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Abstract: Ships are equipped with power plants and operational assistance devices, both of which
need oil for lubrication or energy transfer. Oil carries a large number of metal particles. By identifying
the materials and sizes of metal particles in oil, the position and type of wear can be fully understood.
However, existing online oil-detection methods make it difficult to identify the materials and the
sizes of metal particles simultaneously and continuously. In this paper, we proposed a method for
identifying the materials and the sizes of particles based on neural network. Firstly, a tree network
model was designed. Then, each sub-network was trained in stages. Finally, the identification
performance of several key groups of different frequencies and frequency combinations was tested.
The experimental results showed that the method was effective. The accuracies of material and size
identification reached 98% and 95% in the pre-training stage, and both had strong robustness.

Keywords: metal particle identification; neural network; pre-training; autoencoder

1. Introduction

In the field of marine engineering, the hydraulic system is widely used, and oil is the
key working medium of hydraulic system [1]. As complex systems, ships are equipped
with power plants and many operational assistance devices, which all require oil as a
lubricant or energy transfer medium. During the operation of machines, metal particles
peel off the friction pairs for various reasons and flow with the oil. Statistics show that
more than 75% of hydraulic system failures, about 35% of diesel engine operation failures,
38.5% of gear failures and 40% of rolling bearing failures are caused by oil failures [2,3].
Each particle in the oil is an important information carrier. The wear mode can be judged
by the quantity distribution of the particles, and the wear position can be judged by the
particle material. Particle detection is very important for predicting potential trouble and
avoiding catastrophic failures [4].

There are many kinds of analytical methods for oil particles, which can basically be
divided into three categories: particle size distribution analytical method, particle material
analysis method, and a combination of the two. The particle size distribution analytical
method is as follows: the particle size is measured, and particles are counted according to
the particle size interval to form a particle size distribution. The particle size distribution is
compared with the cleanliness standard to determine the cleanliness level of the oil. The
particle material analytical method involves using the particularity of materials to analyze
the composition of particles, so as to determine the source of particles and the abnormal
wear of components [5,6].

The combination of the particle size distribution analytical method and particle ma-
terial analytical method allows one to diagnose the wear condition at a given location by
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classifying the particle material along with particle counting and size measurement. In of-
fline detection, there are many analytical methods, such as ferrography and spectroscopy [7],
but the information about materials and sizes cannot be obtained simultaneously. Online
detection can be used to monitor the oil condition in real-time, and the manual requirements
are low, in line with the development trend of the industry. Particle detection methods with
classification ability include the inductance detection method [8], the capacitance detection
method [9], the ultrasonic detection method [10], the image recognition method [11], and
the optical method [12]. The principles, advantages, and disadvantages of these methods
are shown in Table 1.

Table 1. Common particle detection methods and their advantages and disadvantages.

Detection Methods Principles Advantages Disadvantages

Inductance Detection
Method

Using the magnetization and eddy
current effect of oil metal particles

under the action of the coil
magnetic field to change the field,

and then change coil inductance or
voltage, according to the change in
coil inductance or voltage detection.

Ferromagnetic and
non-ferromagnetic particles

can be distinguished;
Not affected by cleanliness

Particles are indistinguishable
when they are aliased

Capacitance Detection
Method

Metal particles can be measured by
using the change in oil capacitance.

Metal and non-metal
particles can be
distinguished;

High sensitivity;
Not affected by cleanliness

The measurement accuracy is
easily affected by the acid

value and water content of oil;
Ferromagnetic and

non-ferromagnetic particles
cannot be distinguished

Ultrasonic Detection
Method

When the ultrasonic wave acts on
the particles in the oil, the particles

will scatter or reflect the sound
wave, attenuating the ultrasonic

wave. Information about the size of
the oil particles can be obtained by
measuring the attenuation degree

and amplitude of the echo.

The size of metal particles
can be estimated;

Not affected by cleanliness
or air bubbles

The particle material cannot
be judged

Image Detection Method

An image of the pollutant in the
fluid is obtained by microscope

imaging technology, and the
particle size and material property
information are rapidly measured

using image processing technology.

The morphology and size of
particles can be judged;

The particle material can be
roughly judged

It is difficult to achieve both
high precision and real-time

performance;
Will be affected by cleanliness;
The particle material cannot

be judged accurately;

Optical Method
Information about the metal

particles is obtained by measuring
the light transmittance of oil.

High sensitivity
The particle material cannot

be judged;
Will be affected by cleanliness

At present, the analytical method combining particle size distribution and particle
material in the above table can only be used to roughly identify particles, especially material.
Oil analytical technology combining multiple methods can obtain particle size distributions
and element information. However, because the two kinds of information are obtained
by different instruments at different times, it is difficult to integrate the two kinds of
information, and it is not possible to make a one-to-one correspondence between size and
material, resulting in the failure to trace the source and wear form of particles. In view of
the problem that various methods cannot identify particle size information and material
information simultaneously, a method for identifying the materials and the sizes of particles
based on neural network is proposed in this study.
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2. Particle Identification and Particle Signal Characteristics
2.1. Particle Signal and Feature Simulation

The basic principle of particle detection is the same for both through-stream and
side-stream inductance coils. An alternating magnetic field is used to induce a tiny vortex
electric field inside the through-stream particles, and this field moves with the liquid flow
in the detection space to excite the particle magnetic field. The particle magnetic field
produces a weak change in impedance or voltage of the sensor coil. In the early stage
of particle detection, the number of particles is detected and recorded by the number of
changes in impedance or voltage [13]. In order to quantify the detection signal and the
relationship between particle material and particle size, as shown in Figure 1, our research
group [14] previously established a magnetization characteristics model of metal particles
in a time-harmonic magnetic field. According to this model, the form of particle signal
under different detection methods was provided. When the particles passed through
the detection area of the coil along a certain track, the impedance signal was generated
as follows:

∆R(r) = −µ0ωvpimag(χ)|h(r)|2, (1)

∆L(r) = µ0vpreal(χ)|h(r)|2, (2)

χ =
3
2

(
2µr + 1− a2k2) sin ak + ak(2µr + 1) cos ak
(µr − 1 + a2k2) sin ak− ak(µr − 1) cos ak

, (3)

where ∆R(r) is the resistance signal, representing changes in the resistance of the coil
impedance caused by a particle at r; ∆L(r) is the inductance signal, representing changes
in the inductance of the coil impedance caused by a particle at r; ω represents the angular
frequency of the excitation current; µ0 represents the vacuum permeability constant, which
is usually 4π× 10–7H/m; vp represents equivalent spherical volume of particle; a is radius
of particle; χ is a complex variable representing the magnetic susceptibility of metal particles
in a time-harmonic magnetic field; k is a constant, with a value of k =

√
−jωµ0µrσ; µr and

σ are relative permeability and conductivity of particle, respectively; h(r) is a space vector
representing the magnetic field intensity at r when one unit of DC is applied to the coil; j is
an imaginary number unit.
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As shown in Figure 1, when a particle passes through the detection area of the coil
along a certain track, the impedance signal is generated. The impedance signal is comprised
of the resistance signal ∆R(r) and the inductance signal ∆L(r). r represents the position
of the particle. The resistance signal and the inductance signal are pulse signals. One
of the signal characteristics is amplitude; that is, the corresponding signal on the track
is the largest. These maximum values are called ∆Rmax and ∆Lmax, respectively. Other
characteristics, such as the modulus of complex impedance change ∆Z and phase angle
θ, are described in Equations (4) and (5). The conductivity and permeability of different
material particles are shown in Table 2.

|∆Z| =
√

∆R2
max + ω2∆L2

max (4)

θ = arctan
ω∆Lmax

∆Rmax
(5)

Table 2. Conductivity and permeability of metal particles.

Material Conductivity, (Siemens/m) Permeability, (H/m)

Fe 1.04× 107 6.3× 10−3

Cu 5.98× 107 1.256629× 10−6

Al 3.5× 107 1.256665× 10−6

Nodular Iron 1.370588× 106 4.01858377× 10−4

Co 1.1× 107 5.735987× 10−5

Ni-Co alloy 1.99862× 107 8.269203× 10−6

Brass 1.6744× 107 1.256642× 10−6

Permalloy 2.5× 106 5.02654824× 10−2

2.2. Selection of Experimental Particles

Commonly used mechanical engineering materials, such as copper, iron, aluminum,
and their alloys, need to be identifiable. In this study, eight granular materials were
identified, namely, iron (Fe), copper (Cu), aluminum (Al), nodular iron, cobalt (Co), Ni-Co
alloy, brass, and permalloy.

According to the SRM P2806B standard of the National Institute of Standards and Tech-
nology (NIST) [15], particle size can be divided into five categories: 6~14 µm,
14~21 µm, 21~38 µm, 38~70 µm, and >70 µm. This standard has reasonable division,
meeting the service requirements of measurement value transmission in the field of particle
counting, and is beneficial to measurement management and unity. Consequently, this
standard has been widely used in particle detection and possesses high recognition and
credibility.

2.3. Characteristics of Particle Signals in a Complex Plane

Based on Equations (1) and (2) and Table 2, the particle sizes range from 6 to 150 µm.
By changing the particle volume, the curves of eight kinds of particles at frequencies of
41.3 kHz, 0.1 MHz, 1 MHz, and 2 MHz were drawn, as shown in Figure 2.
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In this study, we used ∆R and ∆L to identify particles. When two kinds of particles’
∆R and ∆L values differ significantly, they can be easily classified. As can be seen from
Figure 2, there are obvious characteristic differences between ferromagnetic particles and
non-ferromagnetic particles. Ferromagnetic particles can produce larger ∆L values than
non-ferromagnetic particles and can be easily classified at low frequencies. The permeability
of non-ferromagnetic particles is almost the same, but only the conductivity can create a
significant difference in ∆R. However, at low frequencies, little discrepancy in ∆L and θ
can be seen between different particles. Therefore, only by increasing the frequency can
non-ferromagnetic particles have certain identification potential.

Among them, Cu, Fe, Al, and 304 stainless steel sare common metal materials used
for mechanical components and have good separability in the characteristic diagrams of
these frequencies.

Current particle identification algorithms are only limited to manually identifying
ferromagnetic particles and non-ferromagnetic particles, or to distinguishing ferromagnetic
particles at a single frequency, lacking accurate material and size identification supported
by more data. Based on the above analysis, we propose the hypothesis that the material
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and particle size of various ferromagnetic and non-ferromagnetic particles can be identified
under muti-frequency measurement using deep learning.

Therefore, based on the theories outlined in Sections 1 and 2, we designed and trained
a neural network model, and tested its identification performance during training.

3. Neural Network Particle Identification Model with Pre-Training

This section provides details of the design and training of a particle identification
neural network model that includes material and size identification. Section 3.1 describes
the structure of the network. Section 3.2 introduces the specific implementation steps of
the training.

3.1. Neural Network Structure

Figure 3 shows the structure of the neural network for particle identification. Four fea-
tures were generated for each particle. N represents the number of particles. M represents
the number of kinds of materials, which was eight in this study. K represents the number of
kinds of sizes, which was 5 in this study. The number at the bottom of the layer represents
the amount of output data. The network is composed of an autoencoder (AE), a particle
material identification network, and a particle size identification network. The training
and identification proccesures are shown in Figure 4. During particle identification, the
particle signal obtained by the sensor was processed and input into the encoder to correct
the signal drift caused by the experimental environment. Then, the modified data were fed
into the material identification network to obtain the identification results of eight kinds of
materials. The most general case was used in this paper. Finally, the modified data were
fed into the size identification network, and five kinds of size identification results were
obtained. The results of each material corresponded to a size identification network. Thus,
the whole structure was a tree network structure, with strong readability.
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3.1.1. Autoencoder

The actual experimental environment was not completely ideal; for example, the
sensor parameters lead to unknown bias gain in the amplitude and phase of the signal. The
pre-training needs to train the network with theoretical values, so we needed to correct
the drift data. An autoencoder was prepared after the input. The middle layer of the
autoencoder structure compressed the dimensions to 1/2 of the input. So this compression
did not affect valid information, we needed to nonlinearly expand the input information so
that half of the input data came from the amplification. Yehui Li et al. found that, under
impedance detection, the particle material and the phase angle are related to the particle
size and the modulus of complex number [16]. Therefore, the input of the autoencoder
consisted of two parts, the modulus of complex number |Z| and the phase angle θ as
embedding, in addition to the directly measured particle information ∆Rmax and ∆Lmax.

3.1.2. Material Identification and Size Identification Network

The material identification network consisted of three dense layers with ReLU and
one dense layer with softmax. The size identification network basically adopted a similar
structure. The addition of batch normalization between layers results in a wider range of
size identification with better robustness [17].

The particle size was more difficult to identify than the material, so the dataset first
passed through the material identification network. A network was trained for every
particle, rather than all in one network. Although multiple groups of networks were added,
the individual scale and training parameters were reduced, and the fitting difficulty of each
network was greatly decreased. Thus, the cumulative complexity was much smaller than
that of a single network.

3.2. Neural Network Model Pre-Training and Autoencoder Training

The particle identification neural network model needs to undergo two stages of
training. In the first stage, the training dataset comprises a large number of data randomly
generated by the computer according to formulas. Firstly, the autoencoder is trained
to make its output equal to the input, and then the material identification and particle
size identification networks are trained. In the second stage, the material identification
and particle size identification networks are fixed, and the training dataset comprises the
particle data with known information in the experiment. The autoencoder is trained to
learn the error of the experimental environment.

3.2.1. First-Stage Training

Pre-training is widely used in natural language processing and computer vision. It is
designed to train the network with a structure similar to the sample, so that the network
structure has a certain identification potential [18,19]. For example, the Visual Geometry
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Group (VGG) image recognition network proposed by the University of Oxford is divided
into a convolutional feature extraction layer and a subsequent full-connection classification
layer [20]. A large amount of pre-training can ensure that the convolutional network part
has strong feature extraction ability, and the subsequent training of real dataset focuses
on the fully connected part of the classification. In particle identification, it is difficult to
obtain signals with particles of known material and size, so pre-training is also needed
to reduce its cost. In the first stage, before the pre-training, the autoencoder needs to be
trained approximately to make its output equal to its input. Thus, pre-training is equivalent
to producing particles in an ideal sensor and training them.

Particles with a scale ranging from 6 to 150 µm were randomly generated, and
the corresponding characteristic information input network was calculated according
to Equations (1)–(5). The loss function of pre-training was the cross-entropy function.
During pre-training, an Adam optimization algorithm [21–23] was adopted to carry out
30,000 iterations of the network, and the batch processing capacity of each iteration was
1000. The initial learning rate was set to 0.001, and the learning rate decayed to half of the
previous rate every 3000 iterations. Gradually increasing the noise generated by the sample
increased the uncertainty by 0.1% every 6000 iterations.

3.2.2. Second-Stage Training

In the second stage, the identification layer was iterated 50 times using the high-cost
real measurement data, so that the identification layer learned the errors created by the
environment. The cascading large-scale network parameters were fixed beforehand. Data
can lack scale information to reduce the difficulty of acquisition. The learning rate was set
to 0.01 with no attenuation. Therefore, the training times could be reduced to ensure that
the network convergence occurred as soon as possible.

4. Evaluation and Discussion of Pre-Training Identification Performance

Particle datasets were generated by applying Equations (1)–(3) with particle material
random selection from Table 2 and with particle size random from 6 µm to 150 µm. To
investigate the influences of frequency, datasets of different frequency combinations were
used for training and test. The sizes of training datasets and test datasets were 40,000 and
10000, respectively. Dataset 1, Dataset 3, Dataset 5, and Dataset 7 in Table 3 were utilized
to train the network. Dataset 2, Dataset 4, Dataset 6, and Dataset 8 were utilized to test
network and to calculate performance results.

Table 3. Dataset for training and test.

Dataset Function of Dataset Frequency Size of Dataset

Dataset 1 training 0.1, 0.8, 1, 2 and 4
MHz 40,000

Dataset 2 test 0.1, 0.8, 1, 2 and 4
MHz 10,000

Dataset 3 training 0.8 and 1 MHz 40,000
Dataset 4 test 0.8 and 1 MHz 10,000
Dataset 5 training 0.8 MHz 40,000
Dataset 6 test 0.8 MHz 10,000
Dataset 7 training 4.13 kHz 40,000
Dataset 8 test 4.13 kHz 10,000

4.1. Confusion Matrix

The ordinate of the confusion matrix represents the actual particle, and the abscissa
represents the results of training. Thus, the element values in the matrix represent an
intuitive correspondence between actual and predicted materials. Diagonal elements
represent the number of samples correctly classified, and non-diagonal elements represent
the number of samples wrongly classified [24,25].
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4.2. ROC Curve

A more comprehensive indicator, namely the receiver operating characteristic (ROC)
curve, was needed to evaluate the robustness of the identification results. The softmax
layer output a list of probabilities directly, usually with the largest number in the list as a
prediction. In the ROC curve, this rule is usually changed to take the value greater than
the specified threshold as the result of the prediction. The rate that belongs to this class
was denoted as the true positive rate (TPR); the rate that did not belong to this class was
denoted as the false positive rate (FPR). By constantly adjusting the acceptance threshold,
the results of the identification will also change. The corresponding TPR and FPR results
can be plotted on a two-dimensional plane, and the curve obtained is the ROC curve. The
area under the ROC curve (AUC) is often used as an intuitive indicator to measure the
robustness of an identification. The AUC ranges from 0 to 1. When the AUC result is stable
between 0.95 and 1, this indicates that the accuracy and robustness of the identification are
excellent [26].

4.3. Identification Performance of Particle Material

Figure 5a,b represents the confusion matrix of the identification structure under multi-
frequency measurement, whose identification results were much better than those of a
single frequency in Figure 5c,d. Figure 5a shows the measurement results of five frequencies:
0.1, 0.8, 1, 2, and 4 MHz. Among them, identification errors were only evident between
aluminum and copper, and between iron and permalloy. The proportion of misjudgment
was less than 3%. The recall of Fe, Cu and Al were, respectively, 92.5%, 90%, and 97%,
and other materials’ were 100%. The precision value of Cu, Al and permalloy were,
respectively, 96.8%, 90.7%, and 92.5%, and other materials’ were 100%. Figure 5b shows
the measurement results of two frequencies: 0.8 and 1 MHz. Compared to Figure 5a, the
error rate was slightly higher, but was still controlled below 5%. The recall and precision
value were similarly ideal. In Figure 5c,d, the identification errors also appeared in several
types of fixed errors, which were in good agreement with the conclusions in Section 2.3. In
other words, only when the characteristics in the complex plane are linearly separable can
the neural network accurately identify the particle material. It is concluded that obtaining
more measurement data under multi-frequency measurement can effectively improve the
accuracy of detection.

The identification results of 10,000 groups were analyzed in order to discuss them in
more detail. The ROC curve was drawn in Figure 6.

In Figure 6, the identification accuracy of five frequencies (0.1, 0.8, 1, 2, and 4 MHz)
was 98%, and the ROC area also reached 0.995, which was far better than any one of these
frequencies. Although both 41.3 kHz and 0.8 MHz are single frequencies, the identification
results of 0.8 MHz were superior to 41.3 kHz. Compared with the results in Figure 5d, it
can be seen that the identification results at 41.3 kHz were limited for the identification of
the eight particles presented in this paper.

However, this does not mean that 41.3 kHz is unsuitable for particle detection. On
the contrary, this frequency may be suitable for distinguishing particles of other materials.
Particles of different materials have different conductivity and permeability, so they have
different impedance results. Based on this consideration, the results of particle identification
pre-training have more application value. This method can be used to find suitable frequen-
cies or frequency combinations for particle identification before the design of circuits in
practical engineering.
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In addition, the accuracy of two frequencies (0.8 and 1 MHz) can reach 95%, which is
basically close to five frequencies. In circuits, frequency is one of the main indexes when
designing filters and other modules. Considering that obtaining impedance results at more
frequencies will increase the cost of detection, detection at these two frequencies has greater
application potential.

4.4. Identification Performance of Particle Size

After material identification was completed, particle size identification was carried
out. A total of 30,000 training iterations were performed, respectively, at five frequencies
for a fully connected network, two frequencies for a fully connected network, and two
frequencies for neural network branches. The trained batch capacity was 1000. The
confusion matrix and ROC curve are shown in Figure 7.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 11 of 14 
 

 

frequencies. Although both 41.3 kHz and 0.8 MHz are single frequencies, the identifica-

tion results of 0.8 MHz were superior to 41.3 kHz. Compared with the results in Figure 

5d, it can be seen that the identification results at 41.3 kHz were limited for the identifica-

tion of the eight particles presented in this paper. 

However, this does not mean that 41.3 kHz is unsuitable for particle detection. On 

the contrary, this frequency may be suitable for distinguishing particles of other materials. 

Particles of different materials have different conductivity and permeability, so they have 

different impedance results. Based on this consideration, the results of particle identifica-

tion pre-training have more application value. This method can be used to find suitable 

frequencies or frequency combinations for particle identification before the design of cir-

cuits in practical engineering. 

In addition, the accuracy of two frequencies (0.8 and 1 MHz) can reach 95%, which is 

basically close to five frequencies. In circuits, frequency is one of the main indexes when 

designing filters and other modules. Considering that obtaining impedance results at 

more frequencies will increase the cost of detection, detection at these two frequencies has 

greater application potential. 

4.4. Identification Performance of Particle Size 

After material identification was completed, particle size identification was carried 

out. A total of 30,000 training iterations were performed, respectively, at five frequencies 

for a fully connected network, two frequencies for a fully connected network, and two 

frequencies for neural network branches. The trained batch capacity was 1000. The confu-

sion matrix and ROC curve are shown in Figure 7. 

  
(a) (b) 

  
(c) (d) 

Figure 7. Confusion matrix and ROC curve for performance analysis of particle size identification
at different frequency combinations. (a) Frequency = 0.1, 0.8, 1, 2, and 4 MHz, single neural net-
work identification results; (b) frequency = 0.8, 1 MHz, single neural network identification results;
(c) frequency = 0.8, 1 MHz, tree neural networks’ identification results; (d) ROC curves corresponding
to (a), (b), and (c).

The particles wee evenly distributed within a given range of particle sizes, but the
identification of particle sizes was not uniform, and the number of test samples with larger
particle sizes was higher. This was acceptable for this study. The reasons for this are as
follows: although the sample was uneven, it was sufficient that identification performance
will not be significantly impaired. In addition, the particle size distribution generated in
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practical engineering may not have been uniform, and the distribution of pre-training data
can be modified according to the actual situation.

By comparison of Figure 7a–c, identification errors were mostly concentrated between
two adjacent size categories. In other words, particles whose size was at the class boundary
tended to be mistakenly assigned to adjacent classes because of added noise.

In Figure 7c, the recall of 6~14 µm, 14~21 µm, 21~38 µm, 38~70 µm, and >70 µm
were, respectively, 98.3%, 98.2%, 100%, 99.4% and 95.4%. The precision value of 6~14 µm,
14~21 µm, 21~38 µm, 38~70 µm, and >70 µm were, respectively, 85.1%, 99.3%, 98.4%, 97.6%,
and 99.6%. By comparing the identification performance of the single network branch and
the whole neural network in Figure 7, the identification accuracy of the neural network was
seen to have greatly improved, reaching more than 95%. The area under the ROC curve
also reached more than 0.993. It can also be seen that tree neural network can more easily
obtain stronger fitting ability than other forms of single network branch.

By comparing the red line and the blue line in Figure 7d, under the same training times,
the particle size identification at five frequencies was inferior to that of two frequencies,
which is contrary to logical sense. The particle size identification at five frequencies
requires more training parameters, but the actual training times were limited. Thus, the
performance was not as good as that of the fully connected network at two frequencies.
In other words, as available frequency components increased, a simple fully connected
network was no longer appropriate and additional measures need to be taken to reduce
the training parameters. For example, feature engineering such as principal component
analysis (PCA) and dimension reduction can be performed before frequencies are input.

5. Conclusions

In this paper, a neural network particle identification algorithm with an autoencoder
and pre-training mechanism was proposed for the characteristics of small particle identifi-
cation samples and large differences among different sensors. In pre-training, the particle
material identification accuracy rate achieved 98% and the size identification accuracy
rate achieved 95%. The pre-training mechanism was based on the magnetization theory
of metal particles in a magnetic field to enable database amplification, which avoids the
problem of the high cost of particle sample acquisition. The autoencoder parameters were
specifically used to characterize the measurement system parameters of different sensors,
avoiding the high computational cost of training the full network for each sensor.

However, this study simply proposed ideal methods for second-stage training, not
evaluating and discussing second-stage training identification performance. In the follow-
ing research, our research group will make coils with excellent performance to complete
this experiment.

In addition, we explored more research directions of metal particle detection through
inductive sensors:

• We established a frequency-finding scheme based on particle characteristics, which
should be adapted to different engineering scenarios;

• We confirmed that 0.8 MHz and 1 MHz are suitable for two-frequency measurement,
which lays a theoretical foundation for the numerical selection of a subsequent multi-
frequency measurement sensor.
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