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Abstract: A real-time tuna detection network on mobile devices is a common tool for accurate tuna
catch statistics. However, most object detection models have multiple parameters, and normal mobile
devices have difficulties in satisfying real-time detection. Based on YOLOv3, this paper proposes a
Tuna-YOLO, which is a lightweight object detection network for mobile devices. Firstly, following a
comparison of the performance of various lightweight backbone networks, the MobileNet v3 was
used as a backbone structure to reduce the number of parameters and calculations. Secondly, the
SENET module was replaced with a CBAM attention module to further improve the feature extraction
ability of tuna. Then, the knowledge distillation was used to make the Tuna-YOLO detect more
accurate. We created a small dataset by deframing electronic surveillance video of fishing boats
and labeled the data. After data annotation on the dataset, the K-means algorithm was used to get
nine better anchor boxes on the basis of label information, which was used to improve the detection
precision. In addition, we compared the detection performance of the Tuna-YOLO and three versions
of YOLO v5-6.1 s/m/l after image enhancement. The results show that the Tuna-YOLO reduces
the parameters of YOLOv3 from 234.74 MB to 88.45 MB, increases detection precision from 93.33%
to 95.83%, and increases the calculation speed from 10.12 fps to 15.23 fps. The performance of the
Tuna-YOLO is better than three versions of YOLO v5-6.1 s/m/l. Tuna-YOLO provides a basis for
subsequent deployment of algorithms to mobile devices and real-time catch statistics.

Keywords: tuna detection; catch statistics; lightweight network; attention mechanisms; knowledge
distillation; image augmentation

1. Introduction

Tuna fisheries are known as “golden fisheries”, and there are five regional fishery
management organizations in three oceans to manage them [1–3]. Due to the depletion
of several tuna stocks, stock assessment has been carried out in these regional fishery
management organizations, and the resource status of important tuna stocks has been
closely monitored, both of which depend on relevant fishery data and scientific observer
data submitted by flag states [4–6]. It is a time-consuming and cost-ineffective task in
traditional fishery management. Meanwhile, artificial intelligence technologies and deep
learning algorithms are gradually replacing part of human labor. In tuna fisheries, they
are gradually replacing the work of human observers. Therefore, scientists use computer
vision techniques based on deep learning to classify tuna species and estimate tuna sizes to
get more accurate data [7]. In addition, electronic observers will probably replace human
observers in the near future.

The low detection precision usually results from a large number of species with
different shapes, and complex scenarios [8,9] in tuna longline fisheries. Strachan et al.
used the image binarization algorithm to differentiate the fish contour and background
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by setting the size of the pixel threshold to obtain the texture features of the fish, which
were transferred into the detector to classify the fish. However, the detection accuracy of
this algorithm was not high [10]. Larsen et al. added and extracted the texture features
of three fish species according to the method of Strachan et al. [10] and used the linear
discriminant analysis (LDA) algorithm to classify 108 images of these fishes with Top1
accuracy of 76%, which was a significant improvement in the detection accuracy [11].
Wu et al. used traditional image processing methods to extract fish features, which were
used for fish identification by an SVM classifier whose Top1 accuracy reached 83.33% and
speed reached 5 fps [12]. Li et al. input the pretrained weights into the YOLO model to
train their model. The speed was about 12 fps on the same platform, and the Top-1 accuracy
reached 93% [13]. Because the accuracy of the network model and the detection speed could
not be achieved ideally at the same time, Chen et al. used transfer learning to optimize the
VGG16 network model, and the network model accuracy reached 97.66%, while the speed
was 10.32 fps [14]. Li et al. compared the performance among GoogleNet [15], AlexNet [16],
Resnet [17] and DenseNet [18] and selected the best network, DenseNet, as the detection
network with an accuracy of 98.5% and speed of 1 fps [19]. Liu et al. proposed a YOLOv3
squid detection model based on MobileNet v3, and its algorithm speed reached 12 fps
while its accuracy was 78.9% [20]. Wang et al. proposed a YOLO v5-L tuna detection model,
whose results showed that the YOLO v5-L model had the best performance, and its mean
Average Precision (mAP) reached 99.13%, while the speed was 0.82 fps [21]. Generally,
13 fps or more is the standard for real-time detection on mobile devices. It can be seen that
when the detection accuracy of the network model is at a high level, the computational
speed will be reduced accordingly. In addition, the detection speed reflects the efficiency of
real-time detection, so how to achieve real-time detection with high accuracy becomes a
challenge [22].

Generally, the YOLO series as a one-stage object detection model can basically reach a
high level of accuracy and detection speed. The YOLO v3’ structure is currently a relatively
classic, concise and highly recognized network. While the YOLO v4 model merely provides
some improvement to the YOLO v3 training tricks, YOLO v5 has better flexibility and
higher speed than YOLO v4, which provides some improved ideas on the backbone and
prediction head of YOLO v3. We compared the detection performance between YOLO
v5 and Tuna-YOLO in the following sections. YOLO v6 [23] introduces the RepVGG
structure [24] to make the network more suitable for GPU devices, which unfortunately
does not meet the application scenarios of our fishing boats. YOLO v7 [25] adopts the idea
of reparameterization, which provides a new idea for industrial application, but relatively
complicated code and high cost have hindered the application of this network. Therefore,
we choose YOLO v3 as the network to be improved at this stage.

The main structure of this article is described as follows: Section 2 introduces the
source of the dataset, the setting of the experiment, and the evaluation indexes of the image
enhancement algorithm and network performance. Section 3 mainly analyzes the results of
the experiments. First, the effect of image enhancement is verified by using three indexes,
and then the detection performance between Tuna-YOLO and other models is compared in
terms of network complexity and mAP@0.5; four curves of the network before and after
knowledge distillation are shown in Section 3.4: P-R curve, F1 scores curve, precision curve
and recall curve. Finally, the network performance is verified by using the test dataset.
Section 4 mainly discusses the advantages of Tuna-YOLO from the perspective of structural
superiority and performance superiority. Section 5 summarizes the achievements and
innovations of this study.

Specifically, in this study, due to the special lighting environment on longline vessels,
three preprocessing algorithms were sequentially used to enhance the dataset, which
improved the quality of the original image and the detection performance of the network
in terms of three evaluation indexes. In order to effectively reduce the network complexity
and improve the detection and classification accuracy, Tuna-YOLO was proposed based on
YOLOv3. The Darknet-53 was replaced by MobileNetv3, and the CBAM attention module
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was added. As the teacher network, the vanilla YOLO v3 used knowledge distillation on
the backbone to guide the training of Tuna-YOLO. Through the ablation test, it is proved
that the detection performance and speed can be further improved without any increase
in calculation. Tuna-YOLO can provide technical support for the replacement of manual
observers by electronic observers in the future.

2. Materials and Methods
2.1. Image Dataset Resource

All of the image data were from Liancheng Overseas Fishery (Shenzhen) Co., Ltd. and
all the fish were put on the deck for shooting to make statistics of the catch. This study
selected feature-diverse Thunnus obesus, Thunnus albacares, Makaira mazara and Xiphias
gladius at a complex environment as four kinds of detection targets. Furthermore, the
dataset was divided into training set, test set and validation set by the ratio of 8:1:1. The
biological characteristic information of four fish species is shown in Table 1. In order to re-
duce the risk of data leakage, we avoided the “late split” operation when performing image
augmentation to prevent false impressions that the detection performance is excellent.

Table 1. Biological characteristic information of four species.

Species Schematic Diagram Individuals Biological Characteristic

Xiphias gladius
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320 
Long and thin pectoral fins, big eyes, gray belly, pecto-
ral fins blue-black above, brown below 

Thunnus albacares 
 

200 
Mid-long pectoral fins, long second dorsal fins, blue-
black back, gray abdomen, other fins are yellow 

Makaira mazara 
 

150 
Long body, strong front body, prominent snout like a 
sword, two raised crests on both sides of caudal pedun-
cle 

2.2. Experiment Set 
The Tuna-YOLO was evaluated by using the above dataset. The training process 

made use of a warm-up strategy, learning rate decay [26], L2 regularization [27] and data 
preprocessing techniques [28]. The maximum rate of learning was 0.1, which was gradu-
ally decreasing. Each network will undergo 200 epochs of training. PyTorch 1.8.1 [29] was 
used to conduct all experiments on an NVIDIA RTX 3070 graphics card. 

2.3. Evaluation Index 
2.3.1. Image Enhancement 

Because of the low-resolution monitoring equipment and lack of light, all videos 
taken from tuna vessels were in low definition and it was difficult to detect the target, 
which would affect the accuracy of tuna species and size detection. Distinguishing tuna is 
based on the fact that different tuna species have different local feature attributes. How-
ever, without clear local feature information, the recognition error rate would become 
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150

Long body, strong front body,
prominent snout like a sword, two
raised crests on both sides of
caudal peduncle

2.2. Experiment Set

The Tuna-YOLO was evaluated by using the above dataset. The training process
made use of a warm-up strategy, learning rate decay [26], L2 regularization [27] and data
preprocessing techniques [28]. The maximum rate of learning was 0.1, which was gradually
decreasing. Each network will undergo 200 epochs of training. PyTorch 1.8.1 [29] was used
to conduct all experiments on an NVIDIA RTX 3070 graphics card.

2.3. Evaluation Index
2.3.1. Image Enhancement

Because of the low-resolution monitoring equipment and lack of light, all videos taken
from tuna vessels were in low definition and it was difficult to detect the target, which
would affect the accuracy of tuna species and size detection. Distinguishing tuna is based
on the fact that different tuna species have different local feature attributes. However,
without clear local feature information, the recognition error rate would become higher.
So, image augmentation was used to optimize the texture features of these videos [30,31].
Firstly, saturation adjustment and histogram equalization were used to improve the overall
quality of the images. Then, image brightness was increased by gamma correction. Finally,
the improved multi-scale Retinex algorithm was selected to improve the image quality.
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2.3.2. Improved Lightweight Tuna-YOLO Network Architecture

Vanilla YOLO v3 consists of three parts, i.e., backbone, bottleneck and prediction. In
the backbone, Darknet53 extracts feature information by convolution calculation, then the
other two parts select a certain pixel in the image as the center point and a suitable loss
function according to the prior box distribution. To make the loss value converge as quickly
as possible, the size of prior boxes and the stating position of the detection frame in the
network training were fine-tuned to minimize for the loss function, and to convert the
detection problem to a regression question [32].

The proposed Tuna-YOLO employed MobileNet v3 as backbone. The MobileNet
v3 combined the advantages of depth wise separable convolution [33], linear bottleneck
in-verted residuals [34], NetAdapt algorithm [35] and SENet [36] structure. However,
the SENet is not suitable for object detection because of its global characteristic. Local
feature is necessary for object detection because of the complexity of scenes, e.g., different
targets in similar background, same targets in different backgrounds. Therefore, the CBAM
attention mechanism was used to improve the network’s ability to understand local feature
information to replace the SENet structure. The structure of Tuna-YOLO was shown in
Figure 1.
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Figure 1. The structure of Tuna-YOLO. The improved MobileNet v3’s 6th, 12th, and 15th layer bneck
structure were used as a branch to combine with the Neck part of YOLO v3.

In the Tuna-YOLO network, the design of anchor boxes was essential for fitting degree,
accuracy and real-time detection efficiency after network model training. In order to
simulate the real length and width of the real bounding boxes, K-Means cluster algorithm
was used to cluster 9 anchor boxes according to the label. The distribution of all ground
truth bounding boxes with label information [37] was shown in Figure 2. We can find the
positions of the annotation boxes basically in the center of the image, and the distribution
of the annotation boxes is relatively consistent. It can be seen from the size statistics
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of the annotation boxes that the targets are mainly large-sized objects, which meet the
characteristics of the sample types in the dataset and are conducive to subsequent study.
Analysis and research of detection algorithms improve the model precision.
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2.3.3. Knowledge Distillation

The calculations and parameter amounts of the network were reduced significantly
after adopting the lightweight design, but so was the detection accuracy. To address this
problem, knowledge distillation (KD), a joint training method by transferring “knowledge”,
was employed to improve the detection accuracy. The KD structure was shown in Figure 3.
KD is the process of imitating the distillation in chemistry, using the softmax function with
temperature parameters to “distill” the logit output from complex and large networks, so
as to generate more information in categories. This part of the in-formation is called “dark
knowledge”. The additional information guides the simple and small network to learn
more knowledge, and the two networks are called the teacher network and the student
network, respectively.

To diversify the information distribution output by the teacher network, we used the
temperature parameter τ to get soft prediction output by distilling logits output between the
teacher network and student network. The same dataset was used because soft prediction
output implied the information of the negative samples. With the help of SoftMax active
function, the teacher network’s class prediction probability distribution could be regarded
as the soft target. Similarly, this method was used to get not only the soft prediction output
but also the hard prediction output from the student network. As for the soft prediction
output, soft prediction output and soft target were used to calculate loss value by loss
function Lso f t, which was a part of total loss. The Lso f t was defined as:

Lso f t = −
N

∑
i

PT
i log

(
QT

i

)
(1)
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where PT
i is the i-th soft target at time T, QT

i is the i-th soft prediction output at time T, N is
the total number of samples and N = 27 in this paper.
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and then trained by the “dark knowledge” of the superior teacher network, so that the detection
performance of the student network was close to that of the teacher network, which was another kind
of knowledge transfer.

The hard prediction output and ground truth were used to calculate the loss value by
loss function Lhard. The Lhard was defined as:

Lhard = −
N

∑
i

CT
i log(QT

i ) (2)

where CT
i is the i-th hard target at time T, N = 27 in this paper.

The total loss function was defined as:

Lall = Lso f t + Lhard (3)

In this paper, DenseNet201-YOLOv3 and backbone of improved Tuna-YOLO were
selected, respectively, for the teacher network and the student network, as a way to improve
the detection performance and to increase the mAP of Tuna-YOLO.

2.4. Methods

To test the enhancement results of different augmentation algorithms mentioned in
Section 2.3.1, the images before and after augmentation were compared according to the
combination and splitting of algorithms, and three indexes to evaluate the quality of images
were used [38], i.e., standard deviation, mean gradient and information entropy.

To evaluate the network computation speed, the index of frames per second (fps) was
compared between Tuna-YOLO and other lightweight networks, such as DarkNet53, Ghost-
Net, SqueezeNet, ShuffleNetv1, ShuffleNetv2, MobileNetv1, MobileNetv2, MobileNetv3
and MobileNetv3-ECA [39,40].

In addition, the network performance and computation speed were synthetically
compared between the Tuna-YOLO after knowledge distillation and other models, such as
DenseNet121-YOLOv3, DenseNet169-YOLOv3 and DenseNet201-YOLOv3. In particular,
the speed of these models was evaluated in terms of parameters, floating-point operations
per second (FLOPs) and fps, and the detection performance was evaluated in terms of
accuracy, recall rate and mAP [41]. The closer the mAP value is to 1, the better the predictive
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performance of the network model. Generally, these three indexes can evaluate the detection
performance of the network to varying degrees. The mAP reflects the detection accuracy
on the basis of IoU, so it is the most important evaluation index. The performance of class
prediction can be directly explored from the confusion matrix. The types of prediction
mainly include the following four types: True Positive, False Negative, False Positive, and
True Negative, which mainly reflect the relationship between the predicted class and the
real class, which can be seen in Table 2 for the description.

Table 2. The distribution of classification results.

Confusion Matrix
Predict Label

Positive Negative

Real label
positive XTP XFN

negative XFP XTN

Accuracy represents the rate of predicting positively in prediction results, which is
defined as:

P =
XTP

XTP + XFP
(4)

Recall rate represents the rate of predicting positively in all samples, which was
defined as:

R =
XP

XTP + XFN
(5)

where XTP represents the number of positive samples that are correctly divided, XFP
represents the number of samples that are incorrectly classified as positive samples, XFN
represents the number of wrongly classified as negative samples and XTN represents the
number of negative samples that are correctly divided.

The equation of mAP was defined as:

mAP =
1
m ∑

γ∈{0,0.1,...,1}
maxR≥γP(R) (6)

IoU =
P ∩ R
P ∪ R

(7)

where γ is the threshold of IoU, m is the number of different samples; γ = 0.5, m = 4 in
this paper.

3. Results
3.1. Comparison of Different Image Augmentations

Figure 4 shows the images before and after augmentation. Table 3 shows their respec-
tive values of standard deviation, mean gradient and information entropy. The improved
Retinex algorithm achieved the best results on the three-evaluation index (Table 3).

Table 3. Comparison of image quality between before and after image augmentation.

Evaluation
Index

Original
Image

Saturation
Adjustment

Histogram
Equalization

Gamma
Correction

Improved Multi-
Scale Retinex

Standard
deviation 24.632 45.373 49.231 46.234 51.289

Mean gradient 0.213 0.479 0.628 0.0417 0.642
Information

entropy 3.583 6.597 6.821 5.124 6.924
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In order to verify the superiority of the improved multi-scale Retinex image augmen-
tation algorithm in network model performance, a comparison of the mAP was conducted
among Tuna-YOLO, YOLOv3 and DenseNet201 after training. The best mAP was based on
the improved multi-scale Retinex algorithm (Table 4).

Table 4. mAP of network model in different augmentation algorithms.

Image Augmentation YOLOv3 DenseNet201 Tuna-YOLO

Original image 26.85 35.12 23.68
Saturation adjustment 52.79 65.37 48.64

Histogram equalization 63.74 78.59 57.32
Gamma correction 54.44 65.91 52.87

Improved multi-scale Retinex 79.63 94.94 78.21

3.2. Comparison of Detection between Tuna-YOLO and Other Lightweight Network

To verify the detection performance of Tuna-YOLO after knowledge distillation, the
same dataset from Liancheng Overseas Fishery (Shenzhen, China) Co., Ltd. was used, and
the videos were framed into annotated images, which were input into all lightweight net-
works. All lightweight networks were deployed on the baseline of YOLOv3 for experiments.
The results are shown in Table 5.

Compared with the YOLOv3 based on DarkNet53, the improved Tuna-YOLO in this
study reduced Params by 62.3%, FLOPs by 73.5% and mAP by 1.8%, and increased fps by
50.5%. Compared with other lightweight networks, Tuna-YOLO had obvious advantages
in terms of fps and mAP. The improvement of fps facilitates the real-time detection of tuna
on mobile devices.
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Table 5. Performance comparison of different lightweight networks.

Network Params/MB FLOPs/G fps mAP@0.5/%

DarkNet53 234.74 32.767 10.12 79.63
GhostNet 87.33 8.409 11.81 64.60

SqueezeNet 97.93 9.861 11.23 65.97
ShuffleNetv1 83.25 8.636 15.12 68.56
ShuffleNetv2 84.36 8.565 14.54 71.67
MobileNetv1 92.15 10.146 12.14 68.54
MobileNetv2 84.94 8.952 14.48 71.23
MobileNetv3 88.48 8.676 15.13 73.59

MobileNetv3-ECA 82.71 8.674 14.98 78.17
Tuna-YOLO 88.45 8.676 15.23 78.21

3.3. Comparison of Performance between Tuna-YOLOs after Knowledge Distillation and Other
YOLOv3s and YOLOv5s

Compared with the original YOLOv3, the knowledge-distilled Tuna-YOLO improved
mAP by 7.67%. In general, YOLO v5 is more suitable for small object detection, and the
detection performance improves with the increase of network parameters. The YOLOv5-6.1
large’s mAP will be higher than that of the knowledge-distilled Tuna-YOLO when using
the maximum number of parameters, but it still fails to meet our requirements for detection
speed (Table 6). The comparison curves consisting of PR curve, F1 score curve, precision
curve and recall curve, are shown in Figure 5.

Table 6. Comparison of model performance.

Model Params/MB FLOPs/G fps mAP@0.5/%

YOLOv3 234.74 32.767 10.12 79.63
DenseNet121-YOLOv3 106.44 18.033 6.49 91.37
DenseNet169-YOLOv3 128.92 19.945 5.38 92.12
DenseNet201-YOLOv3 151.06 23.263 4.96 94.94

YOLO v5-6.1 large 92.34 16.64 7.52 92.84
YOLO v5-6.1 mid 69.26 8.34 16.98 83.26

YOLO v5-6.1 small 39.24 4.32 27.39 64.35
Tuna-YOLO 88.45 8.676 15.23 78.21

Tuna-YOLO after kd 88.45 8.676 15.23 85.74

The model performance of Tuna-YOLO after knowledge distillation has been signifi-
cantly improved compared with the original YOLOv3 (Figure 5).

3.4. Validation Results of the Network Model

The Tuna-YOLO after knowledge distillation and original YOLOv3 were used to
detect the target from the electronic monitoring videos in frames. The detection precision of
various tuna species is shown in Table 7, and the comparison of detection results is shown
in Figure 6. The comparison of the confusion matrix is shown in Figure 7. The precision of
Tuna-YOLO was higher than that of the original YOLOv3 (Table 7).

Table 7. Precision values of tunas on Tuna-YOLO and original YOLOv3.

Model Xiphias gladius Thunnus obesus Thunnus albacares Makaira mazara

YOLOv3 89% 84% 87% 83%
Tuna-YOLO 97% 95% 97% 98%
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4. Discussion
4.1. The Advantages of Improved Tuna-YOLO

The improved Tuna-YOLO based on YOLOv3 is suitable for tuna detection because the
YOLOv3 performs better than Faster-RCNN and SSD in terms of speed and accuracy [42–44].
On the basis of YOLOv3, the Tuna-YOLO has higher detection accuracy and simpler
network structure [45]. Jiang et al. [46] and Wang et al. [47] also optimized the original
network on the aspect of detection accuracy, but it was practically difficult to deploy on
mobile devices because of the many parameters. Jiang et al. [48] integrated the ideas of
dense connections, residual connections and group convolution. The mAP indicators on the
mini-RD and SAR ship detection dataset (SSDD) reached 83.21% and 85.46%, respectively.
Furthermore, compared with different YOLO v5 versions, Tuna-YOLO after knowledge
distillation is also superior in comprehensive performance. Tuna-YOLO borrowed the
idea of YOLOv3 and replaced the backbone DarkNet53 of YOLOv3 with the MobileNetv3
with CBAM attention module, which reduced the parameter amount of network by 62.3%.
Given that the parameter decrease would inevitably lead to a decrease in mAP, knowledge
distillation was used to operate knowledge transfer from the teacher network to the student
network. The detection precision of knowledge distillation was improved by 6.41%, which
perfectly solved the problem of low detection accuracy with reduced model parameters,
hence the realization of real-time detection.

4.2. The Comparison of Performance between Tuna-YOLO and Other Models

In this study, the mAP of Tuna-YOLO reached 85.74%, the fps reached 15.23 fps and the
accuracy reached 95.83%, which were at a relatively high level. Alessandro Betti [49] pre-
sented YOLO-S, whose architecture exploited a small feature extractor based on Darknet20,
as well as skip connection, via both bypass and concatenation, and reshape-passthrough
layer to avoid the vanishing gradient problem, and promoted feature reuse across the
network and combined low-level positional information with more meaningful high-level
information. Muksit et al. [50] proposed the YOLO-Fish, which enhanced YOLOv3 by fixing
the issue of up sampling step sizes to reduce the misdetection of tiny fish and adding spatial
pyramid pooling (SPP) to the first model to add the capability to detect fish appearance
in those dynamic environments, respectively. Kazim et al. [51] put forward the improved
YOLOv3 by increasing detection scale from three to four, applied K-means clustering to
optimize the anchor boxes, novel transfer learning technique and improved loss function
to increase the model performance. Gupta et al. [52] raised the YOLO Fish, which used
hierarchical techniques in both the classification step and in the dataset, with a mAP of
91.8%. However, the speed was only 3.79 fps. Wang et al. [53] proposed the FML-Centernet
model to detect fish in a river. This network improved the efficiency of detection by testing
the ratio of positive and negative samples and optimizing the loss function. The mAP of the
network reached 85%, and the fps was 10.12 fps. Li et al. [54] proposed an improved fish
recognition network model YOLO-V3-Tiny-MobileNet by optimizing the MobileNet and
YOLO-V3-Tiny network models, which had shallow feature extraction network layers and
insufficient extraction capabilities. The recognition precision and accuracy of the model
were 79.3% and 86.5%, respectively. Xu et al. [55] proposed a detection network model
(YOLOv3-Corn) for corn leaf diseases and insect pests. By modifying the feature fusion
layers of the network model, a new Head (104 × 104) was constructed to improve the
detection accuracy; the detection accuracy of the network model YOLOv3-Corn was 84.34%,
and the fps was 8.7 fps. Table 8 shows the specific results of comparison.
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Table 8. Comparison with different algorithms based on the YOLO.

Model mAP@0.5/% fps

YOLO-S [49] 46.7 8.1
YOLO-Fish [50] 76.56 7.6

Improved YOLO v3 [51] 91.3 5.9
YOLO Fish [52] 91.8 3.79

FML- Centernet [53] 85 10.12
YOLO-V3-Tiny-MobileNet [54] 86.5 9.7

YOLOv3-Corn [55] 84.34 8.7
Tuna-YOLO 85.74 15.23

5. Conclusions

An improved real-time lightweight detection network was proposed for tuna detection
based on the YOLOv3 network, which used lightweight design on the backbone and
combined the CBAM attention mechanism module on the basis of the MobileNet v3
network structure to build an efficient tuna detection network, Tuna-YOLO. Knowledge
distillation was used on the Tuna-YOLO to improve the accuracy of the model. The
experimental results showed that the Tuna-YOLO was more streamlined after model
compression, which realized the real-time detection of tuna on the mobile devices by
increasing the detection speed and provided potential for the replacement of human
observers with electronic observers.
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Abbreviations

mAP mean Average Precision
IoU Intersection over Union
Params The number of parameters
FLOPs Floating Point Operations
fps Frame Per second
Lso f t Loss function based on soft label
Lhard Loss function based on hard label
Lall Total loss function
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XTP the number of positive samples
XFN the number of wrongly classified as negative samples
XFP the number of samples that are incorrectly classified as positive samples
XTN the number of negative samples
P Precision
R Recall
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