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Abstract: The maximal value of the chlorophyll-specific carbon fixation rate in the water column or
the optimal assimilation number (Pb

opt) is an important parameter used to estimate water column
integrated primary production (IPP) using models and satellite-derived data. The spatiotemporal
variability in the Pb

opt of the total and size-fractionated phytoplankton in the Siberian Seas (SSs)
and its links with environmental factors were studied based on long-term (1993–2020) field and
satellite-derived (MODIS-Aqua) observations. The average value of Pb

opt in the SSs was equal
to 1.38 ± 0.76 mgC (mg Chl a)–1 h–1. The monthly average values of Pb

opt decreased during the
growing season from 1.95 mgC (mg Chl a)–1 h–1 in July to 0.64 mgC (mg Chl a)–1 h–1 in October.
The average value of Pb

opt for small (<3 µm) phytoplankton 1.6-fold exceeded that for large (>3 µm)
phytoplankton. The values of Pb

opt depend mainly on incident photosynthetically available radiation
(PAR). Based on the relationship between Pb

opt and PAR, the empirical region-specific algorithm
(E0reg) was developed. The E0reg algorithm performed better than commonly used temperature-based
models. The application of E0reg for the calculation of Pb

opt will make it possible to more precisely
estimate IPP in the SSs.

Keywords: optimal assimilation number; primary production; chlorophyll a; size-fractionated
phytoplankton; remote sensing; Siberian Seas

1. Introduction

The primary production (PP) of oceanic phytoplankton amounts to approximately
half of the net autotrophic production of the Earth [1]. PP is an important factor in CO2
exchange between the atmosphere and ocean, which is one of the factors that determine
global climate change [2–7]. Therefore, the estimation of the long-term variability in PP
under climate trends is one of the main tasks of the biogeochemistry of the World Ocean [8].
Currently, this estimation is carried out using production and biogeochemical models with
satellite-derived data as input variables.

Parametrisation is one of the main problems in PP modelling and one of the main fac-
tors determining the model performance. Chlorophyll a (Chl a)-normalised PP (chlorophyll-
specific carbon fixation rate or assimilation number; Pb = PP/Chl a) is the most important
parameter characterising the photoadaptive processes of phytoplankton, used to develop
primary production algorithms and estimate the spatiotemporal variations in PP. There
are two approaches to Pb determination. One of them is P-I experiments, which establish
the relationship between the rate of carbon assimilation and the intensity of artificial light
during short (≤4 h) expositions described using the models fitted to the photosynthesis
vs. irradiance curves [9,10]. Such experiments are carried out in photosynthetrons where
irradiance saturating of photosynthesis is achieved. The value of the chlorophyll-specific
carbon fixation rate at saturating light intensity is defined as the maximal assimilation num-
ber (Pb

max). With a different approach, Pb is estimated during measurements of integral
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PP in the water column (IPP) under natural illumination [11,12]. Therein, the maximal
Pb is determined at the depth with optimal irradiance for photosynthesis and defined as
the optimal assimilation number (Pb

opt). It should be noted that under natural conditions,
the maximal values of carbon assimilation can be achieved at a light intensity less than
that which saturates photosynthesis. Therefore, the parameters of Pb

max and Pb
opt are not

equivalent [13].
The present paper studies the spatiotemporal variations in Pb

opt and its links with
environmental variables. This parameter is widely used in so-called chlorophyll-based
PP models [13,14]. The comparison of the predictive skill of these algorithms with other
models was repeatedly carried out previously [15–24].

The development and validation of PP models for the assessment of IPP in the Arctic
Ocean is a complicated problem. The Arctic Ocean is an under-sampled region in terms
of in situ PP measurements, which is one of the components of this problem. Therefore,
prominent evaluations of the Arctic Ocean IPP were performed using the models, which
were originally developed for other parts of the World Ocean [21]. This approach decreases
the accuracy of IPP estimation in the Arctic Ocean. Meanwhile, it is known that using
regional-specific algorithms increases the efficiency of IPP assessment [18,21,25–27].

The Siberian Seas (SSs), which include the Kara, Laptev, and East Siberian Seas, are the
least studied among all areas of the Arctic Ocean in terms of PP processes [28–30]. Thus,
little is known about the values of Pb

opt in the SSs, its relationships with environmental
factors, and the magnitude of Pb

opt of size-fractionated phytoplankton [31–33]. Meanwhile,
it is known that size composition is an important abiotic factor affecting the Pb

opt value of
phytoplankton [34].

Determination of the range in variability and the average value of Pb
opt in the SSs is

critically important for the investigation of PP features in this region. These features are
linked with the particularity of the phytoplankton biotope that functions on the broad con-
tinental shelf under the influence of intense river runoff [35–39]. Freshwater discharge into
the Siberian shelf leads to low salinity in the subsurface layer, sharp stratification [40–43],
and high particulate (POM) and coloured dissolved (CDOM) organic matter, as well as the
concentration of terrigenous mineral suspension [35,44–46]. Consequently, the Kara Sea
waters are characterised by high turbidity, low transparency (average Secchi disk depth of
8 m), and a small photosynthetic layer (22 m on average) [47]. Therefore, it seems relevant
to develop the region-specific algorithm of Pb

opt for the SSs as one of the main parameters
of PP models.

There are two approaches to the application of Pb
opt in PP models. According to one

of them, Pb
opt is used as the average value for a particular biogeochemical province [48,49].

The second approach assumes the calculation of Pb
opt by its relationship with a value of

an environmental factor that is determined with remote sensing from space. The second
one is recommended to be used in areas of the World Ocean with a high spatiotemporal
variability in biogeochemical parameters [50]. The intense river runoff is the reason for
sharp spatial gradients of hydrophysical, hydrochemical, and biological parameters in the
SSs. Therefore, the application of the second approach to Pb

opt modelling can improve the
model performance. To implement this method, it is necessary to establish the relationships
between Pb

opt and the environmental factors: photosynthetically available radiation (PAR),
nutrient concentration, water temperature, salinity, and Chl a concentration.

Thus, for region-specific modelling, it is relevant to develop an empirical algorithm
describing the relationships between Pb

opt and environmental factors. The main abiotic
variable that determines Pb

opt values and that is easily assessed using remote sensing is
sea surface temperature (T0). Meanwhile, it is known that other environmental factors
limiting the rate of photosynthesis such as PAR and nutrients constrain IPP and Pb

opt at
high latitudes [51–55]. Here, it is postulated that the PAR-based Pb

opt algorithm is more
effective in the SSs than the T-based models. The development of a sufficiently effective
region-specific model of Pb

opt will make it possible in the future to obtain new estimates of
the annual values of IPP in the SSs using satellite-derived data.



J. Mar. Sci. Eng. 2023, 11, 522 3 of 23

Thus, the aims of the present article were: (1) to establish the ranges in variability and
the average values of Pb

opt in the SSs; (2) to evaluate the influence of the environmental
factors on Pb

opt; and (3) to develop an empirical region-specific model and apply it to
describe the spatial distribution in Pb

opt in the SSs using satellite-derived data.

2. Materials and Methods
2.1. Data Sources and Sampling

The field data were obtained in boreal summer (July, August) and autumn (September,
October) during 11 cruises in the Siberian Seas (SSs) in 1993, 2007, 2011, and 2013–2020
(Table 1). The sampling sites where the measurements of primary production (PP), chloro-
phyll a concentration (Chl a) of total and size-fractionated phytoplankton, and environmen-
tal parameters were performed are shown in Figure 1. At these sites, the calculations of the
optimal assimilation number (Pb

opt) were performed. The values of the measured variables
are shown in the Supplementary Materials (Table S1).

Table 1. Sources for primary production and chlorophyll a measurements included in the dataset for
analysis of the variability in the optimal assimilation number, its links with environmental factors,
and model development and verification.

Cruise Months Years Location Number of
Stations Publications

49th Dmitry Mendeleev August–September 1993 Kara Sea 29 [56]
54th Akademik Mstislav Keldysh September 2007 Kara Sea 16 [57]
59th Akademik Mstislav Keldysh September–October 2011 Kara Sea 36 [58]

125th Professor Shtokman September 2013 Kara Sea 29 [59]
128th Professor Shtokman August–September 2014 Kara Sea 48 Unpublished data

63d Akademik Mstislav Keldysh August–October 2015 Kara and Laptev Seas 56 [60]
66th Akademik Mstislav Keldysh July–August 2016 Kara Sea 55 [61]

69th Akademik Mstislav Keldysh August–September 2017 Kara, Laptev, and
East Siberian Seas 53 [60,62]

72nd Akademik Mstislav Keldysh August–September 2018 Kara and Laptev Seas 37 [60]
76th Akademik Mstislav Keldysh July–August 2019 Kara Sea 32 Unpublished data
81st Akademik Mstislav Keldysh August–September 2020 Kara Sea 28 Unpublished dataJ. Mar. Sci. Eng. 2023, 11, 522 4 of 24 

 

 

 
Figure 1. Locations of the sampling sites in the Siberian Seas where the calculations of the optimal 
assimilation number (Pbopt) were performed. The red circles indicate the sites where the calculations 
of Pbopt of the total phytoplankton were carried out. The blue circles indicate the sites where the 
calculations of Pbopt of size-fractionated phytoplankton were performed. 

The sampling depths were defined after a preliminary sounding of temperature, con-
ductivity, and chlorophyll fluorescence using a CTD probe SBE-19 and SBE-32 (Seabird 
Electronics Inc., Bellevue, USA). Niskin bottles were deployed at the stations to obtain 
water samples from discrete depths within the upper 100 m layer. Trace metal cleaning 
procedures (e.g., Teflon-coated covers and springs for the Niskin bottles) [63] were used 
during all the cruises. 

2.2. The Field Data 
The methods for determining PP and Chl a are described in detail in previous studies 

[47,57]. PP was estimated on board using a radiocarbon technique [64] according to sim-
ulated in situ approach. Acid-cleaned 160 mL bottles with water samples after the addi-
tion of sodium bicarbonate (NaH14CO3, 0.05 μCi per 1 mL of sample) were placed under 
neutral lighting filters and exposed for half of a light day in a deck incubator with the 
seawater temperature maintained at the in situ conditions. The transparency of neutral 
lighting filters was chosen based on the light exposure conditions at the sampling depths 
after the sounding of underwater photosynthetically available radiation (PAR). After ex-
posure, the samples were filtered onto a 0.45 μm nitrocellulose membrane “Vladipore” 
(Vladipore, Vladimir, Russia). After filtration, the samples were treated with 0.1 N HCl 
and filtered seawater, dried overnight, and placed in a scintillation vial with 10 mL of the 

Figure 1. Locations of the sampling sites in the Siberian Seas where the calculations of the optimal
assimilation number (Pb

opt) were performed. The red circles indicate the sites where the calculations
of Pb

opt of the total phytoplankton were carried out. The blue circles indicate the sites where the
calculations of Pb

opt of size-fractionated phytoplankton were performed.
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The sampling depths were defined after a preliminary sounding of temperature,
conductivity, and chlorophyll fluorescence using a CTD probe SBE-19 and SBE-32 (Seabird
Electronics Inc., Bellevue, WA, USA). Niskin bottles were deployed at the stations to obtain
water samples from discrete depths within the upper 100 m layer. Trace metal cleaning
procedures (e.g., Teflon-coated covers and springs for the Niskin bottles) [63] were used
during all the cruises.

2.2. The Field Data

The methods for determining PP and Chl a are described in detail in previous stud-
ies [47,57]. PP was estimated on board using a radiocarbon technique [64] according to
simulated in situ approach. Acid-cleaned 160 mL bottles with water samples after the
addition of sodium bicarbonate (NaH14CO3, 0.05 µCi per 1 mL of sample) were placed
under neutral lighting filters and exposed for half of a light day in a deck incubator with
the seawater temperature maintained at the in situ conditions. The transparency of neutral
lighting filters was chosen based on the light exposure conditions at the sampling depths
after the sounding of underwater photosynthetically available radiation (PAR). After ex-
posure, the samples were filtered onto a 0.45 µm nitrocellulose membrane “Vladipore”
(Vladipore, Vladimir, Russia). After filtration, the samples were treated with 0.1 N HCl
and filtered seawater, dried overnight, and placed in a scintillation vial with 10 mL of
the scintillation cocktail “Optiphase HiSafe III” (PerkinElmer, Waltham, MA, USA). The
radioactivity in the samples was determined after 24 h using a liquid scintillation counter
“Triathler” (Hidex, Turku, Finland).

The Chl a concentration was determined using a spectrophotometric method [65,66]
or fluorometrically [67,68]. Previous comparisons have shown good agreement between
various methods of Chl a determination [69,70]. The PP and Chl a data that were obtained
with these methods were used for Pb

opt calculations. The Pb
opt value was determined as

the maximal value of the PP to Chl a ratio in the water column.
The intensity of the incident surface irradiance was measured with an LI-190SA (LI-

COR) sensor [58–62]. The daily PAR was obtained from integration in the LI-1400 module
for five-minute intervals (mol quanta m−2) and saved in the internal memory. Underwater
irradiance was measured in the following mode. The LI-192SA underwater light sensor,
mounted vertically on a cable and in the sounding mode, was moved down to a depth of
∼60–80 m and, at shallow stations, down to the bottom.

Concentrations of silicates (Si(OH)4), phosphates (PO4), nitrites (NO2), nitrates (NO3),
and ammonium (NH4) were measured using the methods described previously [71,72].
Colourimetric determinations were performed with HACH Lange DR 2800 and LEKI
SS2107UV spectrophotometers. Determination of the total alkalinity (Alk) was carried out
using the direct titration technique. Calculations of the dissolved CO2 and concentrations
of various forms of dissolved inorganic carbon were performed with the pH-Alk method
using thermodynamic equations for the carbon balance with constants for carbonic acid
dissociation [72,73].

The values of environmental variables at the depth with Pb
opt were used for statistical

analysis. It should be noted that the Pb
opt values were predominantly observed within the

upper 0–2 m layer (Table S1).
To determine Chl a and PP of large phytoplankton (>3 µm), samples were successively

filtered through a Nucleopore filter with a 3 µm pore size (Reatrack, Obninsk, Russia).
Small (<3 µm) Chl a and PP values were obtained by subtracting the large phytoplankton
from the total Chl a and PP values [33].

The spatial variability in PP characteristics in the Siberian Seas (SSs) depends mainly
on the distribution of river runoff [58–62]. Therefore, it can be assumed that the values of
Pb

opt in the areas under the influence of riverine waters and the areas without such impact
can be different. Sea surface salinity (S0) is the indicator of these types of waters (S0 < 25
and >25, respectively). Thus, the average values of Pb

opt for the regions with S0 < 25 and
>25 were calculated separately. According to [74], the annual average isohaline 25 separates
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brackish waters and waters with salinity close to oceanic. Water salinity was measured
using the Practical Salinity Scale.

2.3. Statistical Analysis

Before calculations, data were log-transformed to achieve normal distribution and for
use in the parametrical statistic methods. Then, data were checked for normality using the
Kolmogorov–Smirnov test (Figure S1).

The relationships between parameters were tested using linear regression and princi-
pal component analysis (PCA). Correspondences between log-transformed variables were
estimated using Pearson’s coefficient of correlation (R). A difference between sample means
was assessed using Student’s t-test. The null hypothesis was rejected at p < 0.01. Statistical
calculations were performed using the Statistica 6.0 software (StatSoft Inc., Tulsa, OK, USA).

2.4. Development and Verification of Pb
opt Models

The entire dataset was randomly divided into two parts. Two-thirds and one-third
were used for model development and validation, respectively. The relationships between
the measured and modelled Pb

opt estimates were tested using linear regression. The
variance in the dependent values was defined by the coefficient of determination (R2).
The slope and intercept of the linear regression determined the fitted line according to a
1:1 agreement.

The root-mean-square difference (RMSD) was used to assess the model performance.
The RMSD revealed differences between the log-transformed measured and modelled
values and comprised both bias (systematic error) and variability (σ—random error) [75,76].
The log-normalised RMSD was used to assess the overall model performance in Primary
Productivity Algorithm Round Robins (PPARR) studies [15,17–19,21]. The models with
lower RMSD have higher skill and vice versa. An RMSD value close to 0.3 indicates model
over- or underestimation by a factor of 2. In addition, the mean bias (B) of each model was
calculated to assess over- or underestimated Pb

opt.

2.5. Satellite-Derived Data of Photosynthetically Available Radiation (PAR)

Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua) Level 2 data on PAR
with 9 × 9 km resolution were obtained from NASA’s Goddard Space Flight Centre (NASA
GSFC) (www.oceancolor.gsfc.nasa.gov/ (accessed on 22 August 2022)). Data on PAR were
used as a standard product of the MODIS-Aqua scanner [77]. The time period of the
satellite data coincided with in situ observations (2007–2020). In situ and satellite data are
considered to be matched up on the same day. All the satellite-derived data products were
calculated as average values over acceptable nine pixels around a given point (in situ and
satellite match-up sites, N = 373 for Pb

opt and N = 322 for PAR). A pixel was considered
acceptable if it was without flags of cloudiness or land. The lists of matched-up in situ and
satellite data are represented in Tables S2 and S3.

3. Results

3.1. Values and Spatiotemporal Variability in Optimal Assimilation Number (Pb
opt) in the Siberian

Seas (SSs) Using Field Observations

The total values of Pb
opt in the SSs changed from 0.11 to 4.67 mgC (mg Chl a)–1 h–1.

The average values varied from 1.27 ± 0.58 mgC (mg Chl a)–1 h–1 in the Laptev Sea to
1.77 ± 0.70 mgC (mg Chl a)–1 h–1 in the East Siberian Sea. The average value of Pb

opt in the
SSs was 1.38 ± 0.76 mgC (mg Chl a)–1 h–1 (Table 2).

The range of Pb
opt variability in large phytoplankton (>3 µm) (Pb

opt L) was
0.23–3.54 mgC (mg Chl a)–1 h–1. The average values of Pb

opt L varied insignificantly from
1.02 ± 0.55 mgC (mg Chl a)–1 h–1 in the Laptev Sea to 1.21 ± 0.68 mgC (mg Chl a)–1 h–1 in the
East Siberian Sea (Table 2). The total values of Pb

opt for small phytoplankton (<3 µm) (Pb
opt S)

were more variable than Pb
opt L and changed from 0.03 to 6.38 mgC (mg Chl a)–1 h–1. The

www.oceancolor.gsfc.nasa.gov/
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average value of Pb
opt S was the highest in the Kara Sea (1.78 ± 1.29 mgC (mg Chl a)–1 h–1),

and it was the lowest in the Laptev Sea (1.30 ± 0.76 mgC (mg Chl a)–1 h–1).The average value of
Pb

opt S in the SSs was 1.6-fold higher than Pb
opt L (Table 2). The difference between the average

values of Pb
opt S and Pb

opt L was statistically significant (Student’s t-test, p < 0.01).

Table 2. The variability in the optimal assimilation number (mgC (mgChl a))–1 h–1 of different
phytoplankton size groups in the Siberian Seas. M—mean; σ—standard deviation; N—number
of data.

Region Statistics >3 µm <3 µm Total

Kara Sea
M ± σ 1.15 ± 0.59 1.78 ± 1.29 1.37 ± 0.79

N 60 59 333

Laptev Sea
M ± σ 1.02 ± 0.55 1.30 ± 0.76 1.27 ± 0.58

N 33 33 59

East Siberian Sea
M ± σ 1.21 ± 0.68 1.33 ± 0.97 1.77 ± 0.70

N 12 12 19

Siberian Seas
M ± σ 1.05 ± 0.58 1.65 ± 1.24 1.38 ± 0.76

N 105 104 411

The difference between the average values of Pb
opt, Pb

opt L, and Pb
opt S in the river

runoff regions with surface salinity (S0) < 25 and in the areas out of the river’s influence
(S0 > 25) was statistically insignificant. In addition, the seasonal average values of Pb

opt,
Pb

opt L, and Pb
opt S in these regions differentiated slightly (Table 3).

Table 3. The optimal assimilation number (mgC (mgChl a))–1 h–1 of different phytoplankton
size groups within the different salinity ranges and seasons. S0—sea surface salinity; M—mean;
σ—standard deviation; N—number of data.

Range of S0 Season Statistics
Phytoplankton Size Fractions

>3 µm <3 µm Total

<25

Summer
(July, August)

M ± σ 1.26 ± 0.43

1.10 ± 0.52

2.60 ± 1.96

1.73 ± 1.40

1.72 ± 0.48

1.35 ± 0.64
N 3 3 41

Autumn
(September, October)

M ± σ 1.07 ± 0.54 1.60 ± 1.32 1.22 ± 0.57

N 21 21 117

>25

Summer
(July, August)

M ± σ 1.13 ± 0.66

1.04 ± 0.60

1.99 ± 1.42

1.63 ± 1.19

1.81 ± 0.88

1.40 ± 0.84
N 35 35 110

Autumn
(September, October)

M ± σ 0.97 ± 0.54 1.35 ± 0.90 1.08 ± 0.64

N 46 45 143

In the summer, the average values of Pb
opt exceeded those in the autumn over the

regions with S0 < 25 and S0 > 25 by factors of 1.4 and 1.7, respectively. These differences
were statistically significant (Student’s t-test, p < 0.01). In the summer, the average values
of Pb

opt for different size fractions of phytoplankton were higher than in the autumn
both in the brackish and in the oceanic waters (Table 3). It should be noted that the
difference was statistically significant only for Pb

opt S at S0 > 25. The monthly average
values of Pb

opt decreased during the growing season from 1.95 mgC (mg Chl a)–1 h–1 in
July to 0.64 mgC (mg Chl a)–1 h–1 in October following the monthly average values of
subsurface photosynthetically available radiation (PAR) (E0) and sea surface temperature
(T0) (Figure 2).
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tors in the Siberian Seas. Bars are the average values of the optimal assimilation number (Pbopt). The 
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ments indicate standard deviation. 

Table 4. The correlation matrix between the log-transformed optimal assimilation numbers for dif-
ferent phytoplankton size groups and environmental variables. Pbopt—optimal assimilation number 
of the total phytoplankton; Pbopt L—optimal assimilation number of large phytoplankton (>3 μm); 
Pbopt S—optimal assimilation number of small phytoplankton (<3 μm); R—coefficient of correlation; 
p value—statistical significance of R; N—the number of data. T0—sea surface temperature; S0—sea 
surface salinity; PO4, Si(OH)4, and DIN–surface concentrations of phosphates, dissolved silicon, and 
dissolved inorganic nitrogen, respectively; Chl0—chlorophyll a concentration of the surface total 
phytoplankton; ChlS—chlorophyll a concentration of surface small (<3 μm) phytoplankton; E0—sub-
surface photosynthetically available radiation. The asterisks indicate significant correlations (p < 
0.05). 

Parameter Statistics T0 S0 Chl0 ChlS/Chl0 E0 PO4 Si(OH)4 DIN 

Pbopt 

R 0.08 0.08 −0.21 * 0.23 * 0.61 * −0.02 0.10 −0.20 * 
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Pbopt L 

R 0.20 * 0.07 0.01 0.26* 0.08 0.14 0.16 0.13 
N 105 105 105 104 105 104 104 98 
p 0.04 0.468 0.947 0.008 0.394 0.154 0.106 0.201 

Pbopt S 
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p 0.457 0.652 0.208 0.379 0.014 0.291 0.594 0.596 

Figure 2. Seasonal variation in the optimal assimilation number and associated environmental factors
in the Siberian Seas. Bars are the average values of the optimal assimilation number (Pb

opt). The blue
line is subsurface PAR (E0). The red line is sea surface temperature (T0). The vertical line segments
indicate standard deviation.

3.2. The Relationships between Pb
opt and Environmental Factors

The relationships between Pb
opt and environmental factors in different seasons are

shown in Figure 3. The results of the correlation analysis are represented in Table 4. The
statistically significant positive link with a high coefficient of correlation (R = 0.61) was
established between Pb

opt and E0. There were weak links between Pb
opt and the other

environmental variables (Table 4).

Table 4. The correlation matrix between the log-transformed optimal assimilation numbers for differ-
ent phytoplankton size groups and environmental variables. Pb

opt—optimal assimilation number
of the total phytoplankton; Pb

opt L—optimal assimilation number of large phytoplankton (>3 µm);
Pb

opt S—optimal assimilation number of small phytoplankton (<3 µm); R—coefficient of correlation;
p value—statistical significance of R; N—the number of data. T0—sea surface temperature; S0—sea
surface salinity; PO4, Si(OH)4, and DIN–surface concentrations of phosphates, dissolved silicon,
and dissolved inorganic nitrogen, respectively; Chl0—chlorophyll a concentration of the surface
total phytoplankton; ChlS—chlorophyll a concentration of surface small (<3 µm) phytoplankton;
E0—subsurface photosynthetically available radiation. The asterisks indicate significant correlations
(p < 0.05).

Parameter Statistics T0 S0 Chl0 ChlS/Chl0 E0 PO4 Si(OH)4 DIN

Pb
opt

R 0.08 0.08 −0.21 * 0.23 * 0.61 * −0.02 0.10 −0.20 *

N 411 408 411 104 395 404 410 387

p 0.109 0.092 <10−3 0.020 <10−2 0.723 0.12 <10−3
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Table 4. Cont.

Parameter Statistics T0 S0 Chl0 ChlS/Chl0 E0 PO4 Si(OH)4 DIN

Pb
opt L

R 0.20 * 0.07 0.01 0.26* 0.08 0.14 0.16 0.13

N 105 105 105 104 105 104 104 98

p 0.04 0.468 0.947 0.008 0.394 0.154 0.106 0.201

Pb
opt S

R 0.07 −0.04 0.12 −0.09 0.24 * −0.11 −0.05 −0.05

N 104 104 104 103 104 103 103 97

p 0.457 0.652 0.208 0.379 0.014 0.291 0.594 0.596
J. Mar. Sci. Eng. 2023, 11, 522 9 of 24 
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factors. (a) Subsurface PAR (E0); (b) sea surface temperature (T0); (c) concentration of dissolved inor-
ganic nitrogen (DIN); (d) surface chlorophyll a concentration (Chl0); and (e) the ratio of chlorophyll a
concentration of small (<3 µm) to total surface phytoplankton (Chls/Chl0). Green and red colours
indicate the measurements performed in the summer and autumn, respectively.

The relationships between different abiotic factors are characterised by multicollinear-
ity (Table 5), which leads to uncertainty in the estimations of its influence on Pb

opt. Principal
component analysis (PCA) allows a reduction in the multicollinearity effect. PCA also gen-
erates an ordination diagram that illustrates links between Pb

opt and environmental factors.
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Table 5. The correlation matrix between the log-transformed values of environmental vari-
ables. R—coefficient of correlation; p value—statistical significance of R; N—the number of data.
T0—surface water temperature; S0—surface salinity; PO4, Si(OH)4 and DIN—surface concentra-
tions of phosphates, dissolved silicon, and dissolved inorganic nitrogen, respectively; Chl0—surface
chlorophyll a concentration; E0—subsurface PAR. The asterisks indicate significant correlations
(p < 0.05).

Parameter Statistics T0 S0 Chl0 E0 PO4 Si(OH)4 DIN

T

R 1.00

N 411

p <10−3

S0

R −0.22 * 1.00

N 408 408

p <10−3 <10−3

Chl0

R 0.30 * −0.61 * 1.00

N 411 408 411

p <10−3 <10−2 <10−3

E0

R 0.11 * 0.07 −0.20 * 1.00

N 395 392 395 395

p 0.036 0.163 <10−3 <10−3

PO4

R −0.14 * −0.21 * 0.19 * −0.06 1.00

N 404 401 404 388 404

p 0.006 <10−3 <10−3 0.232 <10−3

Si(OH)4

R 0.21 * −0.52 * 0.67 * −0.04 0.35 * 1.00

N 410 407 410 394 404 410

p <10−3 <10−2 <10−2 0.473 <10−3 <10−3

DIN

R −0.11 * −0.20 * 0.28 * −0.23 * 0.28 * 0.25 * 1.00

N 387 384 387 377 385 387 387

p 0.027 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3

The results of PCA, which are presented in Figure 4, suggest that the main variables
that contribute to the first principal component (PC1) are the abiotic factors S0, Si(OH)4,
and Chl0. PC1 describes 29.4% of the total variance. The second principal component
(PC2) includes the main variables of Pb

opt and E0 and describes 21.8% of the total variance
(Figure 4a).

The PCA analysis illustrates the well-pronounced positive relation between Pb
opt and

E0 that is indicated by the same direction of their vectors on the factorial plane. Similar to
the correlation analysis, the results of the PCA show that Pb

opt is weakly linked with salinity
and Si(OH)4 as indicators of riverine waters. This is indicated by their orthogonality on the
PCA map. Furthermore, the weak relationships between Pb

opt and surface temperature
and nutrients were shown by the PCA results (Figure 4a).

The contribution of PC1 and PC2 to the individual samples is shown on the factorial
plane (Figure 4b). For visibility, all samples were divided according to the range in salinity.
Figure 4b shows that the individual samples collected at different salinity were strongly
divided. Samples at S0 < 25 and S0 > 25 were, respectively, positively and negatively
influenced by PC1, while the influence of PC2 was rather equal. This finding suggests that
there are no differences between the links of Pb

opt with E0 across the salinity gradient.



J. Mar. Sci. Eng. 2023, 11, 522 10 of 23

J. Mar. Sci. Eng. 2023, 11, 522 10 of 24 
 

 

Chl0 
R 0.30 * −0.61 * 1.00     
N 411 408 411     
p <10−3 <10−2 <10−3     

E0 
R 0.11 * 0.07 −0.20 * 1.00    
N 395 392 395 395    
p 0.036 0.163 <10−3 <10−3    

PO4 
R −0.14 * −0.21 * 0.19 * −0.06 1.00   
N 404 401 404 388 404   
p 0.006 <10−3 <10−3 0.232 <10−3   

Si(OH)4 
R 0.21 * −0.52 * 0.67 * −0.04 0.35 * 1.00  
N 410 407 410 394 404 410  
p <10−3 <10−2 <10−2 0.473 <10−3 <10−3  

DIN 
R −0.11 * −0.20 * 0.28 * −0.23 * 0.28 * 0.25 * 1.00 
N 387 384 387 377 385 387 387 

p 0.027 <10−3 <10−3 <10−3 <10−3 <10−3 <10−3 

The results of PCA, which are presented in Figure 4, suggest that the main variables 
that contribute to the first principal component (PC1) are the abiotic factors S0, Si(OH)4, 
and Chl0. PC1 describes 29.4% of the total variance. The second principal component (PC2) 
includes the main variables of Pbopt and E0 and describes 21.8% of the total variance (Figure 
4a). 

 

J. Mar. Sci. Eng. 2023, 11, 522 11 of 24 
 

 

 
Figure 4. Graphical representation of the results of the principal component analysis (PCA). (a) Cor-
relations on the factorial plane formed with the two first principal components (PC1 and PC2). The 
values at the axis designate the PC1 and PC2 contribution to the total variance. The values of the 
optimal assimilation number (Pbopt), surface chlorophyll a concentration (Chl0), subsurface PAR (E0), 
surface water temperature (T0), surface salinity (S0), phosphate (PO4), dissolved silicon (Si(OH)4), 
dissolved inorganic nitrogen (DIN), and the ratio of chlorophyll a concentration of small (<3 μm) to 
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lected in the brackish (S0 < 25) (red colour) and oceanic (S0 > 25) (green colour) waters of the Siberian 
Seas on the factorial plane. 
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strongly divided. Samples at S0 < 25 and S0 > 25 were, respectively, positively and nega-
tively influenced by PC1, while the influence of PC2 was rather equal. This finding sug-
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3.3. Pbopt Model Developed with E0, Its Efficiency, and a Comparison with T-Based Models 
It was mentioned above that a strong correlation was obtained between Pbopt and E0 

(Table 4). There was no other abiotic parameter that was related to Pbopt so closely. Thus, 
it is reasonable to use E0 as the only abiotic factor in the Pbopt region-specific regression 
model (E0reg). To develop this model, we used two-thirds of the dataset as mentioned in 
[50]. The equation of liner regression relating log-transformed values of Pbopt and E0 is 

log10 Pbopt = 0.537 log10 E0 − 0.399 (R = 0.62, N = 266)  (1)

Figure 4. Graphical representation of the results of the principal component analysis (PCA).
(a) Correlations on the factorial plane formed with the two first principal components (PC1 and PC2).
The values at the axis designate the PC1 and PC2 contribution to the total variance. The values of the
optimal assimilation number (Pb

opt), surface chlorophyll a concentration (Chl0), subsurface PAR (E0),
surface water temperature (T0), surface salinity (S0), phosphate (PO4), dissolved silicon (Si(OH)4),
dissolved inorganic nitrogen (DIN), and the ratio of chlorophyll a concentration of small (<3 µm)
to total surface phytoplankton (Chls/Chl0) are presented. (b) Projection of the individual samples
collected in the brackish (S0 < 25) (red colour) and oceanic (S0 > 25) (green colour) waters of the
Siberian Seas on the factorial plane.
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3.3. Pb
opt Model Developed with E0, Its Efficiency, and a Comparison with T-Based Models

It was mentioned above that a strong correlation was obtained between Pb
opt and E0

(Table 4). There was no other abiotic parameter that was related to Pb
opt so closely. Thus,

it is reasonable to use E0 as the only abiotic factor in the Pb
opt region-specific regression

model (E0reg). To develop this model, we used two-thirds of the dataset as mentioned
in [50]. The equation of liner regression relating log-transformed values of Pb

opt and E0 is

log10 Pb
opt = 0.537 log10 E0 − 0.399 (R = 0.62, N = 266) (1)

The results of E0reg verification using field observations are represented in Table 6 and
Figure 5a. The comparison of the measured and modelled values of Pb

opt suggests that
E0reg overestimates the field data on average (the average absolute error (B) is equal to
0.040). The root-mean-square difference (RMSD) value implies that the calculated values of
Pb

opt were 1.7-fold higher than the field data on average.

Table 6. Regression statistics and performance indices for the log-transformed measured and mod-
elled optimal assimilation number (Pb

opt). Slope and intercept are parameters of the linear regressions;
R2—coefficient of determination; N—number of data used for model validation; p-value indicates
the significance level of each regression. Indices are the mean model bias (B), the standard deviation
of the log-transformed modelled values of Pb

opt (σ), and the root-mean-square difference (RMSD);
E0reg—the region-specific Pb

opt model developed using subsurface photosynthetically available
radiation (PAR) and verified with field data. BF-model—the Pb

opt model developed by Behrenfeld
and Falkowski [13]. Treg—the region-specific Pb

opt model developed using the relationship between
Pb

opt and sea surface temperature. Esat—E0reg verified with satellite-derived data of PAR.

Model
Regression Statistics Performance Indices

Slope Intercept R2 N p Value B σ RMSD

E0reg 0.697 0.879 0.35 131 <0.05 0.040 0.176 0.227
BF-model 0.060 0.405 0.02 410 <0.05 0.343 0.409 0.444

Treg 0.036 0.115 0.03 137 <0.05 0.066 0.055 0.279
Esat 0.289 0.226 0.19 373 <0.05 0.183 0.190 0.321
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of satellite-derived PAR (Esat) into Equation (1). Therefore, it is appropriate to validate the 
E0reg model using satellite-derived data. The results represented in Table 6 and Figure 5b 
suggest that the application of Esat decreases the model performance by a factor of 1.4 ac-
cording to the RMSD value. The correlation between the measured and modelled values 
of Pbopt decreased by a factor of 1.8 in comparison with the data of verification using field 
observations (R2 = 0.19 and 0.35, respectively) (Table 6). Furthermore, the introduction of 
Esat into Equation (1) enhanced B by a factor of 4.6. 

In the models used for IPP estimation using satellite-derived data, often Pbopt is re-
trieved with the polynomial function derived using the worldwide dataset (equation 11 
in [13], the BF model in further) or with the regional-adopted relationships between Pbopt 
and T0 [25,78,79]. In that regard, it is useful to compare the model performances of the BF 
model and E0reg for the estimation of their skill in the SSs. Figure 6a presents the distribu-
tion of the Pbopt dataset related to T0 and the curve of the polynomial function that links 
Pbopt and T0 from [13]. The result presented in Figure 6a implies that the BF model will 
dramatically overestimate Pbopt in the SSs. This conclusion is confirmed with the results of 
the verification of the BF model using the T0 dataset collected in the SSs (Table 6, Figure 
6b). The value of B characterising the error in the BF model is equal to 0.343, which is 9.5-
fold higher than that of E0reg. The coefficient of determination (R2) of the BF model is 17-

Figure 5. (a) A comparison of the values of the optimal assimilation number (Pb
opt) measured and

calculated using subsurface PAR (E0) and (b) a comparison of the values of Pb
opt measured and

calculated using satellite-derived PAR (Esat) (black points). The solid line indicates 1:1 correlation.

The application of the developed algorithm to study the spatiotemporal variations in
Pb

opt and for water column primary production (IPP) estimations assumes the introduction
of satellite-derived PAR (Esat) into Equation (1). Therefore, it is appropriate to validate the
E0reg model using satellite-derived data. The results represented in Table 6 and Figure 5b
suggest that the application of Esat decreases the model performance by a factor of 1.4
according to the RMSD value. The correlation between the measured and modelled values
of Pb

opt decreased by a factor of 1.8 in comparison with the data of verification using field
observations (R2 = 0.19 and 0.35, respectively) (Table 6). Furthermore, the introduction of
Esat into Equation (1) enhanced B by a factor of 4.6.

In the models used for IPP estimation using satellite-derived data, often Pb
opt is

retrieved with the polynomial function derived using the worldwide dataset (Equation (11)
in [13], the BF model in further) or with the regional-adopted relationships between Pb

opt
and T0 [25,78,79]. In that regard, it is useful to compare the model performances of the
BF model and E0reg for the estimation of their skill in the SSs. Figure 6a presents the
distribution of the Pb

opt dataset related to T0 and the curve of the polynomial function that
links Pb

opt and T0 from [13]. The result presented in Figure 6a implies that the BF model
will dramatically overestimate Pb

opt in the SSs. This conclusion is confirmed with the
results of the verification of the BF model using the T0 dataset collected in the SSs (Table 6,
Figure 6b). The value of B characterising the error in the BF model is equal to 0.343, which
is 9.5-fold higher than that of E0reg. The coefficient of determination (R2) of the BF model
is 17-fold lower than that of E0reg (0.35 and 0.02, respectively). The value of RMSD of the
BF model is 1.9-fold higher than that of E0reg (Table 6). The index of efficiency of the BF
model (RMSD = 0.444) suggests that Pb

opt values calculated using this algorithm can over-
or underestimate the measured ones by a factor of 2.8, which is 1.6-fold higher than in the
case of E0reg application.
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suggests that the modelled values of Pbopt can 1.9-fold over- or underestimate the meas-
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Figure 6. (a) the optimal assimilation number (Pb
opt) vs. sea surface temperature (T0) in the Siberian

Seas (SSs) (open circles) in comparison with polynomial regression obtained by Behrenfeld and
Falkowski [13] (BF-model) based on the worldwide dataset (the blue line). Red colour indicates the
exponential relationship between Pb

opt and T0 obtained based on the SSs dataset (T_reg—algorithm).
(b) A comparison of the values of Pb

opt measured and calculated using the BF-model. (c) A com-
parison of the values of Pb

opt measured and calculated using T_reg. The solid line indicates a
1:1 correlation.

To illustrate the problems connected with the estimation of Pb
opt in the SSs using

T0 solely, the authors developed the region-specific empirical algorithm based on the
relationship between Pb

opt and T0 established using the SSs dataset (N = 266) (T_reg). In
the development of this model, the authors followed the approach described in [13]. The
median values of Pb

opt were calculated for each 1 ◦C temperature span in the range from 0
to 18 ◦C. The relationship between the median values of Pb

opt and T0 was described using
the exponential function (Figure 6a):

Pb
opt = 1.07 e 0.044 T0 . (2)

This model was validated with the independent dataset (data that were not used for
model development). The results of this verification are presented in Table 6 and Figure 6c.
As in the case of applying the BF model, weak links between the measured and modelled
values of Pb

opt (R2 = 0.03) were observed. The value of RMSD that was equal to 0.279
suggests that the modelled values of Pb

opt can 1.9-fold over- or underestimate the measured
ones. The average absolute error of T_reg was equal to 0.066, which was 1.8-fold higher
than in the case of E0reg application. Thus, it can be concluded that the T_reg algorithm is
not applicable for Pb

opt estimation in the SSs.

3.4. The Spatial Distribution in Pb
opt Assessed Using Satellite-Derived Data

The introduction of Esat data into Equation (1) allows retrieving the pattern of the
spatial distribution in Pb

opt over the entire area of the SSs. In Figure 7, satellite climatolo-



J. Mar. Sci. Eng. 2023, 11, 522 14 of 23

gies (2007–2020) of Pb
opt from July to October are presented. It should be noted that for

averaging, the years were chosen that coincided with the field observations (Table 1). As
expected, the spatial distribution of Pb

opt was quasi-latitudinal and follows by the spatial
distribution in PAR. The values of Pb

opt basically decreased northward (Figure 7).
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4. Discussion
4.1. The Average Values and Spatiotemporal Variations in the Optimal Assimilation Number
(Pb

opt) in the Siberian Seas (SSs)

The average value of Pb
opt in the SSs (1.38 mgC (mg Chl a–1 h–1) was in the range

of variability observed in the north of Baffin Bay (0.3–4.1 mgC (mg Chl a–1 h–1) [80]. In
addition, it was close to the values measured in the Chukchi and Beaufort Seas (from 0.6 to
1 mgC (mg Chl a–1 h–1, on average) [81], and it was higher than historical (1956, 1961–1963)
values observed in the Canadian Arctic (0.2–0.4 mgC (mg Chl a–1 h–1) [82]. It is known
that an accurate as possible calculation of the average value of Pb

opt within a particular
biogeochemical province [48] is critically important for the estimation of water column
primary production (IPP) [21].

The average values of Pb
opt for small (<3 µm) phytoplankton were higher than those

for large (>3 µm) phytoplankton in the entire SS (Table 2). This finding is consistent with
the investigations that established that the chlorophyll-specific carbon fixation rate declined
with a decrease in cell sizes [83–87]. Theoretically, the specific photosynthetic rate of small
phytoplankton must be higher than that of the large fraction because of the high size-to-
volume ratio that allow it to be more effective at absorbing light and nutrients. As a result,
small cells have advantages in conditions of low nutrients and irradiance [34,88,89]. This
assumption is confirmed with the analysis of extensive field and laboratory data [90].

The river runoff on the Siberian shelf controversially influences primary production
(PP) characteristics. On the one hand, a large amount of dissolved (DOM) and particulate
(POM) organic matter of river genesis limits the photosynthetic rate in the water column
by decreasing water transparency and euphotic depth as a consequence [47]. On the other
hand, large rivers enrich the coastal areas of the SSs with nutrients [37,38], increasing the
photosynthetic capacity of phytoplankton. Thus, it can be assumed the differences in the
values of Pb

opt between the river runoff regions and those where the influence of rivers
is insignificant. Nevertheless, there were no statistically significant differences between
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the average values of Pb
opt in brackish, with surface salinity (S0) < 25, and oceanic waters

(S0 > 25). Thus, it can be concluded that Pb
opt in the SSs is influenced by river runoff to a

small extent.
To evaluate the relationships between Pb

opt and environmental factors in waters with
different salinity, the dataset was differentiated according to the S0 values (Table 7). The
results of the correlation analysis suggest that the links between Pb

opt and E0 were not
significantly different in brackish and oceanic waters (R = 0.59 and 0.63, respectively). Thus,
these findings suggest that the developed Pb

opt algorithm can be used as universal both in
the river runoff regions of the SSs and in the areas out of such influence.

Table 7. The correlation matrix between the log-transformed optimal assimilation number and
environmental variables in the areas with S0 < 25 and S0 > 25. Pb

opt—optimal assimilation num-
ber of the total phytoplankton; R—coefficient of correlation; p-value—statistical significance of R;
N—the number of data; T0—sea surface temperature; S0—sea surface salinity; PO4, Si(OH)4, and
DIN—surface concentrations of phosphates, dissolved silicon, and dissolved inorganic nitrogen,
respectively; Chl0—chlorophyll a concentration of the surface total phytoplankton; E0—subsurface
photosynthetically available radiation. The asterisks indicate significant correlations (p < 0.05).

Parameter Statistics T0 S0 Chl0 E0 PO4 Si(OH)4 DIN

Pb
opt

S0 < 25

R 0.24 * 0.21 * −0.10 0.59 * −0.09 0.19 * −0.24 *

N 159 156 159 150 154 158 147

p 0.003 0.009 0.211 <10−3 0.284 0.020 0.003

Pb
opt

S0 > 25

R 0.02 −0.11 −0.41 * 0.63 * 0.02 0.06 −0.19 *

N 245 254 254 247 252 254 242

p 0.713 0.075 <10−3 <10−2 0.696 0.376 0.002

A decrease in Pb
opt from July to October is explained by a decline in the values of the

main environmental factors, generally subsurface photosynthetically available radiation
(PAR) (Figure 2). Similarly, the tendency toward a decrease in Pb

opt at the end of the
growing season was noted in other regions of the Arctic Ocean [80].

4.2. Influence of Environmental Factors on Pb
opt

In theory, the relationships between Pb
opt, as well as the maximal assimilation number

(Pb
max), and the main environmental factors must be the same. Therefore, in this section, it

is meaningful to discuss the relationships between environmental factors and both Pb
opt

and Pb
max due to the most representation of the latter.

4.2.1. Influence of PAR on Pb
opt

The results obtained in this study allow us to characterise the SSs phytoplankton, on
the one hand, as highly photoadaptive and, on the other hand, as light-limited. The strong
correlation between Pb

opt and PAR is evidence that day-to-day variations in incident radia-
tion have a fast influence on changes in carbon fixation rate. Thus, the SS phytoplankton is
capable of fast photoadaptation. In earlier studies, it was shown that in the Arctic Ocean,
the assimilation number (Pb) linearly and positively depended on PAR [47,53,91,92]. The
absence of a “plateau” on the curves of the relationships between Pb and PAR implies
that arctic phytoplankton is light-limited. For that reason, the values of Pb

opt are usually
registered under saturated irradiance.

Often, the values of Pb
opt are observed within the upper mixed layer (UML). Therefore,

some authors considered the links of Pb
opt with the average values of PAR in the UML

(EUML) [50]. The findings of the present study suggest that in the SSs, Pb
opt was better

correlated with subsurface PAR (E0) (R = 0.61, p < 0.01, N = 397) than with EUML (R = 0.54,
p < 0.01, N = 397). This result can be explained by the fact that in 97% of cases, the highest
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values of Pb
opt were observed in the subsurface layer of 0–2 m (Pb

0), and a strong positive
correlation was established between the log-transformed values of Pb

opt and Pb
0 (Figure 8).

Observation of Pb
opt predominantly in the subsurface layer suggests a more pronounced

light limitation of the photosynthetic rate in the SSs in comparison with other regions of the
Arctic Ocean where Pb

opt can be registered at the depths of the deep maxima of chlorophyll
and PP [81]. This phenomenon is linked with the optically complex type of waters in the
SSs [93] enriched by DOM and POM of river genesis [37,94–96].

J. Mar. Sci. Eng. 2023, 11, 522 17 of 24 
 

 

arctic phytoplankton is light-limited. For that reason, the values of Pbopt are usually regis-
tered under saturated irradiance. 

Often, the values of Pbopt are observed within the upper mixed layer (UML). There-
fore, some authors considered the links of Pbopt with the average values of PAR in the UML 
(EUML) [50]. The findings of the present study suggest that in the SSs, Pbopt was better cor-
related with subsurface PAR (E0) (R = 0.61, p < 0.01, N = 397) than with EUML (R = 0.54, p < 
0.01, N = 397). This result can be explained by the fact that in 97% of cases, the highest 
values of Pbopt were observed in the subsurface layer of 0–2 m (Pb0), and a strong positive 
correlation was established between the log-transformed values of Pbopt and Pb0 (Figure 8). 
Observation of Pbopt predominantly in the subsurface layer suggests a more pronounced 
light limitation of the photosynthetic rate in the SSs in comparison with other regions of 
the Arctic Ocean where Pbopt can be registered at the depths of the deep maxima of chlo-
rophyll and PP [81]. This phenomenon is linked with the optically complex type of waters 
in the SSs [93] enriched by DOM and POM of river genesis [37,94–96]. 

 
Figure 8. The relationship between the optimal assimilation number (Pbopt) and surface assimilation 
number (Pb0) (black points) in the Siberian Seas. The solid line shows the line of regression. The 
dashed line indicates 1:1 correlation. 

4.2.2. Influence of Temperature and Nutrients on Pbopt 
Generally, a weak correlation has been noted in the Arctic Ocean between Pb and 

temperature [97–100]. Furthermore, it was established by [101] that the photosynthetic 
parameters in the Arctic Ocean were not influenced by temperature over the range from 
−2 to 8 °C. In the dataset used in the presented study, 90% of the values of T0 fit in this 
diapason (Table S1). Thus, our findings are consistent with the outcomes of the previous 
studies. 

The absence of a close relationship between Pbopt and T0 was explained simultane-
ously by a negative correlation between T0 and nutrients and a positive correlation 

Figure 8. The relationship between the optimal assimilation number (Pb
opt) and surface assimilation

number (Pb
0) (black points) in the Siberian Seas. The solid line shows the line of regression. The

dashed line indicates 1:1 correlation.

4.2.2. Influence of Temperature and Nutrients on Pb
opt

Generally, a weak correlation has been noted in the Arctic Ocean between Pb and
temperature [97–100]. Furthermore, it was established by [101] that the photosynthetic
parameters in the Arctic Ocean were not influenced by temperature over the range from
−2 to 8 ◦C. In the dataset used in the presented study, 90% of the values of T0 fit in
this diapason (Table S1). Thus, our findings are consistent with the outcomes of the
previous studies.

The absence of a close relationship between Pb
opt and T0 was explained simultaneously

by a negative correlation between T0 and nutrients and a positive correlation between
T0 and E0 [83,102]. In accordance with those findings, the authors registered in the SSs
significant, but weak, relationships between T0 and the concentration of dissolved inorganic
nitrogen (DIN) and between T0 and E0 (Table 5). This result can be explained by a mismatch
of seasonal maxima in T0, DIN, and E0 in the SSs. High values of T0 and E0 are observed in
July and August when nutrients are exhausted [103].
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The role of nutrients in PP in the Arctic Ocean is well known [51,52,104]. On the
other hand, it is difficult to establish close links between PP characteristics and nutrient
concentration [32,47,98,105]. There are many reasons for that. A low nutrient concentration
very often is not evidence of a low increment in phytoplankton biomass due to grazing
by zooplankton, as well as cell death and sedimentation [106]. Moreover, the enrichment
in UML by nutrients during the winter convection usually does not coincide with the
high values of Pb registered during the phytoplankton bloom in spring. Furthermore, in
conditions of high nutrients, the photosynthetic rate can decrease because of energetic
competition between the DIN assimilation process and the Calvin cycle [107]. On the other
hand, during the limitation of nutrients, phytoplankton can use dissolved organic nitrogen
for growth and photosynthesis [108,109] and keep a relatively high photosynthetic rate.

All the reasons listed above can lead to unpredictable, positive or negative, relation-
ships between productivity parameters and nutrients. In the present study, a statistically
significant but weak correlation was found only between Pb

opt and DIN (Table 4). The
negative relationship between Pb

opt and DIN is determined by the spatial distribution in
surface nutrients in the SSs. Thus, the main source of nutrients in the inner shelf of the
SSs is the river discharge [37,38]. In these areas, an increase in nutrient concentration is
accompanied by a high Chl a content. In turn, the negative correlation between Pb

opt and
Chl a (R = –0.21, p < 10–3, N = 411) (Table 4) to a high extent determines the opposite link
between Pb

opt and DIN.

4.2.3. Modelling of Pb
opt and Its Application for Remote Sensing

The results of the correlation analysis and PCA suggest that light is the main environ-
mental factor that constrains the assimilation activity of phytoplankton in the SSs (Figure 4,
Table 4). The variability in E0 explained 37% of Pb

opt variations (R2 = 0.37). Therefore, it can
be assumed that E0 can be used as a single input variable to the empirical model of Pb

opt.
A weak correlation between Pb

opt and T0 does not allow for using the latter parameter
as a predictor of the assimilation activity of phytoplankton in the SSs. In the present article,
it was revealed that the application of the dependence between Pb

opt and T0 for the World
Ocean [13] led to a significant error in the calculations of Pb

opt in the SSs (Table 6). Using the
region-specific relationship between Pb

opt and T0 did not improve the predictive capacity
of the temperature-based model. Thus, according to the authors’ dataset, the empirical
formula (1) is the best approximation of Pb

opt, and it can be used for the calculation of this
parameter using satellite-derived E0 (Esat).

As was mentioned above, using Esat as an input variable decreased the efficiency of the
developed model (1). This result was connected with the errors in Esat determination [77,110].
To estimate this error, a comparison of the field data of E0 with matched-up in space and
time values of Esat obtained by a MODIS-Aqua scanner was carried out. The results of this
comparison suggest that the values of Esat overestimate the field observations (Figure 9). As
a consequence, the calculations of Pb

opt using Esat also were overestimated in comparison
with the field data as evidenced by the positive bias of linear regression (Table 6).

Another approach to the estimation of Pb
opt is the application of T0 and Chl0, also

registered using a satellite scanner, as additional input variables in the model [50]. To verify
whether model predictive capacity improves after using T0 and Chl0 together with E0, the
equation of multiple regression linking the log-transformed values of these variables with
Pb

opt was obtained as:

log10 Pb
opt = 0.512 log10 E0 + 0.015 log10 T0 − 0.070 log10 Chl0 − 0.408 (R = 0.64, N = 266). (3)

The verification of the developed model (3) suggests that the input of T0 and Chl0
to the calculations does not improve the model skill in comparison with E0reg (Table 6).
The main parameters of model efficiency were as follows: R2 = 0.34, RMSD = 0.228. Thus,
according to the authors’ findings, it is sufficient to use only E0 in the Pb

opt model as the
most relevant abiotic parameter.
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The tendency of the latitudinal distribution in Pb
opt in the SSs obtained using the

Equation (1) with Esat as an input variable (Figure 7) was consistent with the global distribu-
tion in Pb

m according to [50]. In that study, where the spatial distribution in the assimilation
number was assessed using PAR, temperature, and chlorophyll a concentration, the values
of Pb

m also decreased poleward (Figure 8 in [50]).

5. Conclusions

One objective of the present study was to develop a simple algorithm for Pb
opt es-

timation that would be useful to evaluate in future IPP in the Siberian Seas (SSs) using
chlorophyll-based models and satellite observations. For this purpose, it was needed to
choose an environmental parameter that would be most closely linked with Pb

opt and easily
detected from space. The analysis of the dataset used in this article suggests that incident
PAR is the required variable because its role in the variability in Pb

opt is dominant.
In the present article, it is shown that the commonly used algorithm for the calculation

of the optimal assimilation number (Pb
opt) based on sea surface temperature (T0) registered

using a satellite is badly applicable for phytoplankton of high latitudes, in particular, in
the SSs. As a consequence, the application of the dependence linking Pb

opt with T0 must
lead to errors in the estimation of the annual value of water column primary production
(IPP) using chlorophyll-based models and satellite-derived data. The findings of this study
suggest that the application of photosynthetically available radiation can be sufficient for
the adequate estimation of Pb

opt in light-limited regions. The main practical result of this
study is the developed empirical region-specific algorithm of Pb

opt, which can be used in
the future for IPP estimation in the Arctic Ocean.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jmse11030522/s1, Table S1: Phytoplankton productivity parameters
and environmental variables in the Kara Sea from 1993 to 2020; Table S2: Matched-up points of
in situ and satellite-derived assimilation numbers; Table S3. Matched-up points of in situ and
satellite-derived subsurface PAR; Figure S1. Frequency distribution of log-transformed values of
biotic and abiotic variables. (a)–optimal assimilation number (Pb

opt); (b)–surface chlorophyll a
concentration (Chl0); (c)–subsurface photosynthetically available radiation (PAR) (E0); (d)–sea surface
temperature (T0); (e)–sea surface salinity (S0); (f)–concentration of dissolved inorganic nitrogen (DIN);
(g)–concentration of phosphates (PO4); (h) –concentration of dissolved silicon (Si(OH)4); (i)–the ratio
of chlorophyll a concentration of small (<3 µm) to total surface phytoplankton (Chls/Chl0); Kα–value
of Kolmogorov-Smirnov test; p value–statistical reliability; N–number of data. Solid line is the curve
of expected normal distribution.
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