = 2, 3, . . . , N1 (57)

dN1+1 = −
(

cos(h1kz,w(D−))
ρwh1sinc(h1kz,w(D−))

+
cos(h2kz,s)

ρsh2sinc(h2kz,s)

)
(58)

ds = −2 cos(h2kz,s), s = N1 + 2, N1 + 3, . . . , N (59)

dN+1 = −[cos(h2kz,s)/(ρsh2sinc(h2kz,s))− ikz,∞/ρ∞] (60)

ew = 1/[ρwh1sinc(h1kz,w(zw))], w = 2, N1 + 1 (61)

es = 1/[ρsh2sinc(h2kz,s)], s = N1 + 2, N + 1 (62)

Similar to the matrix ASFD, if the top boundary condition is the pressure-release
condition, then d1 and e2 in the ANFD need to be changed to d1 = 1 and e2 = 0, respectively.
Since both ASFD and ANFD are tridiagonal matrices, they can be solved using the forward
elimination and backward substitution algorithms. In addition, to limit the amount of
computation required to form the matrix ANFD, the trigonometric functions are calculated
using truncated series expansions, meaning (L = 6 in this paper)

cos(θ) =
L

∑
l=0

(−1)l θ2l

(2l)!
+ O

(
θ2l+2

)
(63)

sinc(θ) =
sin(θ)

θ
=

L

∑
l=0

(−1)l θ2l

(2l + 1)!
+ O

(
θ2l+2

)
(64)

3. Test Cases

Three test cases were carried out to compare the performance of the NFD to that of
the SFD, including the plane-wave reflection case independent of the KrakenC code, the
Pekeris waveguide case with a constant sound speed of water, and the Munk waveguide
case with a varying sound speed profile in the water layer. For testing the last two cases,
the KrakenC code was modified, and one could choose either the original SFD or the NFD.
It should be mentioned that the original KrakenC code has restrictions on the PPW: the
recommended PPW is greater than 20 (20 by default), and the minimum is 10; in contrast,
the PPW in the modified KrakenC code can be less than 10.

3.1. Plane-Wave Reflection

As shown in Figure 2, we consider a time-harmonic sound wave that only propagates
in both the positive x and negative x directions. This acoustic propagation problem can be
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modeled using the following one-dimensional (1D) Helmholtz equation in the frequency-
domain

ρ(x)
∂

∂x

(
1

ρ(x)
∂u
∂x

)
+

ω2

c2(x)
u(x) = 0, x ∈ [−3λ1, 3λ2] (65)

where u(x) is the sound pressure function; λ1 and λ2 are the wavelengths in the regions
of x < 0 and x > 0, respectively; the density ρ(x) and the sound speed c(x) are piecewise
constants, respectively:

ρ(x) =
{

ρ1 = 1.0 g/cm3

ρ2 = 1.5 g/cm3
,
,

x < 0
x > 0

(66)

c(x) =
{

c1 = 1500 m/s
c2 = 1700 m/s

,
,

x < 0
x > 0

(67)
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Then, the exact solution to Equation (65) can be given by

ue(x) =
{

eiωx/c1 + Re−iωx/c1

(1 + R)eiωx/c2

,
,

x < 0
x ≥ 0

(68)

where the reflection coefficient R = (ρ2c2 − ρ1c1)/(ρ2c2 + ρ1c1) and ω = 2πf (f = 50 Hz in this
case). Ensuring that the interface position (x = 0) corresponds to a grid point, the interface
condition can be expressed similarly to Equation (5):

ρ−1
1 u(1)(0−) = ρ−1

2 u(1)(0+) (69)

In each of the two regions of x < 0 and x > 0, Equation (65) can be discretized at evenly
spaced grid points, and the grid step sizes are calculated respectively by

h1 = λ1/PPW = c1/ f /PPW (70)

h2 = λ2/PPW = c2/ f /PPW (71)

Then, the grid step number in each region can be given by N1 = 3λ1/h1 = 3PPW
and N2 = 3λ2/h2 = 3PPW, respectively. The Dirichlet boundary condition is set at the
left boundary (x1 = −3λ1), and the solution at the left boundary is given by using
Equation (68), which means

u(x1) = ue(x1) (72)

The Robin (Sommerfeld radiation) boundary condition is set at the right boundary
(xN+1 = 3λ2), and we have a similar equation to Equation (7) (herein ρs = ρ∞ = ρ2)

u(1)(x−N+1
)
= iωu(xN+1)/c2 (73)

Equations (65), (69), (72) and (73) can be discretized using the SFD or the NFD. It should
be noted that the horizontal wavenumber is not included in these equations, equivalent
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to kr = 0 in Equations (3), (4) and (7), and thus the tridiagonal system of linear algebraic
equations resulting from the SFD or the NFD can be efficiently solved by direct methods.
The real and imaginary parts of the solutions calculated by the exact formula, the SFD, and
the NFD with PPW = 6, 10, and 20 were shown in Figures 3–5, respectively. With all PPW
numbers, the solutions from the NFD match the exact ones very well; in contrast, the curve
of the SFD deviates from the other two curves, but the deviation gradually decreases as the
PPW increases.
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The results of this case clearly show that the SFD has a relatively large numerical
error in solving the 1D Helmholtz equation (similar in form to the modal equation), and at
least 20 grid points per wavelength should be set to make the error within an acceptable
range, consistent with KrakenC’s recommendation of PPW ≥ 20. In contrast, the solution
precision at all grid points, including the interior and boundary points, of the NFD is very
high even with PPW = 6, and thus replacing the SFD with the NFD is expected to improve
the precision of the KrakenC model and relax its restrictions on the PPW number.
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3.2. Pekeris Waveguide

The Pekeris waveguide problem is a classical test case in underwater acoustics and
consists of a homogeneous water layer over a uniform sediment half-space. Herein, the
water layer is 100 m deep; the sound speed and the density of water are 1500 m/s and
1.0 g/cm3, respectively; the sediment medium has a sound speed of 1800 m/s, a density of
1.8 g/cm3, and an attenuation rate of 0.5 dB/λ. The source depth is 10 m, and the sound
frequency is 150 Hz. For the root-finder in KrakenC, the lower (clow) and upper (chigh)
phase speed limits were set to 0 m/s and 10,000 m/s, respectively. It should be noted that,
in this test case, the grid size of the sound field in the horizontal direction is uniform at 4 m,
while the grid size in the depth direction is variable (represented by the PPW). The PPW
number in the water layer is equal to that in the sediment medium.

Theoretically, the solution to the modal Equation (3) in a homogeneous water layer
has the following analytical form:

ϕ(z) = A+
w eikz,wz + A−w e−ikz,wz, z ∈ (0, D) (74)

At the sea surface, ϕ(0) = 0, and thus A−w = −A+
w 6= 0. Therefore, at the interface point

(D = 100 m), we have

ϕ(D) = A+
w

(
eikz,wD − e−ikz,wD

)
= 2iA+

w sin(kz,wD) (75)

ϕ(1)(D−) = 2iA+
w kz,w cos(kz,wD) = kz,w cot(kz,wD)ϕ(D) (76)

Similarly, the solution to the modal Equation (4) in the uniform sediment half-space
(truncated at H = 130 m) has the following analytical form:

ϕ(z) = A+
s eikz,sz, z ∈ (D, H) (77)

then
ϕ(1)(D+

)
= ikz,s A+

s eikz,sz = ikz,s ϕ(D) (78)

By substituting Equations (76) and (78) into Equation (5), one can obtain

tan(Dkz,w) + iρskz,w/(ρwkz,s) = 0 (79)

This equation can be used to calculate numerical errors of the approximate eigenvalues
found by KrakenC in this case. For instance, if kSFD

r,n represents the nth eigenvalue found



J. Mar. Sci. Eng. 2023, 11, 553 13 of 18

by KrakenC using the SFD, the error of this approximate eigenvalue can be calculated by
applying the following formula:

ESFD
n =

∣∣∣∣∣∣tan
(

D
√

ω2/c2
w −

(
kSFD

r,n
)2
)
+ i

ρs

√
ω2/c2

w −
(
kSFD

r,n
)2

ρw

√
ω2/c2

s −
(
kSFD

r,n
)2

∣∣∣∣∣∣ (80)

Utilizing the modified KrakenC code, the acoustic field of this case was simulated
using the original SFD with PPW = 10, 20 and the NFD with PPW = 6, respectively, and the
approximate eigenvalues found and their numerical errors are shown in Table 1. It shows
that although the NFD uses a smaller PPW than the SFD, ENFD

n ≤ ESFD
n for each eigenvalue.

Moreover, due to the relatively large numerical errors of the SFD with PPW = 10, the 16th
to 18th eigenvalues are not found by the KrakenC code using the SFD, and the errors of the
12th to 15th eigenvalues are significant.

After the approximate eigenvalues corresponding to the ASFD or the ANFD have been
found, the eigenfunction values at all grid points for each eigenvalue can be calculated
using inverse iteration methods, and then the eigenfunction values at any depth can be
obtained by interpolation. Furthermore, the sound pressure field can be calculated using
Equation (1). Figure 6 shows transmission loss (TL) curves at the depth of the sound source
using the SFD (PPW = 10, 20) and the NFD (PPW = 6), where TL =−20 log10|P| in decibels
(dB) and |P| denotes the magnitude of the complex pressure P. The three curves generally
match well, and the two curves obtained by using the SFD with PPW = 20 and the NFD with
PPW = 6 almost coincide, indicating that the NFD with a smaller PPW number can be used
to obtain the results with the same precision as the SFD with a larger PPW number, thus
reducing the amount of calculation required for the NFD. In contrast, the curve obtained
by using the SFD with PPW = 10 significantly deviates from the other two curves within a
horizontal distance of 1 km, due to the SFD with PPW = 10 failing to accurately solve the
12th to 18th eigenvalues whose imaginary parts have large absolute values, as shown in
Table 1. Because the Hankel function H(1)

0 (kr,nr) in Equation (1) vanishes quickly as the
absolute value of the imaginary part of kr,nr increases, the 12th to 18th eigenvalues only
have a significant impact on the horizontal near-field, resulting in a reduction in accuracy.
In contrast, the far-field results are not significantly affected.
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Figure 6. TL curves at the depth of the sound source in the Pekeris waveguide case.

Figures 7 and 8 show TL contours in the Pekeris waveguide case using the NFD with
PPW = 6 and the SFD with PPW = 20, respectively. Compared to Figure 8, Figure 7 is
slightly blurred due to a relatively small number of grid points in the depth direction, but
the characteristics of these two sound fields are identical.
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Table 1. Approximate eigenvalues and their numerical errors in the Pekeris waveguide case.

n NFD (PPW = 6) SFD (PPW = 10) SFD (PPW = 20)

kNFD
r,n ENFD

n kSFD
r,n ESFD

n /ENFD
n kSFD

r,n ESFD
n /ENFD

n

01 6.27607882022858 ×
10−1–1.43856482281990 × 10−6i 4.61 × 10−5 6.27607882022858 ×

10−1–1.43856482281990 × 10−6i 1.00 × 100 6.27607882022858 ×
10−1–1.43856402701203 × 10−6i 1.00 × 100

02 6.25467598438263 ×
10−1–5.58376723347465 × 10−6i 2.23 × 10−5 6.25467598438263 ×

10−1–5.58376723347465 × 10−6i 1.00 × 100 6.25467598438263 ×
10−1–5.58376768822200 × 10−6i 1.00 × 100

03 6.21873557567596 ×
10−1–1.20058493848774 × 10−5i 1.87 × 10−5 6.21873557567596 ×

10−1–1.20058493848774 × 10−5i 1.00 × 100 6.21873557567596 ×
10−1–1.20058493848774 × 10−5i 1.00 × 100

04 6.16787314414978 ×
10−1–2.02101928152842 × 10−5i 4.34 × 10−6 6.16787314414978 ×

10−1–2.02101928152842 × 10−5i 1.00 × 100 6.16787314414978 ×
10−1–2.02101928152842 × 10−5i 1.00 × 100

05 6.10157787799835 ×
10−1–2.98445593216456 × 10−5i 7.65 × 10−6 6.10157787799835 ×

10−1–2.98445593216456 × 10−5i 1.00 × 100 6.10157787799835 ×
10−1–2.98445593216456 × 10−5i 1.00 × 100

06 6.01922035217285 ×
10−1–4.08637897635344 × 10−5i 5.79 × 10−6 6.01922035217285 ×

10−1–4.08637897635344 × 10−5i 1.00 × 100 6.01922035217285 ×
10−1–4.08637897635344 × 10−5i 1.00 × 100

07 5.92005014419556 ×
10−1–5.36890329385642 × 10−5i 1.96 × 10−6 5.92005014419556 ×

10−1–5.36890329385642 × 10−5i 1.00 × 100 5.92005014419556 ×
10−1–5.36890329385642 × 10−5i 1.00 × 100

08 5.80318808555603 ×
10−1–6.95202397764660 × 10−5i 2.49 × 10−5 5.80318808555603 ×

10−1–6.95202397764660 × 10−5i 1.00 × 100 5.80318808555603 ×
10−1–6.95202397764660 × 10−5i 1.00 × 100

09 5.66763103008270 ×
10−1–9.13004550966434 × 10−5i 6.94 × 10−6 5.66763103008270 ×

10−1–9.13004550966434 × 10−5i 1.00 × 100 5.66763103008270 ×
10−1–9.13004550966434 × 10−5i 1.00 × 100

10 5.51232635974884 ×
10−1–1.27768376842141 × 10−4i 4.11 × 10−5 5.51232635974884 ×

10−1–1.27768376842141 × 10−4i 1.00 × 100 5.51232635974884 ×
10−1–1.27768376842141 × 10−4i 1.00 × 100

11 5.33674001693726 ×
10−1–2.26555464905687 × 10−4i 1.35 × 10−4 5.33674001693726 ×

10−1–2.26555464905687 × 10−4i 1.00 × 100 5.33674001693726 ×
10−1–2.26555450353771 × 10−4i 1.00 × 100

12 4.63520050048828 ×
10−1–3.02227609790862 × 10−3i 4.06 × 10−6 3.81191879510880 ×

10−1–5.55971916764975 × 10−3i 5.13 × 105 4.63520050048828 ×
10−1–3.02227609790862 × 10−3i 1.00 × 100

13 4.32712376117706 ×
10−1–3.96012421697378 × 10−3i 5.82 × 10−6 3.36082935333252 ×

10−1–7.09269661456347 × 10−3i 3.33 × 105 4.32712376117706 ×
10−1–3.96012421697378 × 10−3i 1.00 × 100

14 3.97054076194763 ×
10−1–5.04005001857877 × 10−3i 2.10 × 10−6 2.80377447605133 ×

10−1–9.42375324666500 × 10−3i 8.70 × 105 3.97054076194763 ×
10−1–5.04005001857877 × 10−3i 1.00 × 100

15 3.55095088481903 ×
10−1–6.39960262924433 × 10−3i 4.50 × 10−6 2.05873236060143 ×

10−1–1.39953233301640 × 10−2i 3.89 × 105 3.55095088481903 ×
10−1–6.39960449188948 × 10−3i 1.01 × 100

16 3.04253190755844 ×
10−1–8.32277443259955 × 10−3i 2.88 × 10−6 - - 3.04253190755844 ×

10−1–8.32277256995440 × 10−3i 1.01 × 100

17 2.38977894186974 ×
10−1–1.16468686610460 × 10−2i 7.58 × 10−7 - - 2.38977909088135 ×

10−1–1.16468686610460 × 10−2i 2.28 × 100

18 1.41187623143196 ×
10−1–2.14445460587740 × 10−2i 6.40 × 10−8 - - 1.41187608242035 ×

10−1–2.14445423334837 × 10−2i 2.21 × 101
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In addition, due to the small scale of calculation in this case, the computation time of
KrakenC (mainly used to calculate the eigenvalues and eigenfunctions corresponding to
the modal equation) using the NFD and the SFD are both below several milliseconds, and
zero seconds can even appear in multiple measurements, making it difficult to accurately
measure the computation time, so a comparison analysis of calculation speed could not be
provided in this case.

3.3. Munk Waveguide

The Munk waveguide problem consists of a deep water layer with a varying sound
speed profile (as shown in Equation (35)) over a homogeneous sediment half-space. The
depth of the water layer is 5000 m, and the water density is 1.0 g/cm3. The sediment has
a sound speed of 1600 m/s, a density of 1.8 g/cm3, and an attenuation rate of 0.1 dB/λ.
The depth of the sound source is 100 m, and the source frequency is 60 Hz. The lower
and upper phase speed limits were set to 0 m/s and 10,000 m/s, respectively. Similarly to
the Pekeris waveguide case, the grid size of the sound field in the horizontal direction is
uniform at 20 m in this test case, whereas the grid size in the depth direction is variable
and is represented by the PPW.

Since the error of each eigenvalue calculated by the SFD or the NFD cannot be evaluated
due to the lack of a condition like Equation (80), the performance of the SFD and the NFD will
only be judged from the TL results. Figure 9 shows TL curves at the depth of the sound source
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using the SFD (PPW = 10, 20) and the NFD (PPW = 6), respectively. The three curves generally
match well, and the two curves obtained by using the SFD with PPW = 20 and the NFD with
PPW = 6 almost coincide, confirming once again that the NFD with a smaller PPW number can
be used to obtain the results with the same precision as the SFD with a larger PPW number.
By contrast, the curve obtained by using the SFD with PPW = 10 deviates from the other two
curves due to the relatively large numerical error of the SFD with a small PPW number.
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Figure 9. TL curves at the depth of the sound source in the Munk waveguide case.

Figures 10 and 11 show the two TL contours in the Munk waveguide case using the
NFD with PPW = 6 and the SFD with PPW = 20, respectively. Due to the large range and
depth of the sound field, the grid step size in the depth direction has little effect on the
sound field visualization, and the characteristics of these two sound fields are identical.
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Furthermore, the computation time of KrakenC (mainly including the calculation of
the eigenvalues and eigenfunctions, not including the calculation of the sound pressure
field) can be significantly reduced using the NFD with smaller PPW numbers. In the Munk
waveguide case, the computation time of KrakenC using the NFD with PPW = 6 and SFD
with PPW = 10, 20 is 0.297 s, 0.375 s, and 0.703 s, respectively, meaning that the modified
KrakenC using the NFD (PPW = 6) runs more than twice as fast as the original KrakenC
using the SFD (PPW = 20) when their results have comparable accuracy.
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4. Discussion

The NFD for solving the modal equation in fluid media is presented in this paper,
and three test cases are carried out to verify that the NFD is generally better than the
SFD. The advantages of the NFD include that it can be used with a coarser grid in the
depth direction to obtain results with the same accuracy as the SFD with a finer grid,
meaning that the computation time and computational effort of the KrakenC model can
be reduced accordingly. Moreover, the resulting system of linear equations still has the
tridiagonal structure as that derived from the SFD. It should be noted that the proposed
NFD in this paper is only applicable to horizontally stratified fluid media (not including
elastic boundary conditions) where the sound speed of water changes slightly with depth.
Although typical underwater environments meet this condition of weak vertical variation
in sound speed, some particular environments may deviate from this condition, resulting
in additional numerical errors.

Future work on NFD will include applying it to other acoustic propagation models,
such as wavenumber integration models [22], and expanding the types of acoustic media
to which the NFD is applicable, such as elastic media and fluid media where sound
speed varies moderately with depth. In addition, accurate and efficient computation of
eigenvalues and eigenfunctions corresponding to the modal equation is not only related to
FD schemes, but also to other relevant algorithms used to solve the eigenvalue problem.
Therefore, to further improve the accuracy of normal modes, it is necessary to develop
better shooting methods, Richardson extrapolation techniques, inverse iteration algorithms,
and so on.
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