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Abstract: Side Scan Sonar (SSS) is widely used to search for seabed objects such as ships and wrecked
aircraft due to its high-imaging-resolution and large planar scans. SSS requires an automatic real-
time target recognition system to enhance search and rescue efficiency. In this paper, a novel target
recognition method for SSS images in varied underwater environment, you look only once (YOLO)-
slimming, based on convolutional a neural network (CNN) is proposed. The method introduces
efficient feature encoders that strengthen the representation of feature maps. Channel-level sparsity
regularization in model training is performed to speed up the inference performance. To overcome the
scarcity of SSS images, a sonar image simulation method is proposed based on deep style transfer (ST).
The performance on the SSS image dataset shows that it can reduce calculations and improves the
inference speed with a mean average precision (mAP) of 95.3 and at least 45 frames per second (FPS)
on an embedded Graphics Processing Unit (GPU). This proves its feasibility in practical application
and has the potential to formulate an image-based real-time underwater target recognition system.

Keywords: side-scan sonar; real-time; target recognition; convolutional neural network (CNN)

1. Introduction

Side Scan Sonar (SSS) is an equipment that detects the acoustic structure and material
properties of a water body and the seabed by radiating sound waves to both sides. Com-
pared with other devices, SSS is more efficient because its operating range is approximately
300–600 m. However, the effective detection range of forward-looking sonar is 2–60 m.
Therefore, SSS is mainly used for large-scale underwater scanning search and rescue [1–4].
In the crash of Air France Flight 447 in 2009, rescuers used SSS to identify the wreckage of
A380 within an area of 200 × 600 m. After Malaysia Airlines Flight 370 crashed in 2014,
rescuers obtained high-resolution seabed images of 710,000 square kilometers with SSS,
which is the largest seabed detection result ever [5]. During the long-hour underwater
Search and Rescue (SAR) missions, rescuers need to check whether the image contains
targets in real-time mode, which is a heavy task and may affect rescue efficiency and even
result in omissions.

To shorten rescue time, SSS requires a real-time target detection function. The existing
SSS target detection is mainly manual and requires too much manpower in SAR tasks [5,6].
In addition, it is time-consuming to obtain underwater video in advance from the SSS
and then load it into the offshore terminal for frame-by-frame inspection. Traditional
sonar target recognition algorithms process the acoustic signal directly, which makes them
run faster because they do not need to translate the signal into picture, but changes in
the acoustic signal invalidate these algorithms [7]. In order to enable the SSS system to
have autonomous object detection capability, it is significant to design a real-time target
recognition algorithm.
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The intractable challenges faced by a real-time SSS object detection system are threefold.
First, the environment is complex and variable. Targets to be searched may be at the bottom
of a busy river, in a tributary with a lot of silt, or on the deep seabed. Acoustic signals vary
greatly in different environments. Second, targets in SSS images may be small because the
height of the SSS from the bottom can be up to 300–600 m. Third, computing resources are
limited. The SSS equipped on the automatic underwater vehicle (AUV) relies entirely on the
batteries for power. To ensure that the SSS works for a long time, the Battery Management
System restricts its power consumption [8–10].

Considering that traditional sonar object detection methods rely heavily on the phys-
ical characteristics of acoustic signals and do not have good generalization capabilities,
deep learning methods, which are more robust in the field of automatic recognition, were
introduced [11–13]. Deep learning-based object detection can be divided into one-stage
and two-stage methods. Two-stage algorithms first generate location candidate boxes for
the input image, and then classify the objects in the candidate boxes, whereas one-stage al-
gorithms simultaneously predict the locations and types of objects. The two-stage methods
are in general more accurate but not suitable for autonomous SSS image target recognition
systems due to the high computational overhead.

YOLOv5 is a popular one-stage object detection algorithm and is improved from
earlier versions, YOLOv4 [14] and YOLOv3 [15]. YOLOv5 takes both accuracy and compu-
tational efficiency into account. Test results on a large GPU, the NVIDIA V100, reached a
maximum of 55.0 mAP and 400 FPS [16], which is an excellent result, but how to deploy
it on a low-power mobile platform has not yet been satisfactorily addressed. There are
two main designs for achieving efficient and lightweight target detection. The former
strategy reduces the parameters of the network [17,18], the other focuses on introducing
low FLOP operations (e.g., group convolution [19] and deep convolution [20]) to reduce
the consumption of FLOPs while maintaining the ability to compete with those larger
target detection models. However, recent research has shown that fewer parameters and
FLOPs do not necessarily lead to faster runs [21]. Furthermore, most of the existing target
detection design studies have been evaluated on large GPUs and do not represent how fast
models can run on real-time SSS imaging systems.

Further, a large amount of image data is essential to train CNNs. However, the
acquisition of SSS images is difficult and expensive. Even if some images are obtained,
most of them are meaningless because few images contain true targets such as aircraft
wrecks and sunken ships, which makes it difficult for the CNNs to obtain sufficient positive
training samples [22].

In this work, a super-efficient target detection model for lightweight GPUs that can
be adapted to AUVs is built. First, the fast one-stage algorithm YOLOv5 is used to ensure
a high inference speed. However, the large number of parameters of YOLOv5 severely
slow down the inference speed on the lightweight GPU. To improve the performance of
target recognition while maintaining high efficiency, channel-level sparsity regularization
is applied to the target detection model design. By adding penalty terms in the training
phase and pruning invalid channels in the inference phase, the channel-level sparsity
regularization has proven its effectiveness in several vision tasks. However, the accuracy
of a directly pruned network is reduced when performing target detection tasks. To
address this issue, an efficient feature encoder, a channel-excitation (CE) feature encoder,
is designed. Specifically, CE captures the interactions between channels and efficiently
extracts the important small target information by one-dimensional convolution with no
more than six parameters. The CE-based target detection model YOLO-slimming not only
achieves high target detection accuracy, but also maintains a high inference speed on a
lightweight GPU.

In summary, the main contributions of this study are as follows:
(1) A SSS target recognition algorithm is proposed, called YOLO-slimming, based

on CNN, which detects underwater objects quickly and accurately with lightweight
calculation requirements.
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(2) The detection of small single-frame images is investigated in complicated under-
water backgrounds. To improve detection accuracy, efficient CE feature encoders are added
to the feature extraction module of YOLO-slimming, and multi-scale and weighted image
selection training strategies are employed.

(3) To reduce model size, memory overhead and computing consumption, channel-
level sparsity regularization is enforced in the training stage and the impact of sparsity on
network speed and accuracy is discussed.

(4) A SSS image simulation method based on deep ST is adopted to solve the problem
of insufficient data when effective samples are scarce.

2. Relate Work
2.1. SSS Object Detection Based on Deep Learning

Existing SSS target detection designs focus on improving detection accuracy. Ruan et al. [23]
introduced residual blocks in the feature extraction phase and designed a Dual-Path Resid-
ual network to extract features from noise-correlated targets. Cheng et al. [24] proposed a
repeated attention mechanism by combining the channel attention mechanism and the spa-
tial attention mechanism. Song et al. [25] proposed a self-cascaded convolutional module
that takes into account both global and local information, which combines both convolu-
tional and cropping layers for feature extraction. The addition of a feature enhancement
module to a network improves the performance of the network, but the computational
overhead associated with this addition needs to be carefully considered.

Although not as popular as other fields, some scholars have applied YOLO to SSS
target detection in recent years. Tang et al. [26] used YOLOv3 to identify sunken ships on
the seabed, and achieved a mAP of 89.49% when detecting a single target. Aubard et al. [27]
and Li et al. [28] applied YOLOv5 directly to SSS target detection and achieved real-time
results. Yu et al. [29] and Sun et al. [30] introduced Transformer, a complex attention
mechanism with multiple attention heads, into SSS image target recognition to improve the
accuracy of target detection. However, the above experiments were conducted on large
GPUs: the effect of real-time operation is achieved by increasing the power consumption
of the device, which is not applicable to real-time autonomous SSS target recognition
systems. Song et al. [25] and Yu et al. [31] introduced semantic segmentation to accomplish
real-time SSS image target recognition. However, as semantic segmentation requires the
determination of the classification of each pixel in the image, this method does not offer an
advantage in terms of computational speed, considering that the sweep range of a SSS can
be up to 300–600 m. In this paper, a target recognition model capable of running in real
time on a low-power embedded GPU is presented, which introduces the feature encoder
with low parameter counts to improve detection accuracy.

2.2. Computation Reduction

There have also been some attempts to reduce computational costs while maintaining
target detection performance.

Low-bit quantization [32,33] represents the parameters the data input to the model
in quantized format, which significantly reduces the size and computational cost of the
model. However, quantization of object detection models is often poor at maintaining
quality due to the high accuracy required for target localization. YOLOv4-Ghost-AMR
and YOLOV4-Tinier [34,35] use 1 × 1 convolutions and depth-separable convolutions to
generate redundant images. However, these special operations, while reducing FLOPs,
require custom hardware optimizations to achieve high inference speeds, which is not
feasible for most commodity mobile devices that only support limited operations. The
re-parameterized network uses a multi-branch structure to enable the model to obtain
better feature extraction during training, and fuses parallel into serial during testing,
thus reducing the computational and parametric quantities and increasing speed [36,37].
However, this approach limits the use of activation functions and reduces the non-linear
representation of the model.
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Given the limited computational power of the embedded GPUs carried by mobile
devices, the fast detection models being developed need to be device friendly.

3. Methods

In this study, a YOLOv5-based model is proposed which can be applied to real-time
detection of underwater targets in SSS images. The workflow is shown in Figure 1. First, the
optical images containing the targets are collected and synthesized into SSS-style images
by ST, which avoids network over-fitting caused by the scarcity of real SSS data. After
the expanded data are divided into training sets and test sets, YOLO-slimming is trained,
and the trained network is channel-level sparsity regularized to reduce its size. Finally,
YOLO-slimming, deployed on an ultralow-power small embedded GPU, is able to detect
SSS image targets accurately in real time.
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3.1. YOLOv5

YOLOv5 consists of three components: a Backbone module, a Neck module and a
Prediction module. The structure of YOLOv5 is shown in Figure 2.

The Backbone module of YOLOv5 is used to extract the features of input images. A
Focus module is added at the beginning as a special down-sampling method. The key to
Focus is a slicing operation, After Focus, a high-resolution feature map is split into multiple
low-resolution feature maps.
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After a Focus module, CBL alternated with a Cross-Stage Partial Network (CSP) [38].
CBL consists of three parts: Convolution, Batch Normalization (BN) and a LeakyRelu
activation function. CSP is composed of CBL, Residual and Convolution. CSP integrates
the gradient changes into the feature map from beginning to end, which reduces the
network parameters and computation, to not only ensure the speed and accuracy, but also
reduce the size of the model. CBL and CSP are also widely used in the Neck module to
enhance the feature fusion ability.

The last part of the Backbone is the Spatial Pyramid Pool (SPP) [39], which greatly
increases the receptive field by concatenating three max pooling layers with different kernel
sizes and one non-treated operation in channel dimension. Figure 3 shows the structure of
the SPP.
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The Neck module adopts a Path Aggregation Network (PAN) to strengthen feature
fusion capability [40]. Figure 4 illustrates a PAN. Up-sampling makes the feature map
smaller in size and contains more semantic information. Down-sampling makes the feature
map larger and retains more location information. Four different outputs bring robustness
to the detection of targets of different sizes.
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The Prediction module contains three feature maps with different scales. According
to the features at different scales, the corresponding prediction frame is generated for the
target image and processed by Non-Maximum Suppression (NMS), and only the prediction
frame with the highest local category confidence score is retained [41].

3.2. The CE Feature Encoder

The CE feature encoder is a parallel branch that does not change the structure of
Backbone. Specifically, the CE feature encoder includes a global pooling layer, a one-
dimensional convolution layer whose kernel size can be adaptively changed, and a sigmoid
normalize function [42]. The structure of the CE feature encoder is shown in Figure 5.
One-dimensional convolution completes the information interaction cross channels, and
the kernel size is determined by Equation (1).

k =
log2(C) + 1

2
(1)

where C is the number of channels after global pooling; k is the size of the convolution
kernel, which represents the coverage of cross-channel interactions.
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The CE workflow is divided into the following four steps:
(1) Apply a global average pooling layer to the input feature maps and change them

from a matrix of [h, w, c] to a vector with the size of 1 × 1 × c;
(2) Calculate the adaptive one-dimensional convolution kernel size of k;
(3) Apply one-dimensional convolution with kernel size = k to the feature vector to

obtain the weights of each channel;
(4) Multiply the normalized weights and the original input feature map channel by

channel to generate the weighted feature maps.
Three CE feature encoders are trained and updated together with the last three CBLs

of the Backbone module and obtain the importance of each feature map, after which a
weight value is signed to each feature map according to its importance. Thus, the neural
network can focus on improving the feature maps that are useful for the current task, while
suppressing the ones that are not important.

3.3. Channel-Level Sparsity Regularization

To improve the detection accuracy, original YOLOv5 performs multiple convolutions
of features in the Backbone, which eliminates some detailed information, especially small
targets. To compensate this, YOLOv5 uses the PAN in its Neck module. Three feature
maps of different sizes (19 × 19, 38 × 38, and 76 × 76) are fused to retain the necessary
information, but it brings much computation in the meantime. To reduce computation, a
sparsity regularization called network slimming method is enforced on YOLOv5.

Network slimming generally falls into three categories from a network structure
perspective: weight level, layer level and channel level. Weight-level slimming achieves a
large compression rate, but specific hardware and libraries are required. The layer-level
slimming needs to cut one or more complete layers and is less flexible. In fact, only when
the network is deep enough (more than 50 layers), removing layers can bring benefits.
Channel-level slimming is a compromise scheme, which is flexible and suitable for any
CNNs [40,43].

Scale factor γ is introduced for each channel, which can be multiplied by output
features of its corresponding channel. After training, the value of each scaling factor
is different. Finally, the scaling factors are pruned below a certain threshold and their
corresponding channels. This process is known as channel-level sparsity regularization.
Equation (2) is the loss function with the scale factor.

L = ∑
(x,y)

l( f (x, w), y) + λ ∑
channel

|γ| (2)

where x, y represent the input and target of layer L; W represents the trainable weights
in the CNN, the first item corresponds to the original loss function of YOLOv5; |γ| is the
scale factor corresponding to their channels, which are also trainable parameters. λ is a
hyperparameter to balance the two items.

In order not to add additional layer structure, the affine transformation parameters γ
of the BN layer is used as the scale factor, which are as follows:

ẑ =
zin − µ√

σ2 + ε
(3)

zout = γẑ + β (4)

where zin is a mini-batch input into the network, µ and σ are its mean and variance; ε is a
fixed value which is small enough to prevent the denominator of Equation (3) from being 0.
γ and β are the parameters of the affine transformation. γ makes the output value of the
network enlarge or reduce, and β makes the output value shift as a whole. γ has the effect
of scaling the output of the network. As a parameter of the BN layer, it is trainable itself.

Because of scale factors, the accuracy of the network after sparsity regularization
training will decline. Therefore, normal training should be carried out before sparsity
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regularization to make the network reach a high accuracy, and a model fine-tuning must be
conducted after each channel-level pruning.

3.4. SSS Image Simulation Based on Deep Style Transfer

The application of SSS is mostly related to national defense and underwater rescue,
which means there are few SSS images published on the Internet. Furthermore, most SSS
images do not include meaningful targets, such as wrecks. Therefore, it is particularly
important to simulate more SSS images containing targets. Denos et al. [44] simulated the
light shining on an object to obtain an optical image with lateral shadows, then generating
a sonar image by adding noise. Based on physical characteristics, it produces high-quality
sonar images, but both the simulated image and the target object need to be modeled in a
computer. The training of neural networks requires hundreds of images with targets. The
workload is therefore too large and the diversity of the modelled objects is not guaranteed.

In order to simulate a large number of SSS images and to ensure the feature diversity
of objects in the images at the same time, ST is used to simulate SSS images including
targets such as aircraft wrecks and sunken ships. These simulated images are then added
to the real SSS image dataset.

Image ST refers to the technology of learning the style of an image (i.e., style image)
using a CNN, and then applying to another image (i.e., content image), so that the generated
image shares similar styles [45]. ST needs to build a style feature extraction network and a
content feature extraction network. Gradient descent is applied after each loop to adjust
the generated image to minimize differences in style and content. Equations (5)–(9) are
loss functions.

Lcontent

(→
c ,
→
x , l
)
=

1
2 ∑

i,j
(Fl

i,j − Cl
i,j)

2
(5)

Gl
i,j =

Ml

∑
k=1

Nl
ik Nl

jk (6)

Sl
i,j =

Ml

∑
k=1

Nl
ik Nl

jk (7)

Lstyle = ∑
l

ωl

(
1

4N2
l M2

l

Nl

∑
i=1

Nl

∑
j=1

(
Gl

ij − Sl
ij

)2
)

(8)

Ltotal

(→
c ,
→
s ,
→
x ,
)
= αLcontent

(→
c ,
→
x
)
+ βLstyle

(→
s ,
→
x
)

(9)

where Lcontent

(→
c ,
→
x , l
)

denotes the content loss at layer l;
→
c ,
→
x denote the content image

and the generated image, respectively; Fl
i,j, Cl

i,j denote a feature of the generated image and

a feature of the content image, respectively. At the ith and jth channel of layer l, Gl
i,j and Sl

i,j
are Gram matrices of generated image and style image between the ith and jth channels in
layer l, respectively; Nl

ik Nl
jk denote the kth element of the ith and jth channels, respectively,

in layer l; ωl is the weight factor of each layer to the total loss; Ml denotes the product of
the length and width of the feature map.

VGG16 is selected pretrained on the COCO dataset as the network for the above two
loss calculations [46]. Compared with other networks, VGG16 processes image features
layer by layer, while ResNet [47] and DenseNet [48] implicitly fuse feature maps of different
layers. The fusion of introducing shallow information into deeper features increases the
computational complexity. The effect of features on ST is analyzed explicitly layer by
layer, and the layers involved in loss functions are selected manually to obtain the best
visual effect.

We pre-train VGG16 on the COCO dataset because the object categories in COCO
contain SSS targets (aircraft, ships and human). Therefore, the pre-trained VGG16 network
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can extract the content features of aircraft and ships, while the style features are extracted
from the real SSS images.

One loop of SSS image ST with VGG16 is shown in Figure 6. The five CR blocks of
VGG16 can be treated as the output of feature extraction, which means that one or more
CR blocks can be manually selected to achieve the best ST effect. Figure 7a–e are ST images
obtained by calculating losses using CR1–CR5, respectively. The first row is the result of
changing content loss, and style loss is updated in the second row.
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Figure 7. Generated images using different CR blocks as loss. (a–e) are the ST images obtained by
calculating the losses using CR1–CR5, respectively. The first row is the result of changing content
loss, and style loss is changed in the second row.

The content loss calculated by CR2 has the highest similarity with the SSS image. The
images obtained by using different CR blocks to calculate the style loss are significantly
different. With the deepening of the number of CR blocks, the style of the image is closer to
the SSS image. The image calculated by CR1 still has an apparent optical image style, and
the background of the image calculated by CR2 has inconsistency. The outputs of CR2, CR3
and CR4 are selected to calculate style loss together to obtain the style that is the closest to
the SSS image and at the same time have feature diversity.

Figure 8 shows some real SSS images, original optical images, and simulated SSS
images after ST. The first column is the SSS images as the style images, the second column is
the optical images as the content images, and the third column is the simulated SSS images.
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4. The Dataset and Training Strategy
4.1. The Dataset

The SSS images used in this paper are from Sonar Common Target Detection (SCTD)
established by Zhou et al. [49]. The SSS images are divided into three categories: shipwrecks,
drowning victims and aircrafts, and the number of images in each category are 385, 90
and 45, respectively. Some images in the dataset are shown in Figure 9. Compared with
datasets in the optical field, SCTD has the following characteristics:

• SCTD has collected three types of target images, but the number of samples is unbal-
anced, especially since the number of images of the drowning victims is only 45.

• The detection range and imaging method of SSS are different, and interference detec-
tion such as crushing, fracture and deformation is not satisfactory.

• SCTD is collected from a variety of sources, and image size, resolution, and aspect
ratio vary greatly.
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Table 1 gives the details of HSCTD. Among the shuffled images, 20% is selected to
form a test set to perform cross-validation. Considering that the division of data sets
will affect the training effect, it randomly adopts dividing data sets and carries out five
repeated experiments. The average value of five experiments is taken as the result of
training for analysis.

Table 1. Number of various SSS images.

Wreck Airplane Human

Real images 385 90 45
Simulated images 0 50 90

Hybrid images 385 140 135
Training set 308 112 108

Test set 77 28 27

4.2. Multi-Scale Images

The Backbone of YOLOv5 reduces the size of the input image by a factor of 32, which
makes it difficult for the feature descriptions of small objects to be captured by the detection
module. At the same time, it is difficult to capture the integrity of oversized targets even
after being reduced dozens of times. The same sample is enlarged by a maximum of
1.5 fold and reduced by a minimum of 0.5 fold before being fed into the network, which
can improve the robustness of the target detection network to the object size to a certain
degree [50]. During training, the original image size is set to 640 × 640. After each epoch, it
randomly selects an image size within the set scale range (320 × 320–640 × 640).

4.3. Weighted Image Selection

Although we have supplemented the data for aircraft and drowning victims with ST,
the number of shipwrecks is still approximately 3 fold that of the first two. The model will
learn more prior information from a high proportion of samples when they are unbalanced,
so that the actual prediction will focus on majority, which may lead to better accuracy for
many categories, but worse for a small number of categories [51].

The weighted image selection method is as follows:

wi = 1− ni

∑ ni
(10)

P(x, wi) = wie−wix (11)

where ni is the number of samples of type i, ∑ ni is the sum of the number of labels of
all samples, and P is the probability of samples being sampled when the weight is wi.
Equation (11) is a probability density function, and the probability of each sample x being
sampled follows exponential distribution.

4.4. Mosaic Image Enhancement

As shown in Figure 9, each HSCTD image contains only 1–2 objects, which cannot meet
the requirements of sample diversity. To overcome this problem, mosaic image enhance-
ment is adopted. Mosaic image enhancement randomly cuts and splices four randomly
selected images into one image [14]. Figure 10 shows some examples of mosaic image
enhancements. By merging four images into one, it can transfer four images to the model
at one time, which is equivalent to increasing the batch size. In this way, the background of
the detected object is enriched and the robustness enhanced.
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4.5. Warm-Up with Cosine Annealing

The learning rate is among the most critical hyper parameters. The large learning rate
accelerates the training speed, but with a slow convergence speed [52]. Warm-up training
is adopted followed by cosine annealing. At the beginning of training, the model is not
stable because it has not been trained enough. The learning rate should be set very low
initially, otherwise the model may diverge to disorder. However, a low learning rate makes
the training process very slow, so the warm-up training is realized by linearly increasing
the low learning rate to a larger value (the set value). The learning rate first increases
from zero to the set value, and then attenuates according to Equation (12), the cosine
annealing function.

ηcur =
η

2

(
1 + cos

(
Ecur

E
π

))
(12)

where ηcur is the current learning rate; η is the set learning rate; Ecur is the current epoch;
and E is the epochs required for network training. Since the network does not receive all
data at one time and experience one epoch, the value of Ecur can be decimal.

4.6. Transfer Learning

Although there are 528 images in the training set together with multi-scale images
and mosaic image enhancement, HSCTD is still a small dataset in the field of deep learning.
Insufficient samples stop the network from learning enough features, and lead to over-fit.
In order to overcome this, transfer learning is adopted [53,54].

When two tasks have similar characteristics, the knowledge between them is helpful
to each other’s network performance. The COCO dataset has more than 300,000 tag images
and 80 categories of targets, including aircraft, ships and people. Therefore, the model is
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firstly trained based on the COCO to obtain the pretrained weight, and then HSCTD is
used to continue the training process.

4.7. Other Training Details

SGD is used for gradient descent and updating. All models are trained with a set
learning rate of 0.01. The batch size is set to 16, and normal training epochs, sparsity
regularization training epochs and fine-tuning epochs are 400, 200, and 400, respectively.

5. Experiments and Analysis
5.1. Experimental Conditions

All experiments use desktop computers, in which the computer system is Windows 10,
and the experimental environment is shown in Table 2. The total memory of the graphics
card is approximately 8192.0 MB. The experimental software uses PyCharm 2021.3, in
which the internal environment is PyTorch1.10.1, TensorRT7.2.2 and Python 3.8. Networks
are constructed using TensorRT7.2.2 on Jetson Nano.

Table 2. Experimental Environments.

Configuration Parameters

Operating system for training Windows 10
CPU AMD Ryzen7 5800 3.2 GHz

Operating system for inference Ubuntu 20.04
GPU for training NVIDIA GeForce RTX2070 8 G

GPU for inference NVIDIA Jetson Nano 4 G
Accelerated environment CUDA10.2 + CUDnn7.6.5

Development environment PyCharm2021
Library PyTorch1.10.1; TensorRT7.2.2

The evaluation criteria are Precision (P), Recall (R), mAP [55] and FPS. The equation of
P and R is as follows:

P =
TP

TP + FP
(13)

R =
TP

TP + FN
(14)

where TP, TN, FP, and FN represent True Positive, True Negative, False Positive, and
False Negative values, respectively.

The mAP is the abbreviation of the mean average accuracy, which is also an indicator
to measure the detection accuracy in object detection:

AP =
∫ 1

0
p(r)dr (15)

mAP =
∑N

n=1 APn

N
(16)

where p represents Precision, r represents Recall, and p is regarded as a function with r as
a parameter; n is the number of object categories, in this study n = 3; APn represents the
average accuracy of a neural network in identifying a certain type of target. There are two
evaluation indexes with mAP, namely mAP@0.5 and mAP@0.5:0.95. They are calculated
with lower detection requirements and higher detection requirements, respectively.

The above four indicators are used to measure the accuracy of the neural network.
Recognition speed is also a key point. Model size, Params, Floating point of operations
(FLOPs) and FPS are used to measure it.
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5.2. Network Accuracy Analysis

ST is used to expand the dataset, forming HSCTD, and add a CE feature encoder to
Backbone to improve the representation of effective feature maps and suppress invalid
ones. In the training strategy, we use multi-scale images, weighted image selection, mosaics
image enhancement, warm-up with cosine annealing, and transfer learning. The above
methods and training strategies are designed to enable the network to fully learn the
features of SSS images and to improve the accuracy of recognition. In order to analyze their
effects, ablation experiments are conducted. The results are shown in Table 3. The baseline
is original YOLOv5, with input image size 640 × 640.

Table 3. Ablation experiments.

Method P R mAP@0.5 mAP@0.5:0.95

Baseline 88.2% 89.4% 84.9% 71.3%
+HSCTD 93.2% 92.6% 89.6% 73.5%

+CE feature encoder 95.1% 93.9% 89.4% 76.7%
+Multi-scale images 91.6% 92.3% 90.4% 77.6%

+Weighted image selection 92.1% 88.1% 85.9% 74.7%
+Mosaic image
enhancement 92.9% 86.3% 88% 69.5%

+Warm-up with cosine annealing 90.5% 89.7% 88.7% 72.9%
+Transfer learning 90.4% 90.4% 87.8% 74.7%
YOLO-slimming

(80% pruned) 98.1% 97.2% 95.3% 91.4%

The baseline reached the lowest P and mAP@0.5 of 88.2% and 84.9%, respectively.
The Recall of the two algorithms adding weighted image selection and mosaic image
enhancement is lower than that of the baseline, wherein R of weighted image selection is
reduced by 1.3%, and R of mosaic image enhancement is reduced by 3.1%. In addition, the
mAP@0.5:0.95 of mosaic image enhancement is also 1.8% smaller than that of the baseline,
reaching 69.5%. The decline in performance may be due to excessive repeated training of
some samples caused by weighted image selection. Mosaic image enhancement may also
generate images with high truncation ratio, as shown in Figure 10. However, the other
behavior of these two algorithms is higher than the baseline, so they still have a positive
impact on the model accuracy.

The two training strategies, warm-up with cosine annealing and transfer learning,
have limited improvement in P, R and mAP@0.5:0.95, all of which are approximately 1% to
2%. The improvement in mAP@0.5 is less obvious, with approximately 3%. However, they
are very helpful to the convergence, as shown in Figure 11.
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It is evident that warm-up with cosine annealing and transfer learning accelerate
the training process significantly. After the 150th epoch, the mAP@0.5 using warm-up
with cosine annealing and transfer learning is stable, which indicates that the model has
converged, while the mAP@0.5 of baseline is stable only after the 250th epoch. Warm-up
with cosine annealing and transfer learning training strategies also help the network reduce
the loss by 0.875% and 0.894%, respectively.

The network trained on HSCTD has improved in P, R, mAP@0.5 and mAP@0.5:0.95,
reaching 93.2%, 92.6%, 89.6% and 73.5%, respectively, which are 5%, 3.2%, 4.7% and 2.2%
higher than the baseline. This reflects that the simulated images generated by ST has similar
characteristics with the real SSS images.

The network inserting a CE feature encoder has the highest improvement in P and
R, reaching 95.1% and 93.9%, respectively, which are 6.9% and 4.5% higher than the
baseline. For mAP@0.5 and mAP@0.5:0.95, YOLOv5 plus multi-scale images achieves
the highest performance, 90.4% and 77.6%, respectively, which is 5.5% and 6.3% higher
than the baseline. In order to better show the effect of a CE feature encoder, the heatmap
of the sample is visualized to show the important areas concerned by the network, as
shown in Figure 12. It can be seen from Figure 12b,c that the network with a CE feature
encoder is more focused on the effective features in the images. Small targets are easy to
be confused by background because they occupy fewer pixels. The improvement in small
target detection lies in the fact that the CE feature encoder assigns different weights to the
feature maps of different channels in the same layer, and the increase in the weight of the
feature maps containing the target information improves the detection accuracy.
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5.3. Network Complexity Analysis

After sparsity regularization training, how many channels to delete needs to be
decided. The model is trained with λ = 0.01 and shows the effect of pruning channels with
different percentages. The results are summarized in Figure 13. For each round of sparsity
regularization training, pruning and fine-tuning, it only cuts 10% of the channels. So, 20%
pruned means two rounds of the above process, etc.
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It can be concluded that only when the pruning ratio is up to 90%, the classification
performance can be significantly reduced, as shown in Figure 13a. The complexity of the
model decreased significantly, as shown in Figure 13b, where FPS increased from 244 to
501. Compared to the optical domain, the complexity of the underwater scene is relatively
low. After channel-level sparsity regularization, approximately 80% of the information
processed by the channels in the model is redundant, and this can be removed directly for
the purpose of model lightweighting.

5.4. Real-Time Inception

To verify the availability of online real-time detection of YOLO-slimming on SSS, a
small embedded GPU NVIDIA Jetson Nano was selected. The hardware performance
comparison between Jetson Nano and the laboratory platform NVIDIA GeForce RTX2070
is shown in Table 4.

Table 4. Hardware performance.

Device Power Dissipation CUDA Cores

Jetson Nano 10 W 128
RTX 2070 200 W 2304

The CUDA core is the device’s information processing unit. The Jetson Nano is only
approximately 1/20 of the RTX 2070, and the maximum power dissipation of the Jetson
Nano is only 10 W. This is suitable for carrying the Jetson Nano to the SSS for real-time
target detection. Three latest light-weight target detection algorithms are selected (i.e.,
YOLOv5-s [25], YOLOv6-s [36], YOLOv7-tiny [37]) for real-time test. All networks are
trained and inferred under the same conditions. Figure 14 shows some detection results of
the above four models and more detailed experimental results are listed in Table 5.

Table 5. Real-time test results.

Model P R mAP@0.5 mAP@0.5:0.95 FPS

YOLO-slimming 98.1% 97.2% 95.3% 91.4% 45
YOLOv5-s 93.2% 92.6% 89.6% 73.5% 12
YOLOv6-s 95.1% 93.9% 95.4% 90.9% 24

YOLOv7-tiny 87.8% 88.1% 96.6% 91.7% 18
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The four models identify fractured, low-definition, eroded and small targets effec-
tively. However, original YOLOv5-s did not completely identify the entire sunken ship, 
and its other target detection confidence was the lowest. YOLOv6-s and YOLOv7-tiny 
have excellent performance in the detection of large targets. Additionally, for small ones, 
the proposed model has the best detection confidence. 

Figure 14. Some representative detection results of four models using Jetson Nano. (a) YOLO-
slimming; (b) YOLOv5-s; (c) YOLOv6-s; (d) YOLOv7-tiny.

The four models identify fractured, low-definition, eroded and small targets effectively.
However, original YOLOv5-s did not completely identify the entire sunken ship, and its
other target detection confidence was the lowest. YOLOv6-s and YOLOv7-tiny have
excellent performance in the detection of large targets. Additionally, for small ones, the
proposed model has the best detection confidence.

YOLO-slimming exceeds YOLOv5-s in all indicators. The mAP@0.5 of YOLOv6-s is
0.1% higher than the proposed network, but its mAP@0.5:0.95 is 0.5% lower. This shows
that YOLOv6-s has poor detection results for multi-scale targets, and its backbone cannot
effectively retain the information contained in small targets in the feature extraction stage.
YOLOv7-tiny is 1.3% and 0.3% higher in mAP@0.5 and mAP@0.5:0.95, respectively, but
its inference speed is only half of the proposed network. The running speed of YOLOv5-s
and YOLOv6-s is also significantly lower than our model. This is because YOLOv5-s only
reduces the number of layers and channels by presetting reduction ratio, and does not
cut the invalid channels. YOLOv6-s and YOLOv7-tiny adopt the re-parameterization to
accelerate inference of the multi-branch structure, but it is not accurate to the channel-level
optimization. YOLO runs at the fastest speed while ensuring accuracy. YOLO-slimming
runs at the fastest speed, with FPS reaching 45, which meets the standard of real-time
detection (the general requirement is 30), while ensuring accuracy.

6. Conclusions

As a fundamental device for AUVs, real-time autonomous SSS target detection is of
high application value. In this paper, YOLO-slimming, a low computational complexity
network based on YOLOv5, is proposed, which uses channel-level sparsity regularization to
reduce the running time. Meanwhile, efficient feature encoders are added to the Backbone
to improve detection accuracy. Experimental results on hybrid SSS images demonstrate the
superiority of the model for complex target (e.g., fractured targets) detection accuracy mea-
surements. A comparison of runtimes on a small GPU shows that YOLO-slimming is faster
than other competing methods and achieves real-time detection. Based on its efficiency
and effectiveness, YOLO-slimming provides a practical solution for real-time, online SSS
object detection. In the future, effective fusion of priori information based on sonar domain
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knowledge with deep learning models such as Transformer and semantic segmentation
will be explored, and acoustic vision-based target localization will be developed on the
basis of detection.
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