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Abstract: Spatiotemporal companion pattern (STCP) mining is one of the means to identify and 
detect group behavioral activities. To detect the spatiotemporal traveling pattern of ships from mas-
sive spatiotemporal trajectory data and to understand the movement law of group ships, this article 
proposes a feature-driven approach for STCP mining that consists of (1) generating the grid index 
via the rasterizing of geospace and characterizing trajectory points via the spatiotemporal trajectory 
grid sequences (STTGSs) of ships; (2) designing filtering rules with the constraints of range, time 
and distance to construct a candidate set for ship STCP mining; and (3) measuring the STTGS simi-
larity of the associated ships and setting the confidence threshold to realize spatiotemporal com-
panion mining. The effectiveness of the proposed method is practically validated on a real trajectory 
dataset which is collected from the Taiwan Strait waters. The experimental results are as follows: 
825 pairs of associated ships and 225 pairs of accompanying ships are mined when the grid size is 
0.05° and the confidence is 0.5. Larger grid sizes can increase the inclusiveness of the associated ship 
trajectory similarity measurement, which can result in an increase in confidence of pattern. A large 
number of pseudo-accompaniment ships are extracted to the result set, resulting in a more dispersed 
distribution of pattern confidence. By verifying the proposed method, accompanying behavioral 
activities such as ship cooperative operation, companion navigation method, and so on, can be de-
tected. These results can provide a reference for the research of ship group behavior identification 
and have an important application value for water transportation management. 

Keywords: spatiotemporal data mining; ship companion pattern; multi-feature grid sequences; 
LCSs (longest common subsequence); AIS data 
 

1. Introduction 
The spatiotemporal trajectory is a curve in the spatial location dimension and time 

dimension. The spatiotemporal trajectory data contain rich spatiotemporal features of 
moving targets, activity characteristics and other valuable information [1–3], which pro-
vides a research basis for analyzing the features of moving targets’ group activities and 
mining group behavior patterns. For example, in terms of ship behavior supervision, min-
ing the STCP of ships suspected of crimes can assist the relevant departments of Customs 
to arrest smugglers on the water. Mining the STCP of engineering vessels such as sand 
dredges can help identify coordinated operations on the water to optimize traffic organi-
zation or stop illegal operations in time. In terms of a maritime safety strategy, mining the 
STCP of suspicious naval ships facilitates the ability of the national security department 
to analyze the strategic intent of enemy activities and the current situation, make timely 
responses, etc. 

Automatic identification system (AIS) data have proven to be a valuable source of 
maritime situational awareness and ship behavior analysis using big data mining. Rich 
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achievements have been made in several AIS data mining-based research directions. To 
identify the ship activity intention and achieve water traffic situational awareness, some 
scholars have researched ship trajectory prediction [4–6]. In addition, some scholars sug-
gested a ship behavioral features mining method [7–9] by using machine learning or deep 
learning to cluster and classify AIS data, which would be helpful to master the rules and 
characteristics of ship activities. To monitor and supervise the behavioral activities of 
ships, some scholars have proposed methods of ship collision prevention [10], ship abnor-
mal behavior detection [11] and ship emission inventory calculation [12], which are of 
great significance for navigation safety and environmental protection on water. More im-
portantly, AIS data can be used to evaluate the operational risk management strategies of 
shipping companies [13] in the shipping industry, which provides significant enlighten-
ment for shipping risk management, etc. In recent years, the rapid growth of spatiotem-
poral trajectory data collected by the shipborne AIS has brought both opportunities and 
challenges to STCP mining. Through mining associated knowledge from spatiotemporal 
trajectory data [14,15], analyzing features of ship group activities and mining potential 
group motion patterns, group activity laws and the movement trends of ships can be dis-
covered to provide effective analysis and calculation approaches for ship behavior pre-
diction and abnormality detection [16,17], and help predict maritime group events. These 
are of great significance for the improvement of maritime traffic safety, optimization of 
traffic organization and evaluation of water traffic situations. 

To analyze ship association relationships accurately and mine the ship STCP quickly 
from massive AIS data, this paper proposes a spatiotemporal feature-driven approach for 
ship STCP detection. The other parts of this paper are organized as follows. Section 2 an-
alyzes and concludes the current status of domestic and international research on STCP 
mining. Section 3 mainly defines the ship STCP by analyzing the ship activity features. 
Section 4 shows the general process of generating the sample trajectory data by dataset 
preprocessing, then introduces how to utilize time, space and range as constraints to de-
sign the filtering rules and describes how to measure the similarity of associated ship 
STTGSs to mine the ship STCP. Figure 1 illustrates the framework of the entire processing. 
Section 5 conducts the algorithm validation experiment and sensitivity analysis experi-
ment using AIS data. Finally, the conclusions and evaluation are drawn in Section 6. 

 
Figure 1. The framework of the entire processing. 

2. Related Work 
The STCP of group targets’ movements is manifested as groups of spatial objects 

moving together for a certain period of time [18,19]. This pattern abounds in water traffic 
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scenarios, such as fishing vessels teaming up for fishing operations, offshore engineering 
vessel collaborative working, military fleets escorting merchant ships, naval vessel for-
mation navigation, etc. To study STCPs of moving objects, researchers have proposed a 
series of pattern models as well as mining methods. The subjects include vehicles, pedes-
trians and ships. The existing research results [20–25] are mainly obtained by prolongating 
the spatial co-location pattern in the temporal dimension. And the mining methods are 
mainly divided into association rules-based [26] and clustering analysis-based [21]. 

Not very much work, however, has been devoted to waterborne traffic and major 
efforts have been directed at vehicles and pedestrians on the road. In the research of road 
traffic, due to the constraint of the road network, the vehicle travel route has obvious 
boundaries and the accompanying vehicle detection methods are mainly divided into 
those based on vehicle GPS trajectory data and those based on ANPR data. The literature 
[20,21,23,27,28] performed a clustering and correlation analysis on vehicle GPS track data 
to detect accompanying vehicles. Thi Thi Shein et al. [23] proposed a micro-group cluster-
ing method to reduce the time complexity of the clustering algorithm; Zhang Yongmei et 
al. [27] proposed a two-layer network-based spatiotemporal co-occurrence pattern mining 
algorithm. It constructs a two-layer spatiotemporal network to store the spatiotemporal 
proximity relationships between instances and then extracts the proximity relationships 
in the network to mine the spatiotemporal co-occurrence patterns of vehicles. Concerning 
the problem that some vehicles do not install or turn off the GPS, the literature [29–32] 
proposed a vehicle travel companion detection method based on ANPR data, which ob-
tains the license plate and spatiotemporal information of vehicles through traffic cameras 
and measures the similarity of driving road sections to achieve the mining of accompany-
ing vehicles. Abdulrahman Al-badwi et al. [29] designed a hybrid distributed breadth-
first and depth-first frequent itemset mining algorithm HD-FIM based on the Spark plat-
form to reduce the algorithm time complexity from the perspective of improving the Apri-
ori algorithm. Zhu Meiling et al. [30,32] proposed COINCIDENT, an accompanying vehi-
cle detection method based on ANPR data, to achieve the real-time detection of accompa-
nying vehicles. In water traffic, there is no specific roadway constraint for ship navigation 
and thus the accompanying vehicle detection method does not apply to ship companion 
pattern mining. 

In pedestrian concomitant detection, the mainstream mining method is to time-slice 
the pedestrian location data and then mine pedestrian companions by the clustering-tak-
ing intersection or trajectory similarity metrics. In 2019, Yao Ruihong et al. [33,34] pro-
posed a method of using density clustering combined with association analysis to achieve 
travel companion discovery for the pattern omission problem caused by sparse trajecto-
ries. In 2020, they proposed a travel companion detection framework GroupSeeker for the 
pattern candidate omission problem caused by short time-slicing and achieved compan-
ion detection by density clustering and pseudo-accompaniment filtering. Yu Jiangang et 
al. [35] designed a Spatiotemporal Trajectory Companion Detection Framework (STCDF) 
by measuring the trajectory similarities to detect travel companions in trajectories with 
different sampling frequencies, demonstrating the improvement of the pattern detection 
efficiency of grid processing. Elahe Naserian et al. [36,37] proposed a loose travel com-
panion pattern that reduced the spatiotemporal continuity of companions and subse-
quently proposed various clustering-centered detection methods. As the pedestrian tra-
jectory data are obtained through cell phone positioning base stations where the sampling 
area is relatively fixed, only the spatiotemporal information of pedestrians is retained in 
the data, while the information on motion features is less so. Therefore, the association 
strength of travelling companions mined through the clustering-taking intersection 
method is low. A large number of ship motion features are retained in the ship trajectory, 
but the variety of ship activities is relatively simple and methods such as clustering cannot 
meet the requirements for detecting strong STCP. 

In the research of water transportation, marine navigation has larger ship sizes, sim-
pler navigation routes and no road network constraints compared with road traffic. The 
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mining method mainly adopts the idea of Apriori association rules to detect the spatio-
temporal patterns of ships by mining the spatiotemporal proximity between ships. For 
large-scale ship trajectory data, Bao Lei [26] proposed a ship spatiotemporal co-occurrence 
pattern algorithm designed by connecting the instances satisfying spatiotemporal prox-
imity and setting the support and confidence thresholds. He also verified them using the 
actual AIS dataset on the spatial Hadoop analysis platform architecture. Wang Jiang et al. 
[38] constructed spatiotemporal matrices and spatiotemporal tensors from motion fea-
tures and imposed non-negativity constraints and sparsity constraints using a collabora-
tive clustering model to mine the spatiotemporal co-occurrence patterns of ships and re-
veal the association of ships in the region, time and of ship types. Zhang Yalun et al. [39] 
proposed a ship spatiotemporal co-occurrence pattern mining method (SSC-IS) based on 
sliding space–time rectangular and improved support for the pattern omission and com-
putational inefficiency problems in traditional pattern mining methods. These methods 
either traverse the temporal and spatial data for a large number of point-pair calculations 
or directly process the spatiotemporal data with high time complexity, which cannot re-
alize the mining of the accompanying patterns of ships, so it is necessary to study suitable 
methods for the accompanying pattern mining of ship trajectories. 

These pattern models are microscopically designed to identify objects that move to-
gether for some time. However, to be applied to different scenarios, many kinds of STCPs 
are proposed, such as Flock, Convoy, Swarm, Platoon and so on. Their concepts have 
small differences in the continuity of the time period or moving together. The relevance 
of objects in the STCP pattern mining method based on association rules is stronger than 
that in the clustering method, but the method has a high requirement on the sampling 
frequency of the moving target position information. In water traffic, it is difficult to 
achieve complete synchronization of the trajectory acquisition due to equipment differ-
ences and signal strength. The mining algorithm based on the cluster analysis has strong 
robustness to heterogeneous trajectory data, but it needs to cluster the moving clusters on 
each timestamp, which has large time overhead and low mining efficiency. The efficiency 
and accuracy of these methods have a great challenge when faced with massive spatio-
temporal trajectory data [40]. 

3. Correlation Analysis and Basic Definitions 
Compared with other moving targets (vehicles, pedestrians, animals, etc.), the ship 

has the characteristics of a large size, large navigational safety space, stable spatial distri-
bution of trajectory data, simple navigational routes, etc. Therefore, when defining the 
ship STCP, the setting of the proximity distance and the proximity time is different from 
the existing STCP. This paper generates spatial grid indexes by meshing AIS data. The 
proximity relationship for distance is considered to be satisfied when ships are in the same 
grid, the proximity relationship for time is considered to be satisfied when the common 
time in the same grid meets the duration threshold and the range constraint is considered 
to be satisfied when the number of common navigational grids meets the threshold. 

Definition 1 (Ship Trajectory Data): The raw AIS dataset can be expressed as 𝑇𝑅 ={𝑇𝑟 , 𝑇𝑟 , 𝑇𝑟 … 𝑇𝑟 }, where 𝑚 represents the number of ships. Single ship trajectory can 
be expressed as 𝑇𝑟 = {𝑡𝑟 , 𝑡𝑟 , 𝑡𝑟 … 𝑡𝑟 } , where 𝑛  represents the number of trajectory 
sampling points. A spatiotemporal position point is the vector of the ship instantaneous 
motion state, which can be expressed as 𝑡𝑟 = {𝑚𝑚𝑠𝑖, 𝑡𝑖𝑚𝑒, 𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑐𝑜𝑔, ℎ𝑒𝑎𝑑𝑖𝑛𝑔, 𝑠𝑜𝑔} , 
where 𝑚𝑚𝑠𝑖  represents the Maritime Mobile Service Identify; 𝑡𝑖𝑚𝑒  represents the 
timestamp of the trajectory sampling point; 𝑙𝑎𝑡 and 𝑙𝑜𝑛 represent the latitude and lon-
gitude of sampling location of the ship trajectory point; 𝑐𝑜𝑔, ℎ𝑒𝑎𝑑𝑖𝑛𝑔 and 𝑠𝑜𝑔 repre-
sent, respectively, the course over ground, the bow direction and the speed over ground 
of the ship trajectory point. 
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Definition 2 (Consecutively Repeated Elements of Sequence De-duplication): All ele-
ments in the sequence are de-duplicated by a sliding window of size 2. Only one element 
is retained when the elements in the sliding window are the same. By sequence de-dupli-
cation, the length of the sequence can be shortened while the original order of the elements 
is preserved. For example, given a sequence as Seq = {a, b, c, c, c, d, e, e, c, b, b} after con-
secutive element de-duplication of the sequence, a new sequence is obtained as Seq ={a, b, c, d, e, c, b}. 

Definition 3 (Support): The support of the ship STCP is the number of common elements 
of the associated ship’s STTGSs. Given any two STTGSs as 𝐺𝑆𝑠  and 𝐺𝑆𝑠 , it can be 
expressed as 

support = 𝐺𝑆𝑠 ∩ 𝐺𝑆𝑠  (1)

Definition 4: (Confidence): The confidence of the ship STCP is the proportion of the num-
ber of common elements of the associated ships’ STTGSs to the length of the full cycle 
associated trajectory sequence, namely the associated vessel concomitant participation 
rate. It can be expressed as 

Confidence = support/𝑇𝑟  (2)

Definition 5 (Ship STCP): The ship STCP means the associated ships have sailed ∆𝐿 
common multi-feature grids within a certain time ∆𝑇 and the proportion of the number 
of common grids in the associated trajectory sequence exceeds the constraint of the confi-
dence threshold 𝜀. Given any pair of associated ship trajectories as 𝑇𝑟  and 𝑇𝑟 , respec-
tively, the spatiotemporal features of the ship STCP can be expressed as: 

 𝑇𝑖𝑚𝑒 ∩  𝑇𝑖𝑚𝑒 ≥ ∆𝑇 Support ≥ ∆𝐿 Confidence ≥ 𝜀 

(3) 

4. Methods 
The STCP mining is the process of extracting accompanying objects from spatiotem-

poral trajectory data. This paper designs a STCP mining method based on spatiotemporal 
trajectory features, which is divided into the following steps: firstly, preprocess the AIS 
data, generate a sample trajectory for STCP mining, set the minimum speed threshold to 
extract ship navigation trajectories and grid the trajectory dataset to generate spatiotem-
poral grid indexes. Then, design the filtering rules with the constraints of range, time and 
distance and generate the more strongly associated candidate set. Finally, the ship STCP 
mining is realized by measuring the multi-feature grid sequence trajectory similarity of 
associated ships. The basic framework is shown in Figure 2. 
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Figure 2. The detailed process of the methodology. 

4.1. Grid Index Generation 
Due to the interference of positioning equipment signal fluctuations and other un-

controllable factors, there are many outlier points, redundant points and useless data in 
the trajectory data. Trajectory preprocessing is an indispensable step to achieve efficient 
spatiotemporal pattern mining [2]. By preprocessing the raw AIS data, the worthless tra-
jectory points can be removed while the raw ship motion information is retained, which 
reduces the data volume and improves the mining efficiency. The grid index is generated 
by meshing ship trajectory data and STTGS is used to characterize position point data, 
which is convenient for the trajectory data to be counted and analyzed later based on the 
grid index. The specific steps are as follows. 

(1) Spatiotemporal Trajectory Preprocessing 

The raw AIS data are cleaned to eliminate noise data, error data and redundant data 
in the trajectory dataset, where the noise data mainly refer to the drifting trajectory points 
generated by the AIS positioning error, the error data mainly refer to the blatantly false 
data that do not meet the requirements of each field and the redundant data mainly in-
clude static information data and duplicated data that are not related to pattern mining. 
The sample trajectories of the ship STCP mining are generated after preprocessing. 

(2) Navigational Trajectory Extraction 

By setting the constraint of a minimum speed, the stop points and anchoring trajec-
tory points in the data are eliminated and the trajectory data of the ship sailing status are 
generated. The sailing trajectories are grouped by ship’s MMSI and serialized in the order 
of trajectory point sampling time. Sparse trajectory segments are processed with linear 
interpolation to improve the integrity of the track data. 

(3) Spatial Grid Index Construction 

The global geographic location is rasterized and the research area is divided into uni-
form square grids with starting latitude and longitude of −180° and −90°, respectively. The 
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cleaned spatiotemporal trajectory dataset is mapped into the grids to generate spatiotem-
poral grid indexes and obtain the STTGSs. For example, given a grid size of 𝜃 and the 
raw trajectory 𝑡𝑟 = {𝑚𝑚𝑠𝑖, 𝑡𝑖𝑚𝑒, 𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑐𝑜𝑔, ℎ𝑒𝑎𝑑𝑖𝑛𝑔, 𝑠𝑜𝑔}, the generated grid index is 
defined as follows: 𝑥 =  [(𝑙𝑜𝑛 − −180 − 12 ∗ 𝜃 )/𝜃] (4)

𝑦 =  [(𝑙𝑎𝑡 − −90 − 12 ∗ 𝜃 )/𝜃] (5)

After rectification, the equations are shown respectively in Equations (6) and (7): 𝑥 =  [(𝑙𝑜𝑛 + 180)/𝜃 + 12] (6)

𝑦 =  [(𝑙𝑎𝑡 + 90)/𝜃 + 12] (7)𝑥 and 𝑦 represent the indexes of the grid where the latitude and longitude of the trajec-
tory points are located. Both start counting from “1” and [] represents rounding the value 
down, which is called the integer part of the number. By generating the grid indexes, the 
raw trajectory is characterized by the spatiotemporal grid trajectory sequences, which can 
be expressed as 𝑡𝑟𝑔𝑠 = {𝑔𝑟𝑖𝑑 𝑖𝑑, 𝑚𝑚𝑠𝑖, 𝑡𝑖𝑚𝑒, 𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑐𝑜𝑔, ℎ𝑒𝑎𝑑𝑖𝑛𝑔, 𝑠𝑜𝑔}, and the grid in-
dex can be expressed as Grid id = (𝑥, 𝑦). 

4.2. Candidate Set Construction 
Although the redundant trajectory points can be basically eliminated with the above 

process, the scale of the trajectory data to be processed is still large. If pairwise matching 
is made directly based on spatiotemporal features of ships extracted arbitrarily on MMSI 
from the AIS data, the inefficient algorithm will not meet the demand for fast mining of 
massive maritime trajectory data. Therefore, STCP mining is realized by constructing a 
candidate set of associated ships. The moving targets of STCP navigate range over ∆𝐿 
grids together in a certain time ∆𝑇 with a proximity distance ∆𝐷 constraint. The ships in 
the same grid are regarded as meeting the proximity distance constraint. The filtering 
rules are designed with time, distance and range as constraints; the associated ships that 
may have accompanying relationships are extracted and the pattern candidate set is gen-
erated. The specific steps are as follows. 

(1) Short Spatiotemporal Trajectory Elimination 

The short trajectory is characterized by short navigation time and range, so the filter 
is constructed according to time and range. Firstly, the start and end times of each ship 
trajectory sampling are counted to judge whether the duration time satisfies the constraint 
of the accompanying time span ∆𝑇. The trajectories with a consecutive time span less than ∆𝑇 are eliminated and the dataset is updated. Then, the range of ships is filtered. Since 
the positioning frequency of the shipboard AIS is much less than the time used for a ship 
to navigate a grid, there will be multiple trajectory points in the same grid for the ship and 
there are many duplicate elements in the ship STTGSs. A new grid index sequence (𝐺𝑆𝑠 ) 
is obtained by removing the repeated grid indexes in the grid sequence of each ship. Fi-
nally, the ship trajectories of which the STTGS length (𝑙𝑒𝑛(𝐺𝑆𝑠 )) satisfies the constraint 
of the accompanying range threshold (∆𝐿) are retained. If not, the trajectories are elimi-
nated. Thus, the ship trajectory dataset is updated. 

(2) Initial Candidate Set Generation 

The STCP mining is the process of filtering each feature correlation of the ships. To 
achieve fast mining of ship STCP, the associated ships dataset is constructed with time as 
the constraint and the initial candidate set for pattern mining is generated by merging 
these datasets. First, one ship is extracted arbitrarily from the AIS dataset as the primary 
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target and others as the secondary target. The common time span of the primary target 
and the secondary target trajectory is calculated. The span is filtered by the accompanying 
time threshold ∆𝑇. After an iterative calculation, the primary and secondary targets sat-
isfying the time constraint are used as spatial-associated ships to generate the associated 
ships dataset, which is represented as  𝐼𝐶𝑆 = {𝑂 , … , 𝑂 }. This can be described as: ∀𝑂 ∈ {𝑂 , … , 𝑂 }, 𝑀𝑖𝑛(𝑂 𝑡𝑖𝑚𝑒 , 𝑂 𝑡𝑖𝑚𝑒 ) − 𝑀𝑎𝑥(𝑂 𝑡𝑖𝑚𝑒 , 𝑂 𝑡𝑖𝑚𝑒 ) ≥ ∆𝑇 

(8)

where 𝑂  and 𝑂  represent the primary ship “A” and the secondary ship “a”, respec-
tively; 𝑂 𝑡𝑖𝑚𝑒  and 𝑂 𝑡𝑖𝑚𝑒  represent the maximum and minimum values of the 
primary ship A’s trajectory sampling time, respectively. Then the whole trajectory dataset 
is traversed, the associated ships of each ship are calculated iteratively and the condition |𝑚𝑚𝑠𝑖𝑂 | > |𝑚𝑚𝑠𝑖𝑂 | as the iterative constraint is set to avoid repeating the matching and 
recording of subsequent ships, where |𝑚𝑚𝑠𝑖𝑂 | represents the numerical value of the 
MMSI. The associated ships that meet the requirements of the ship STCP about the time 
characteristic are screened out and merged to generate the initial candidate set for the ship 
STCP mining. Finally, these messages are stored in fields as {𝑚𝑚𝑠𝑖 , 𝑚𝑚𝑠𝑖 , 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡, 𝑡𝑖𝑚𝑒𝑒𝑛𝑑}, where 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑖𝑚𝑒𝑒𝑛𝑑 represent the start 
time and end time of the common time span. 

(3) Candidate Set Refinement 
To strengthen the spatial correlation of associated ships in the initial candidate set, 

filtering rules are designed with a space feature to generate a strong association candidate 
set for pattern mining. Firstly, the de-duplicated grid sequences (𝐺𝑆𝑠 ) of each ship in the 
initial candidate set are extracted and the number of common elements in their grid index 
sequences is calculated. Then the accompanying range threshold (∆𝐿) is employed to re-
fine the initial candidate set. After filtering and iterative calculations, the associated ships 
satisfying the constraint are saved as pattern mining objects in a new candidate set, which 
is represented as 𝐶𝑆 = {𝑂 , … , 𝑂 }, i.e., ∀𝑂 ∈ {𝑂 , … , 𝑂 }, which both satisfy  𝐺𝑆𝑠 ∩ 𝐺𝑆𝑠 ≥ ∆𝐿 (9)

where  𝐺𝑆𝑠  and 𝐺𝑆𝑠  represent the de-duplicated grid index sequences of the pri-
mary ship “A” and the secondary ship “a”. Finally, by traversing and updating the initial 
candidate set, the associated ships with low relevance in terms of the space feature can be 
eliminated and the strong association candidate set can be obtained by refining the initial 
candidate set. The field format is the same as the initial candidate set. The multiple filter-
ing rules are used to eliminate the interfering objects of the STCP mining and reduce the 
data redundancy, thus improving the efficiency and accuracy of mining. 

4.3. Ship STCP Mining 
The spatiotemporal motion features of the associated ships are highly correlated dur-

ing accompanying navigation. To measure each feature correlation of the associated ships 
from the strong correlation candidate set and mine the STCP based on the grid index, the 
improved longest common subsequences (LCSs) algorithm is used to measure the STTGS 
similarity of the associated ships. The specific steps are as follows. 
(1) Multi-motion Attribute Grid Construction 

By setting constraints on the spatiotemporal features of the associated ship trajectory, 
the spatiotemporal correlation of the associated ships is improved, but the pseudo-accom-
paniment ships may be misjudged as the STCP such as the pursuit crossing behavior, fol-
lowing behavior, etc. To improve the accuracy of local trajectory similarity measurements 
and pattern mining, it is necessary to constrain the ship motion attributes in each grid, so 
the average speed and average course constraints are set to improve the motion attribute 
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correlation of locally correlated trajectories. By iterating through the de-duplicated grid 
sequences of each ship (𝐺𝑆𝑠 ), the average speed and average course over ground of the 
ship in each grid it passes through are calculated. In addition, the times of entering and 
exiting each grid are counted for the multi-motion attribute grid construction. The infor-
mation is collected to generate the motion attribute table of each ship, which facilitates the 
information call when the trajectory similarity measurement is performed. The table is 
held in six fields, i.e., {𝑀𝑀𝑆𝐼, 𝐺𝑅𝐼𝐷𝐼𝐷, 𝐸𝑁 − 𝑇𝐼𝑀𝐸, 𝐸𝑋 − 𝑇𝐼𝑀𝐸, 𝐶𝑂𝐺, 𝑆𝑂𝐺}, as shown in 
Table 1. 

Table 1. Multi-motion attribute grid information. 

MMSI GRIDID EN-TIME EX-TIME 𝑪𝑶𝑮 𝑺𝑶𝑮 
473,487,616 (453,367) 1,549,123,204 1,549,124,437 30 7.8 
473,487,616 (453,368) 1,549,124,643 1,549,125,901 350 7.7 

-- -- -- -- -- -- 
984,567,372 (627,264) 1,551,542,412 1,551,543,656 57 7.9 
984,567,372 (628,264) 1,551,543,967 1,551,545,327 70 9.2 

(2) Trajectory Distance Measurement of Associated Ships  
The traditional longest common subsequence algorithm calculates the number of 

identical elements in two sets to express the similarity between the two sets. For example, 
given two non-empty sequence sets X and Y, the longest common subsequence is calcu-
lated as: 

𝐿𝐶𝑆𝑠[𝑖][𝑗] = 0𝐿𝐶𝑆𝑠[𝑖 − 1][𝑗 − 1] + 1𝑚𝑎𝑥 (𝐿𝐶𝑆𝑠[𝑖 − 1][𝑗], 𝐿𝐶𝑆𝑠[𝑖][𝑗 − 1]) 𝑖 = 0 ∪ 𝑗 = 0𝑖, 𝑗 > 0, 𝑥 = 𝑦𝑖, 𝑗 > 0, 𝑥 ≠ 𝑦  (10)

where 𝐿𝐶𝑆𝑠[𝑖][𝑗] represents the length of the longest common subsequence between the 
top 𝑖 elements of the X set and the top 𝑗 elements of the Y set. The elements in the above 
two sets are one-dimensional, so it is necessary to improve the original algorithm so that 
it can measure the similarity of the multi-motion attribute grid sequences of the associated 
ships. On the basis of measuring the similarity of grid index sequences, the average course 
difference and the average speed difference of the associated ships in the same grid must 
satisfy the constraints of threshold ∆𝜃 and ∆𝑣. Thus, the improved longest common sub-
sequence algorithm can be obtained. For example, given a pair of associated ship STTGSs, 𝑡𝑟𝑔𝑠 = {(𝑥, 𝑦) , 𝑚𝑚𝑠𝑖 , 𝑡𝑖𝑚𝑒 , 𝑙𝑎𝑡 , 𝑙𝑜𝑛 , 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 , ℎ𝑒𝑎𝑑𝑖𝑛𝑔 , 𝑠𝑝𝑒𝑒𝑑 } , 𝑔𝑟𝑖𝑑 𝑖𝑑 =(𝑥, 𝑦) , 𝑡𝑟𝑔𝑠 = {(𝑥, 𝑦) , 𝑚𝑚𝑠𝑖 , 𝑡𝑖𝑚𝑒 , 𝑙𝑎𝑡 , 𝑙𝑜𝑛 , 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 , ℎ𝑒𝑎𝑑𝑖𝑛𝑔 , 𝑠𝑝𝑒𝑒𝑑 } , 𝑔𝑟𝑖𝑑 𝑖𝑑 = (𝑥, 𝑦) , the longest common subsequence of the pair ship STTGS are described 
as: 𝑆𝐺𝑇 = 𝑚𝑖𝑛(𝐸𝑋𝑇𝐼𝑀𝐸 , 𝐸𝑋𝑇𝐼𝑀𝐸 ) − 𝑚𝑎𝑥 (𝐸𝑁𝑇𝐼𝑀𝐸 , 𝐸𝑁𝑇𝐼𝑀𝐸 ) (11)

𝐿𝐶𝑆𝑠[𝑖][𝑗] =
⎩⎪⎪⎨
⎪⎪⎧ 0                     𝑖 = 0 ∪ 𝑗 = 0

 𝐿𝐶𝑆𝑠[𝑖 − 1][𝑗 − 1] + 1 𝑖, 𝑗 > 0, ⎩⎪⎨
⎪⎧ 𝑔𝑟𝑖𝑑 𝑖𝑑 = 𝑔𝑟𝑖𝑑 𝑖𝑑𝑆𝐺𝑇 ≥ 𝑡𝐶𝑂𝐺 − 𝐶𝑂𝐺 ≤ ∆𝜃𝑆𝑂𝐺 − 𝑆𝑂𝐺 ≤ ∆𝑣𝑚𝑎𝑥{𝐿𝐶𝑆𝑠[𝑖 − 1][𝑗], 𝐿𝐶𝑆𝑠[𝑖][𝑗 − 1]}   𝑖, 𝑗 > 0, 𝑜𝑡ℎ𝑒𝑟𝑠

 (12)

where 𝑆𝐺𝑇 represents the common time of the ships in the same grid, 𝐿𝐶𝑆𝑠[𝑖][𝑗] repre-
sents the length of the longest common subsequences of the 𝑇𝑅  and 𝑇𝑅  . The length of 
the longest common subsequences adds “1” if and only if all judgment conditions are met. 
Since the elements of the longest common subsequence appear in the same order in both 
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sets, i.e., the longest common subsequence is a vector. It is considered that the accompa-
nying ships and Head-on ships have the same STTGSs. The course constraint is added to 
the condition, which can exclude Head-on Situation. The STTGSs distance between the 
associated ships can be obtained by a calculation. 
(3) Ship STCP Mining 

Firstly, the longest common subsequence of the associated ship STTGSs can be se-
lected as the support of the STCP. The associated ships whose support does not meet the 
requirement of the accompanying range ∆𝐿 are eliminated. The pseudo-associated ships 
with the same grid index but different motion characteristics are eliminated. Then the 
similarity of the associated trajectory is calculated as follows: 𝑠𝑖𝑚( , ) = (𝐿𝐶𝑆𝑠( , )/𝑙𝑒𝑛 + 𝐿𝐶𝑆𝑠( , )/𝑙𝑒𝑛 )/2 (13)𝑇𝑟 = 2 ∗ 𝑙𝑒𝑛 ∗ 𝑙𝑒𝑛𝑙𝑒𝑛 + 𝑙𝑒𝑛  (14)

where 𝐿𝐶𝑆𝑠( , ) represents the length of the longest common subsequences of the 𝑇𝑅  and 𝑇𝑅 ; 𝑙𝑒𝑛  and 𝑙𝑒𝑛  represent the length of the STTGSs of the 𝑇𝑅  and 𝑇𝑅 , respectively. As the length of the grid sequence of the associated ship spatiotemporal 
trajectories differs, the formula for calculating the length of the associated ship integrated 
sequences is given in Equation (11). In addition, all parameter notations are listed in Table 
2. Finally, the identified binary ship STCP spatiotemporal trajectory information is orga-
nized and stored and the STCP of multivariate ships can be mined on this basis. 

Table 2. Description of parameter notations. 

Notation Description 
TR The entire raw dataset 
Tr The spatiotemporal trajectory of a ship 
tr The single trajectory point with multiple features ∆T The duration threshold for the STCP ∆L The range threshold for the STCP 𝜃 The size of a grid ∆𝜃 The COG difference threshold of the associated ships in the same grid ∆𝑣 The SOG difference threshold of the associated ships in the same grid 𝜀 The confidence threshold for the STCP 
t The common time threshold of the associated ships in the same grid 

STTGSs Spatial-Temporal Trajectory Grid Sequences 𝑇𝑟  The representative length of associated ship STTGSs 

5. Experimental Results and Discussion 
In this section, experiments are conducted with real AIS data to verify the effective-

ness of the ship STCP mining methodology proposed in this paper and parameter sensi-
tivity analysis of the grid size is performed. 

5.1. Dataset and Experimental Environment 
The experimental waters are collected from Taiwan Strait waters, China, and the ex-

periments are done on a computer with an Intel Core i5 1035G1 CPU, 16G RAM and 512G 
SSD and a 64-bit Windows 10 operating system as the software environment. All algo-
rithms for the experiments are implemented using Python and the tools used include Pan-
das, Numpy, Basemap, Matplotlib and other toolkits. The experiments collect the AIS ship 
trajectory data from February to mid-April 2019, with a total of 12,994,871 data and the 
data size of 919 MB. The data are provided by the Fujian Maritime Safety Administration. 
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5.2. Mining Algorithm Validation Experiment 
Generating the Spatial Grid index. The AIS data are preprocessed as described in 

Section 4.1, including data cleaning, data serialization, navigation trajectory extraction 
and grid index generation. In the process of navigation trajectory extraction, the speed 
threshold is taken as 0.8 knots to eliminate the stopping point of the anchored, berthing 
and slow-moving ships. Then, the grid size is taken as 0.05°, about 2.7 NM and the ship 
trajectory data are gridded to generate the spatiotemporal grid index. After preprocessing 
with the above method, a total of 5,049,433 spatiotemporal navigation trajectory data are 
obtained, including 14,413 ships. 

Constructing the Candidate Set for Ship STCP Mining. According to the method de-
scribed in Section 4.2, the short trajectory, which includes the short time span of ship tra-
jectories and short grid sequences after de-duplication, is eliminated first. The consecutive 
time span threshold of a single ship trajectory sampling ∆𝑇 takes 36,000 s, namely 10 h, 
and the number of grids occupied by every ship trajectory ∆𝐿 takes 20, about 54NM. 
Then, the common time of associated ships with the common elements of their STTGSs is 
matched. The associated ships whose trajectory sampling common time is more than 10 h 
and the number of common grid indexes is more than 20 are extracted. Finally, the asso-
ciated ship dataset is merged to generate a strong association candidate set for STCP min-
ing and a total of 1,104,202 pairs of associated ships are obtained. 

Ship STCP Mining. According to the method described in Section 4.3, the multi-mo-
tion attribute grid is constructed by calculating the motion information of each ship in 
each grid it passes through. A total of 1,434,264 multi-feature grid data are generated. The 
improved longest common subsequence algorithm is used to measure the distance of the 
associated ship STTGSs, where the average speed threshold ∆𝑣 and the average course 
threshold ∆𝜃 are taken as 6 Kn and 30°, respectively, and the common time threshold 𝑡 
of associated ships in the same grid is taken as 30. The number of grids with an average 
speed difference less than 6 Kn, an average course difference less than 30° and a common 
time of more than 30 s in the same grid should be more than 20. By verifying the STCP 
mining method with AIS data, 825 pairs of associated ships are mined. When the confi-
dence threshold 𝜀 of the STCP is taken as 0.5, 225 pairs of accompanying ships are ob-
tained and the information of the top 8 pairs of accompanying ships is shown in Table 3 
in descending order of confidence. 

Table 3. STCP mining results. 

Serial 
Number 

MMSI-ship1 MMSI-ship2 Start-Time End-Time Lcss Similar 

1 321,321,356 414,352,580 1,551,121,623 1,551,270,956 102 0.854289 
2 321,321,356 413,474,870 1,551,121,286 1,551,274,395 105 0.848153 
3 400,068,068 412,520,467 1,550,639,223 1,550,729,624 89 0.843621 
4 413,474,870 414,352,580 1,551,121,623 1,551,270,956 105 0.840215 
5 412,431,217 412,520,384 1,550,642,853 1,550,729,624 98 0.813628 
6 413,366,240 413,368,420 1,551,180,591 1,551,297,622 135 0.784884 
7 413,425,410 419,057,483 1,549,919,223 1,551,096,423 102 0.782172 
8 412,442,134 413,832,568 1,549,079,759 1,551,336,379 254 0.762873 

To verify the effectiveness and accuracy of the algorithm, the spatiotemporal trajec-
tories of the accompanying ships are displayed in a visualized form and the spatiotem-
poral trajectories of the first 8 pairs of accompanying ships in the result set of the STCP 
mining are plotted respectively, as shown in Figures 3 and 4. These show respectively the 
2D spatial trajectory and 3D spatiotemporal diagram of the 8 pairs of accompanying ship 
trajectories combined with geographic information. The yellow and green colors represent 
the accompanying ship trajectories and different line widths are set to show the accompa-
nying ship spatiotemporal trajectory. From the figure, it can be seen that there are some 
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regional differences in position information, speed and course of the accompanying ship 
trajectory, but the spatiotemporal features and motion characteristics of the accompany-
ing ships are highly correlated and the sailing routes are basically the same. 

 
(a) (b) 

 
(c) (d) 

  
(e) (f) 
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Figure 3. STCP trajectory diagram. (a) to (h) respectively represent the trajectory of the 8 pairs of 
accompanying ships in Table 3. 

  
(a) (b) 
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Figure 4. Spatiotemporal diagram of the STCP. (a) to (h) respectively represent the spatiotemporal 
trajectory of the 8 pairs of associated ships in Table 3. 

By visualizing and analyzing the spatiotemporal trajectories of the associated ships, 
it can be initially verified that the multiple features of the accompanying ships are highly 
correlated. For further in-depth analysis of the associated ship accompanying behavior, 
the ship types of the above 8 pairs are searched via the online ship information query 
website. These are shown in Table 4 and the following inferences can be made with refer-
ence to the existing ship types. 

(1) The third pair and the fifth pair may be fishing vessels conducting coordinated 
fishing operations. 

(2) The seventh pair may be two cargo vessels navigating together. 
(3) The eighth pair may be a fishing vessel and a cargo vessel sailing along the way. 
Several other pairs of accompanying ships either lacked ship types or did not belong 

to group activities such as navigation formation or cooperative operation, so they are not 
considered as key research and analysis subjects. 

Table 4. Type of vessels. 

MMSI Ship Type MMSI Ship Type 
321,321,356 Other 414,352,580 Other 
400,068,068 Fishing 412,520,467 Fishing 
413,366,240 Other 413,368,420 Cargo 
412,431,217 Fishing 412,520,384 Fishing 
413,425,410 Cargo 412,442,134 Fishing 
413,832,568 Cargo 419,057,483 Cargo 
413,474,870 Tug   

To analyze the influence of support and confidence on the results of the STCP mining, 
the relationships between support, confidence and the number of associated ships are 
shown in Figures 5 and 6, respectively. From Figure 5, it can be seen that with the increase 
in support, the number of associated ships has a sharp and then slow decrease. From Fig-
ure 6, it can be seen that with the increase in confidence, the number of associated ships 
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decreases sharply in the middle part of the confidence. The confidence reflects the relia-
bility of the ship association relationship. The larger the confidence, the more valuable 
and reliable the association is, which shows the importance of support and confidence in 
the result of STCP mining. 

 

Figure 5. Degree of the support impact analysis. 

 
Figure 6. Degree of the confidence impact analysis. 

The algorithm validation experiments are conducted using real ship trajectory data 
and the experimental results prove that the proposed methodology can effectively mine 
the ship STCP with different association strengths. The feasibility and accuracy of the al-
gorithm are demonstrated by analyzing the experimental results in multiple aspects and 
using visualization methods to show the correlation of multiple features of associated 
ships, as well as the quantitative relationship between support, confidence and associated 
ships. 

5.3. Parameter Sensitivity Analysis 
In the application of the STCP mining methodology proposed in this paper, the de-

termination of the grid size is extremely critical. A larger grid size may lead to the mining 
of pseudo-accompaniment patterns and reduce the accuracy of the algorithm; a smaller 
grid size results in a longer grid sequence for a single ship, which reduces the mining 
efficiency and may also lead to a larger difference in the grid index sequences of associated 
ships and pattern loss. Under the condition that the scale (∆𝑇 = 36,000 s, ∆𝐿 = 54 NM) of 
the ship STCP mining remains unchanged, an important parameter ∆𝐿 of the ship STCP 
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will also change with the change in grid size, which shows the importance of the sensitiv-
ity analysis of the grid size. Therefore, this section further probes into the parameter of 
the grid size and analyzes its effects on the results of STCP mining. 

To investigate the effects of different grid sizes on the experimental results, the com-
parison experiment of grid size is conducted. The dataset size of 919 MB, accompanying 
duration time threshold ∆𝑇 = 36,000 s, the range ∆𝐿 = 54 NM and criteria (∆𝑣, ∆𝜃 and 𝑡) for determining whether the grid is common are kept unchanged, while the grid size 
(respectively 0.01°, 0.025°, 0.05° and 0.1°) is varied. The other parameters of the compari-
son experiments and the corresponding experimental results are shown in Table 5. 

Table 5. Parameter setting and experimental results of the comparison experiment. 

Grid Size (𝜽) ∆𝑳 Candidate Set Result Set Pattern Set 
0.010° 100 549,535 992 107 
0.025° 40 2,559,817 30,267 573 
0.050° 20 5,102,116 142,729 1556 
0.100° 10 9,156,517 600,041 8620 

To analyze the influence of the grid size on the process of STCP mining, the number 
of associated ships in different grid sizes is counted. The relationship between the number 
of associated ships and the grid size in the strong association candidate set, the result set 
and the ship STCP set with confidence greater than 0.5 for STCP mining is shown in Figure 
7. It can be seen that with the increase in the grid size, a large number of pseudo-accom-
paniment patterns that only meet the pattern requirements in terms of spatial and tem-
poral characteristics, but have big differences in terms of motion characteristics are added 
to the pattern candidate set, which increases the redundancy of the strong association can-
didate set and thus decreases the efficiency of pattern mining. 

 
Figure 7. Influence analysis of the grid size. 

The number of associated ships in every confidence interval in the result has been 
counted to analyze the effect of the grid size on the confidence, as shown in Figure 8a. The 
number of associated ships in every confidence interval increases exponentially with the 
increase in the grid size. The distribution of the confidence data on different grid sizes in 
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the pattern mining result set and the STCP set with the confidence greater than 0.5 is vis-
ualized in the form of violin plots, as shown in Figure 8b,c, respectively, where the three 
lines of violin plots—upper edge, median and lower edge—are from top to bottom. The 
upper and lower boundaries, upper and lower quartiles and median of Figure 8b,c are 
shown in Table 6. 

(a) 

 
(b) 
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(c) 

Figure 8. The effect of different grid sizes on confidence. (a) Quantity distribution of associated ships 
in each confidence interval of the result set corresponding to each grid size; (b) confidence distribu-
tion of the result set corresponding to each grid size; (c) confidence distribution of the pattern set 
corresponding to each grid size. 

Table 6. Parameters of Figure 8b,c. 

Figure 
Number 

𝜽 Lower 
Boundary 

Lower 
Quartile Median 

Upper 
Quartile 

Upper 
Boundary 

Figure 8b 

0.01° 0.036314 0.135674 0.242330 0.402742 0.759279 
0.025° 0.027306 0.124421 0.182948 0.255838 0.854828 
0.05° 0.012761 0.110687 0.161178 0.234960 0.944444 
0.1° 0.010081 0.100505 0.147445 0.221113 0.978261 

Figure 8c 

0.01° 0.500958 0.532294 0.570989 0.610566 0.759279 
0.025° 0.500031 0.531680 0.571754 0.633249 0.854828 
0.05° 0.5 0.523208 0.56013 0.626344 0.944444 
0.1° 0.5 0.524337 0.55774 0.610455 0.978261 

By analyzing Figure 8b,c with the relevant values in Table 6, it can be seen that 
the confidence in each dataset increases as the grid size increases, implying that in-
creasing the grid size can improve the inclusiveness of the associated ship trajectory 
similarity measurement, resulting in the increase in the confidence. From Figure 8b, 
it can be seen that the distribution of the confidence becomes more dispersed as the 
grid size increases and the median confidence decreases, while the tendency of the 
overall confidence decreasing is more remarkable. It also reveals that as the grid size 
increases, a large number of pseudo-accompaniment ships are extracted to the pattern 
result set, resulting in a decrease in the median of confidence. From Figure 8c, the 
median of the confidence is the largest when the grid size is 0.025°, which proves that 
the overall correlation of the ship STCP mining with this grid size is stronger. 
Through the comprehensive analysis of the experimental results, the grid size of 0.025° 
is optimal for mining ship STCPs in the experimental area. The above graphical infor-
mation and analysis show that as the grid size increases, the inclusiveness of the 
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multi-feature grid sequence similarity measurement of the associated ships increases, 
while the number of low-correlation-associated ships increases, making the confi-
dence of the associated ships in the result set more and more scattered. In addition, 
the median of the confidence decreases with the increase in the grid size. The number 
of pseudo-accompaniment ships increases dramatically, which increases the redun-
dancy of the association candidate set and reduces the pattern mining efficiency. 
Therefore, choosing an appropriate grid size for a specific water area is crucial to ac-
curate and efficient ship STCP mining. 

6. Conclusions 
Ship STCP mining is the process of extracting accompanying ships. The spatiotem-

poral trajectory feature-driven STCP mining, by setting multiple constraints on trajectory 
features, calculates the ship association strength of the AIS trajectory data and discovers 
the patterns and laws behind the association relationship. This is of great research signif-
icance for marine traffic safety supervision and special ship group behavior detection. In 
this paper, a ship STCP-mining approach based on spatiotemporal trajectory features is 
proposed. The improved longest common subsequence algorithm is used to measure the 
similarity of the multi-feature grid trajectory sequences of the associated ships to achieve 
ship STCP mining. The method proposed in this paper achieves accurate detection of the 
STCP in the AIS data by gradually eliminating redundant and worthless data and reduc-
ing the scale of mining data. Validation experiments and parameter sensitivity analysis 
based on real AIS datasets are conducted in the waters near the Taiwan Strait. 

The method proposed in this paper is still inadequate in grid boundary processing. 
In future research, this is going to be improved with the voyage feature to be counted to 
mine stronger STCPs. This can provide some support and help for port tools used for 
berth allocation [41] and ship emission inventory [12] for ports. It is also expected to be 
applied to the detection of ship formation patterns in larger scenarios. 
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