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Abstract: This paper proposes the study of a robust control scheme for an Unmanned Surface Vehicle
(USV) in a urban waterway using Visual Odometry (VO) for position estimation of the vehicle
instead of traditional sensors. For different applications, a USV is required to operate in autonomous
navigation mode and under various disturbances inherent to its environment as currents and waves.
To achieve efficient operation, a robust control scheme is required to cope with such disturbances.
The autonomous navigation is achieved by using VO to estimate the vehicle’s position for denied
Global Positioning Systems (GPS) environments. A robust control scheme based on Sliding Modes
(SM) control theory is designed and its convergence is guaranteed by means of Lyapunov analysis.
The tracking capabilities under disturbance conditions using VO for position estimation are verified
in simulation using the virtual world tool from Matlab and Simulink.

Keywords: USV; monocular visual odometry; position estimation; robust control

1. Introduction

In the last decade, autonomous vehicles (AV) have attracted the attention of researchers
around the world, owing to their broad range of possible applications. Unmanned Surface
Vehicles (USV) are a particular class of AV which operate on the surface of water. These
are commonly small boats used mainly for testing control algorithms, or in practical
applications as surveillance or data acquisition in water environments in which it is not
possible to send a manned vessel [1]. Other applications for USV include bathymetry,
environmental monitoring and disaster management, which can be found in [2–4].

The dynamical model of USV is essential for the study and design of control systems
that fulfill the desired objectives [5–7]. This dynamical model is commonly developed
through kinematic and kinetic studies based on the Newton–Euler approach, which allows
the consideration of forces and moments acting over the vehicle in each degree of freedom.

To guarantee efficient navigation of a USV, one of the most important parts is the au-
tonomous navigation system used to perform sensing and perception tasks, path planning
and control. The control module is designed to perform robust tracking of the desired
trajectories. Hence, such robust controller design is an essential stage, since the USVs
face challenges such as uncertainties, external disturbances, nonlinearities and satura-
tion, among others. In [8], a trajectory tracking control problem for USVs with motion
constraints and varying ocean currents is presented, based on backstepping and a normal-
ization technique. To cope with actuator saturation, a saturation tracking controller based
on generalized saturation functions is developed in [9]. Meanwhile, a multilayer neural
network—together with adaptive control techniques—is used to obtain robust operation
against unmodeled dynamics and environmental disturbances induced by waves and
ocean currents. In [10] a disturbance observer-based control is developed to estimate the
unknown environmental disturbances affecting the USV with a tracking control strategy
for optimization of energy consumption and enhancement of tracking performance via the
port-controlled Hamiltonian techniques. An adaptive sliding modes control scheme for
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USV modeling uncertainties and input saturation is presented in [11], in which a neural
network is used to approximate unmodeled dynamics and a hyperbolic tangent function is
considered to handle the chattering phenomenon.

Recently, Unmanned Surface Vehicles have had integrated cameras mounted on their
structure to provide information about its surrounding environment. These cameras can
be used to complement measurements taken by traditional sensors, or even substitute
them; detect floating objects on the water surface; and perform collision avoidance or path
planning tasks. Among the different applications for such visual input, the estimation
of motion is an important task for autonomous navigation of Unmanned Autonomous
Vehicles (UAV). The process of estimating the motion of a vehicle using data provided
by a single or multiple cameras is called visual odometry (VO) [12]. In VO, the changes
present in recorded images produced by motion are used to compute the incremental pose
estimate between frames, with the consideration of a static and textured scene, sufficient
illumination in the environment and enough scene overlap between consecutive frames [13].
Visual Odometry can be performed for stereo or monocular configurations. Stereo VO
accounts for the case in which the relative 3D position of the features is directly measured
by triangulation at every vehicle location and used to derive the relative motion, while in
monocular VO, the relative motion and 3D structure must be computed from 2D bearing
data. The main problem in monocular VO is that motion can only be recovered up to
a scale factor, and the absolute scale should be determined from direct measurements,
motion constraints or using the trifocal tensor [14]. Most applications of VO are developed
for ground vehicles; however, there exists an increasing interest for applications in aerial
and marine vehicles. The use of VO in marine environments is a good alternative to GPS-
based systems, due to the existence of GPS-denied regions—for instance, in underwater
environments, where the position estimation using VO allows the autonomous navigation
of the vehicle [15,16]. One outstanding example of such an application can be found in
the motion estimation of the NASA Mars Rovers as a supplement to dead reckoning [17].
In [18], VO is used in autonomous underwater vehicles for coral-reef monitoring tasks.

Another area of application of USVs is navigation through urban waterways. Urban
waterways are defined as waterways and water bodies located near urban environments,
including natural features (e.g., wetlands, lakes, rivers and estuaries) and those constructed
as part of a drainage system. Such environments are characterized by having sceneries with
several objects and textures, which allow the use of motion estimation algorithms as VO.
The research on USV in urban waterways is focused on transportation and water quality
monitoring. In [19] a semi-immersible USV is developed for navigation in swallow waters
as ports, rivers or lakes for monitoring tasks. A cargo transport task in urban waterways
networks is analyzed in [20] with a cooperative multi-vessel system. In [21], a USV robot is
developed in order to act as a measurement tool to monitor water pollution in a Peruvian
lake due to the presence of a hydroelectric power plant, mining industries and touristic
activities near the surroundings. A localization system based on an Extended Kalman Filter
for A USV in urban waterways is proposed in [22], the system integrates VO with LiDAR to
achieve autonomous navigation and trajectory tracking without using GPS measurements.

There exist several methods for motion estimation and robust control of marine ve-
hicles, but few works address the integration of computer vision algorithms and control
schemes for Unmanned Surface Vehicles [23,24]. Hence, this paper proposes the generation
of a robust controller for a USV to perform trajectory tracking using a vision algorithm to
estimate the vehicle’s position instead of traditional sensors in urban waterways environ-
ments, mainly rivers or lakes. The controller is synthesized using sliding modes techniques,
which provide robustness against environmental disturbances such as as currents and
waves, and a monocular VO scheme is used to estimate the vehicle’s position. To verify the
effectiveness of the proposal, a simulation platform is developed using the virtual world
editor from Matlab.

The remainder of this paper is organized as follows: Section 2 presents the system
modeling, including the USV and environmental disturbances; Section 3 shows the pro-
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posed robust control based on visual position estimation detailing the VO algorithm and
the robust control scheme based on sliding modes. Finally, Sections 4 and 5 illustrate the
results and main conclusions of this work.

2. System Modeling
2.1. USV Model

The mathematical model of the considered USV is obtained through static and dynamic
principles on a local reference frame in order to take advantage of the geometrical properties
of the vehicle. The model is based on the concept of conservation of linear and angular
moment, which is directly related to Newton’s second law. The motion of a USV considering
six degrees of freedom is defined by a translation motion (position) in three directions:
surge, sway and heave; and by a rotation motion (orientation) about three axes: roll, pitch
and yaw. The interested reader can find a highly detailed explanation about the modeling
process in [5].

Consider the following vectors

η = [η1 η2]
T = [x y z φ θ ψ]T (1)

v = [u v w p q r]T (2)

where η stands for the vehicle’s position and attitude vector with coordinates on the
inertial frame (earth fixed) and v represents the linear and angular velocity measured in
the referential frame (body fixed). The model containing the kinematic and kinetic parts is
given by

η̇ = J(η2)v (3)

Mv̇ + C(v)v + D(v)v = τE + τ (4)

in which M is the system inertia matrix, C(v) is the Coriolis centripetal matrix, τE are the
forces and moments related to environmental disturbances, τ is the vector containing the
external forces and moments acting on the rigid body and D(v) is the matrix related to
hydrodynamic drag, including linear and quadratic terms. On the other hand, J(η2) is a
diagonal matrix formed by two rotation matrices J1(η2) and J2(η2), defined as

J1(η2) =

cψcθ −sψcφ + cψsθsφ sψsφ + cψcφcθ

sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ

−sθ cθsφ cθcφ

 (5)

J2(η2) =

1 sφtθ cφtθ

0 cφ −sφ

0 sφ

cθ

cφ

cθ

 (6)

where J1(η2)
−1 = J1(η2)

T ∈ OS(3) and OS(3): Orthogonal Special group (three dimen-
sions) and the nomenclature c, s, t stands for cos(·), sin(·) and tan(·), respectively.

The inertial and referential frames are illustrated in Figure 1, where r and rG are the
vectors that connect the center of gravity with the origin of the inertial and referential
frame, respectively, and rO is the vector that connects the origins of the referential and
inertial frames.

A more detailed model can be obtained considering the following description for
system variables: M = MRB + MA and C(v) = CRB(v) + CA(v), where MRB and CRB(v)
are the inertia and Coriolis/centripetal force matrices while MA and CA(v) represent the
added mass matrices due to the inertia of liquid surrounding the rigid body.



J. Mar. Sci. Eng. 2023, 11, 515 4 of 16

Y

Z

X

Y

b

G

Z
b

f dS

X
b

Earth fixed

Body fixed

dS

dV

r

O
r

r

g

Figure 1. Earth fixed and body fixed frames.

When the vehicle moves through an ideal fluid MRB = MT
RB > 0 and MA = MT

A. The
Coriolis and centripetal force matrix C(v) is skew-symmetric, and D(v) is nonsymmetric
and strictly positive. It is worth noting that matrix J2(η2) shows a singularity at θ = ±90◦,
but it is not a problem for ships due to the limited working space for pitch angle, which is
way smaller than such a value.

The USV’s motions in pitch, heave and roll can be neglected in comparison to the
other motions for conventional surface ships, especially under the consideration of calm
water surface; thus, ship motion modeling can be considered with a reduced number of
degrees of freedom [25,26].

2.2. Environmental Disturbances

The mathematical representation of the main disturbances found in water environ-
ments is introduced to analyze its effects in the USV movement. Such disturbances are
related to wind, waves and currents. The wind and waves are usually included in the
dynamical model by superposition; that is,

τE = τwa
E + τwi

E (7)

where τwa
E and τwi

E are the forces and moments of waves and wind, respectively. In this
work, the wind effects are neglected and only the waves’ effects are considered.

The marine waves are a phenomenon which is present in almost any water zone,
to a lesser or greater extent, described as undulation produced over the water surface.
The modeling and generation process of waves have been addressed in the literature for
different purposes, as shown in [27,28], and for studies about energy conversion, such
as [5,29]. In this paper, the wave disturbances are modeled using a first-order model of
a wave.

Let us define the slope of the wave si(t) for the i-th component as

si(t) = Ai
2π

λi
sin(ωeit + φi) (8)

where Ai and λi are the wave amplitude and length, respectively, ωei is the encounter
frequency and φi is a random phase uniformly distributed and constant with time in [0, 2π)
which corresponds to the component of the i wave. The vector of forces and moments of
waves τwa

E is given by [30]
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τwa
E =



∑N
i=1 ρgBLTcos(β)si(t)

∑N
i=1−ρgBLTsin(β)si(t)

0
0
0

∑N
i=1

1
24 ρgBL(L2 − B2)sin(2β)s2

i (t)


(9)

where ρ represents the water density, g the gravity, B, T and L the width, craft and length
of the vehicle, respectively. The angle β is the encounter angle of the vehicle, which is
defined as the angle formed between the stern line and the incident direction of the waves.
The effect of this disturbance on the vehicle can be appreciated in the drift when sailing at
low speeds.

The last considered disturbance is the one caused by currents. Such currents are
mainly produced by variations in temperature, density and salinity between different water
volumes, but can also originate from the wind friction at the water’s surface. This kind of
disturbance is characterized by water displacements produced inside the water body.

Let the generalized velocity vector v be replaced with the hydrodynamic terms of the
vector of relative velocities, as follows

vr = v− vc (10)

where vc ∈ R6 is the velocity of the currents with respect to the reference frame. Consider-
ing an irrotational fluid, this vector can be defined as [31]

vc =
[
uc bc wc 0 0 0

]T (11)

with vb
c =

[
uc bc wc

]T which is given by

vb
c = J1(η2)

TvE
c (12)

where vE
c ∈ R3 represents the current velocity vector measured in the inertial frame.

Finally, the complete dynamic model considering the disturbances associated with
currents can be written as

η̇ = J(η2)vr +

[
vE

c
0

]
(13)

Mv̇r + C(vr)vr + D(vr)vr = τ + τE (14)

Owing to the fact that major changes in water environments’ characteristics are related
to the time of year, parameters such as velocities and directions of real environmental
disturbances are usually described as stationary. In this work, first order Gauss–Markov
processes are used for the generation of waves and current parameters. We define the speed
of currents as Vc, the angle of currents relative to the inertial frame as αc and the attack angle
of currents relative to the bow as βc [31,32]. Then, the corresponding Gaussian-Markov
processes are defined as

V̇c + µ1Vc = w1 (15)

α̇c + µ2αc = w2 (16)

β̇c + µ3βc = w3 (17)

with wi (i = 1, 2, 3) representing zero mean quasi-Gaussian white noise processes and
µi ≥ 0 (i = 1, 2, 3) constants. A 3D current model can be obtained by transformation of
current speed (Vc) and directions (αc, βc) from flow axes to North-Eastern velocities through
the following relation

vE
c =

Vc cos(αc)cos(βc)
Vc sin(βc)

Vc sin(αc)cos(βc)

 (18)
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For a study in the horizontal plane only, considering αc = 0 and φ = θ = 0, (18) can
be reduced to a 2D current model as

uc = Vccos(βc − ψ) (19)

vc = Vcsin(βc − ψ) (20)

Additionally, the direction of the current can be fixed by defining constant values for
αc and βc.

3. Robust Control Based on Visual Position Estimation

This section details the proposed robust control scheme based on visual position
estimation, where sliding modes theory is used to synthesize the robust controller and a
monocular VO technique is selected to perform position estimation at every instant. Such a
configuration is illustrated in Figure 2.

 Desired 

   states

       VO position 

estimation algorithm

Waves

Controller
Virtual world

 environment

Current velocities and 

   direction generator

Dynamic Model

          f(vr)+
τ

τ
η, vη E

d

η
est wa

vc
E

Figure 2. Block diagram of the proposed control scheme.

3.1. VO Mathematical Background

This section presents some important concepts associated with the VO technique,
providing the basis for the position estimation process.

Monocular VO schemes process a stream of images provided by a single camera to
estimate its motion. The image points representation is performed using homogeneous
vectors q ∈ R3 and q′ ∈ R3 in the first and second view, respectively. On the other hand,
the points in global coordinates are represented by homogeneous vectors Q ∈ R4. A
perspective view is described using a camera matrix P ∈ R3×4, which indicates the image
projection q ∼ PQ, where the symbol ∼ defines equality to scale. To represent a view
with a finite projection center, the matrix P = K[R|t] is used, where R is a rotation matrix,
t = [tx, ty, tz]T is the translation vector and K ∈ R3×3 is a calibration matrix containing the
camera’s intrinsic parameters [14,33]. The consideration of affine transformations formed
by a rotation and translation, as described before, leads to good results when the surface is
static. However, it is worth considering that the effect of waves in the water surface can
lead a USV to move in such a way that the corresponding transformation is not affine any
more, and some distortion in the scaling can arise. This situation may affect the motion
estimation but can be avoided using sensor data to recover the appropriate scale [13].

Consider camera matrices for both views represented as K1[I|0] and K2[R|t]. Let t̂
denote the skew symmetric matrix

t̂ =

 0 −tz ty
tz 0 −tx
−ty tx 0

 (21)

so that t̂x = t× x for all x. Then, the fundamental matrix is

F = K−T
2 t̂RK−1

1 (22)
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The epipolar constraint determining the relation between points q and q′ can be
described in terms of the fundamental matrix by

q′Fq = 0 (23)

When the camera is calibrated, matrices K1 and K2 are known, so that the epipolar
constraint can be rewritten as

q′Eq = 0 (24)

where the matrix E is called the essential matrix.

3.2. Monocular Visual Odometry

This section describes the main components of the VO technique, focusing on the
monocular scheme with 2D–2D feature correspondences. Figure 3 presents the main steps
involved in the visual odometry process.

(Input images)
   Camera

Feature detection

Computation of R-t

Feature matching

Motion estimation

Fundamental & Essential

      matrix estimation

Figure 3. Main components of VO.

The monocular VO technique is based on the geometric relations between two images
taken by the same camera. Consider a pair of images Ik and Ik−1 from a calibrated camera;
the geometric relations for this case are described by the essential matrix E. This matrix
contains the camera motion parameters up to an unknown scale for the translation, and
can be defined as

E = t̂R (25)

The essential matrix can be computed using 2D to 2D feature correspondences. In
this work, Speeded Up Robust Features (SURF) are selected, but other types can also be
used, and Random Sampling Consensus (RANSAC) can be applied for outlier rejection [34].
Then, the translation and rotation for each camera pose can be obtained directly from E. To
this end, consider

D =

 0 1 0
−1 0 0
0 0 1

 (26)

and let the singular value decomposition of the essential matrix be E ∼ Udiag(1, 1, 0)VT ,
where U and V are chosen, such that det(U) > 0 and det(V) > 0. Then t ∼ tu ≡
[u13 u23 u33]

T and R is equal to Ra ≡ UDVT or Rb ≡ UDTVT [14,35].
Any combination of R and t satisfying the above conditions satisfies the epipolar

constraint (24). The first camera matrix is defined as [I|0], while t is considered of unit
length. Under such considerations, there are four possible solutions for the second camera
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matrix: PA ≡ [Ra|tu], PB ≡ [Ra| − tu], PC ≡ [Rb|tu], PD ≡ [Rb| − tu]. Only one of these
solutions corresponds to the true configuration, where the point is in front of the camera.
The remaining ones correspond to the twisted pair obtained by rotating one of the views
180 degrees around the baseline, and reflections of the true configuration and the twisted
pair. In order to determine which choice corresponds to the true configuration, the cheirality
constraint is imposed, and one point is sufficient to resolve the ambiguity [14].

The final steps concerns a scale adjustment of the translation vector which can be
performed based on sensor data (e.g., measuring the size of an element in the scene),
motion constraints, or from the integration with other sensors and concatenation of the
transformations to recover the incremental motion of the camera.

The algorithm which synthesize the above concepts to perform monocular VO is
described below:

1. Capture a new input image Ik.
2. Detection and matching of features between the new (Ik) and old (Ik−1) image.
3. Compute fundamental matrix F with RANSAC for outlier rejection.
4. Compute essential matrix from fundamental matrix.
5. Extract R and t from essential matrix using SVD.
6. Use cheirality constraint to obtain the true configuration.
7. Perform scale adjustment.
8. Concatenate transformation.
9. Repeat from step 1.

3.3. Control Design

In order to fulfill the main objective of autonomous navigation, an autonomous mobile
system, requires another system that dictates where it should go, with appropriate speed
and direction that satisfies the desired performance. Such systems are known as Guidance,
Navigation and Control (GNC) systems.

It is desirable that the perturbed system (14) possesses robustness against the dis-
turbances described previously; it is also desired that the control scheme has a robust
performance in the presence of modeling errors and parameter uncertainty. To achieve
such robust performance, different approaches have been applied. In [27], a nonlinear
adaptive controller is used for maneuvering with experimental tests in a laboratory. The
same technique is used in [36] but for achieving path-following objectives.

Another control technique that can provide a robust performance, and has been
broadly applied to several problems, is Sliding Modes Control (SMC). The main properties
of this technique are accuracy and robustness, along with ease of implementation and
tuning. The basic idea behind SMC systems is to bring the states of the system to a
particular predefined surface in the state space, which is called the sliding surface. Once
the states reach the sliding surface, the controller guarantees that states remain in a close
neighborhood of the surface. Hence, SMC design can be divided into two main parts; the
first involves the design of an appropriate sliding surface, such that the sliding motion
satisfies the design specifications. The second part is devoted to the selection of a control
law that makes the switching surface attractive for system states. More details on the
complete design procedure can be found in [37].

In this section, a control law based on SMC is designed. First, a sliding surface function
is proposed as

σ(e) = ce + ė, c > 0 (27)

where c is a constant, and the errors and its derivatives are defined as

e = ηd − η (28)

ė = η̇d − η̇ (29)

where the desired states ηd =
[
xd yd zd

]T and the current states η =
[
x y z

]T .
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Now, let us rewrite (14) in a more suitable form as

v̇r = M−1( f (vr) + τE) + M−1τ (30)

where the elements associated with Coriolis, centripetal and damping forces are contained
in the function

f (vr) = C(vr)vr + D(vr)vr (31)

substituting (13) in (29), the error dynamics results in

ė = η̇d − J(η2)vr − vE
c (32)

ë = η̈d − J(η̇2)vr − J(η2)v̇r − v̇E
c (33)

Since it is treated with a vector of irrotational constant currents, the derivative of the
vector is

v̇E
C = 0 (34)

Stability Analysis

Consider a candidate Lyapunov function V defined as

V =
1
2

σ2 (35)

In order to achieve asymptotic stability in σ = 0, the condition V̇ < 0 for σ 6= 0 must
be satisfied. To prove this condition, the derivative of (35) is obtained as

V̇ = σσ̇ =σ
[
η̈d + η̇d − (J(η̇2) + J(η2))vr (36)

− J(η2)M−1( f (vr)− τE) + J(η2)M−1τ
]

and defining

φ(η2, vr) = η̈d + η̇d − (J(η̇2) + J(η2))vr − J(η)M−1( f (vr)− τE) (37)

Then, Equation (36) can be rewritten as

V̇ = σ
[
φ(η2, vr)− J(η2)M−1τ

]
(38)

considering the following relation

τ = −MJT(η2)u (39)

The derivative of V can be defined as

V̇ = σ(L + u) (40)

where L = φ(η2, vr) contains the undesirable dynamics of the system. A control law based
on sliding modes is defined as

u = −Ksign(σ) (41)

with

sign(σ) =


−1 if σ > 0
1 if σ < 0
∈ [−1, 1] if σ = 0

(42)
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and substituting into (40), we obtain the following inequality

V̇ ≤ |σ|L− |σ|K = |σ|(L− K) (43)

In order to obtain asymptotic stability in σ = 0, consider the following relation

V̇ ≤ −α
√

2V, α > 0 (44)

Finally, substituting (35) in (44) and matching with (43), its easily shown that the gain
K for ensuring asymptotic stability can be obtained as

K = α + L (45)

4. Results

In order to show the performance of the proposed VO-based robust control, a simula-
tion test was developed using the virtual world toolbox from Matlab. This tool allows the
creation of a virtual environment which can be used to perform the position estimation.
The video is acquired using a Kinect V2 sensor from Microsoft and its corresponding
Matlab toolbox, which enables the use of this device together with Simulink and virtual
world. The ship’s parameters correspond to a catamaran configuration prototype devel-
oped for experimental tests. The matrices of such prototype and the disturbance vector for
waves are:

M =

13.117 0 0
0 13.117 0
0 0 3.653

 (46)

C(v) =

 0 0 −13.117v
0 0 13.117u

13.117v −13.117u 0

 (47)

D(v) =

14.1041u− 0.5262 0 0
0 0.03725v + 0.169 0
0 0 0.1663r + 0.0913

 (48)

τwa
E =

 2.1631 ∑N
i=1 cos(β)si(t)

−2.1631 ∑N
i=1 sin(β)si(t)

2.9016 ∑N
i=1 sin(2β)s2

i (t)

 (49)

The selected sliding surface function is characterized by parameter c = 1, while for
the first-order Gauss–Markov processes which models the currents (15) and (18), µ1 = 1,
w1 = 0.1 αc = 15◦ and βc = 10◦ are selected. Using a recursive method based on (39)–(45)
and the waves and currents disturbances boundaries, the robust controller gain K was
selected at a value of six.

The virtual world environment developed to test the proposed vision-based control
scheme is composed of objects with different shape and texture, as illustrated in Figure 4.
The ship’s vision, considering that the camera is attached in its frontal part, is shown in
Figure 5. The selected trajectory follows a triangular path on x and z axes, while the y axis
is considered to present very small variations, so a constant value is assigned to this axis.

Test 1 considers following a triangular path for the x, z axes, while the y axis is
selected as constant at every instant. The path following of the x and z axes is shown
in Figures 7 and 8, together with the Ground Truth (GT). It can be seen that VO-based
controller is capable of tracking the desired position of both axes with good accuracy, even
in the presence of waves and currents, which is realized using position estimations instead
of measurements. The trajectory performed by the USV is shown in Figure 9. The tracking
error for both axes is presented in Figure 10, showing values lower than 0.3 m, which
demonstrates the good performance of the proposed controller.
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X

Y Z

Object 1

Figure 4. Virtual world environment.

Z

Y

X

Object 1

Figure 5. View of the ship’s camera.

The features detection method used is SURF [38], and an example of feature detection
and matching is presented in Figure 6. It is verified that the designed virtual world has the
properties of texture and illumination required to provide enough feature correspondences.

Figure 6. Feature detection and matching.
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Figure 7. x-axis coordinate tracking for test 1.
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Figure 8. z-axis coordinate tracking for test 1.
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Figure 10. Tracking error for test 1.
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Another scenario is developed in Test 2 considering a sinusoidal trajectory and stronger
disturbances with the following values:

τwa
E =

 35.2736 ∑N
i=1 cos(β)si(t)

−25.1631 ∑N
i=1 sin(β)si(t)

18.4214 ∑N
i=1 sin(2β)s2

i (t)

 (50)

αc = 35◦ , βc = 20◦ , w1 = 0.5 (51)

The x-axis and z-axis GT and their corresponding tracking signals are illustrated
in Figures 11 and 12, respectively. The horizontal trajectory in the xz plane performed
by the USV is shown in Figure 13. Finally, the tracking errors are depicted in Figure 14,
where we can observe an increment in the maximum values in comparison with the
previous example.
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Figure 11. x-axis coordinate tracking for test 2.
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Figure 12. z-axis coordinate tracking for test 2.
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Figure 13. Trajectory in the xz plane for test 2.
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Figure 14. Tracking error for test 2.

5. Conclusions

This article presented the integration of a monocular visual odometry algorithm for
position estimation with a robust control scheme to perform path following tasks for
unmanned surface vehicles in a urban waterway. The monocular VO scheme allows us to
use a video camera as the position sensor instead of traditional sensors as GPS, which could
be useful in environments in which such sensors cannot be utilized. The designed robust
controller guarantees stability of the USV trajectories under common disturbances such as
waves and currents, which is demonstrated analytically by means of Lyapunov theory and
performing simulations using the Virtual World and Simulink tools. The simulation results
showed a good position estimation with the monocular VO scheme, which is accurately
tracked by the robust controller even when disturbances are present. Such results indicate
that integration of VO for robust control schemes is a good alternative for environments in
which the traditional sensors cannot be used.
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