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Abstract: In this work, the finite element method (PD-FEM) coupling strategy is used to simulate ship-
ice interaction. Two numerical benchmark tests are selected to validate the coupling approach and its
program. During the ice-breaking process simulation, the generation and propagation of radial and
circular cracks in level ice are modeled and phenomena such as the shedding of wedge ice, flipping
of brash ice, and cleaning of the channel are observed to be broadly consistent with experimental
observation. The influence of ship speed and ice thickness on the ice load are investigated and
analyzed. The ice load obtained from the numerical simulations is in general agreement with that
given by Lindqvist’s empirical formula. The boundary effect on the crack path can also be avoid with
the current coupling method.

Keywords: level ice; ship-ice interaction; PD-FEM coupling approach; ice-breaking process; ice load

1. Introduction

In recent years, global climate change and the melting of ice in Arctic regions has
raised the possibility of exploiting Arctic resources and opening an Arctic channel [1,2].
The exploitation of resources and scientific research in Arctic regions rely on icebreakers to
open the necessary routes [3–5]. Therefore, it is great significant to simulate the icebreaking
scenarios and calculate the ice load of ship–ice interaction, and it helps in improving the
design and safe navigation of icebreakers. The ship-ice interaction scenarios are studied
with full-scale tests, model tests, theoretical analyses, and numerical simulations. For full-
scale testing, the results are reliable, but the associated cost is high. Model test is a promising
candidate to study the ship–ice interaction [6–9]. However, compared with full-scale
tests, models have many uncertainties, and can be expensive and time-consuming [10,11].
Theoretical analysis is still challenging in some cases, such as dealing with complicated
structures [12]. Fortunately, numerical methods to study ship-ice interactions do not need to
consider the structure complexity, and are not restricted by factors such as geography, cost,
and time, and have been shown to be both efficient and accurate, both in theoretical research
and engineering application [13–16]. Finite element method (FEM) was successfully applied
to estimate the strength of ship structure problems [10,17,18]. The discrete element method
(DEM) to calculate ice loads for offshore structures and ships [19–22]. Smoothed-particle
hydrodynamics method (SPH) was adopted in the ice field to simulate the ice-structure
interaction dynamics [23,24], and other methods [25,26].

In recent years, a mesh-free method of peridynamics was proposed [27]. This refor-
mulation of the classical continuum mechanics is a non-local theory that does not assume
the spatial differentiability of displacement fields. Based on integrodifferential equations,
peridynamics can deal with discontinuous displacement fields. Therefore, it can simulate
spontaneous crack nucleation and propagation, and can be used to simulate the ice-breaking
and calculate ice loads [28–37]. However, as a non-local theory computational efficiency
of peridynamics is far lower than that of FEM, especially for engineering applications like
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ship-ice interaction. To improve its computational efficiency, researchers have coupled
peridynamics with FEM. Macek and Silling [38] proposed the PD-FEM coupling approach
and implemented peridynamics in a commercial finite element analysis code, Liu et al. [39]
introduced interface elements to calculate the coupling force in a PD-FEM approach, and
Lee et al. [40] proposed a coupled PD-FEM approach to analyze impact fractures. To date,
the advantages of combining PD with FEM have been demonstrated in applications to
concrete and composite materials, but PD-FEM coupling has not been used to deal with the
ship–ice interaction. In this work, the coupling strategy proposed by Liu et al. is employed
for its easy to implement and robust theory foundation.

The following work is organized as, peridynamics theory and PD-FEM coupling
scheme is introduced in Sections 2 and 3, respectively. The proposed coupling approach
is verified with both dynamic and static cases in Section 4. The ship-ice interaction is
simulated in Section 5. Conclusion is drawn in Section 6.

2. Peridynamics Framework

Peridynamics assumes that the continuum body is composed of small particles. Each
particle interacts with other particles within a finite distance δ called the horizon. The
pairwise interaction between two particles exists despite they are not in contact. This
physical interaction is referred to as a bond, which in some way has a close analogy to a
mechanical spring. In bond-based peridynamics, the kinetic equation of particle x in the
reference configuration at time t is

ρ
..
u(x, t) =

∫
Hx

f
(
u
(
x′, t
)
− u(x, t), x′ − x

)
dVx′ + b(x, t)

∥∥x′ − x
∥∥ ≤ δ (1)

where Hx is the domain of integration within the horizon of particle x, u is the displacement
vector field, and b is the body force density. ρ is the mass density, and f is a pairwise force
density function defined as the force per unit volume that particle x’ exerts on particle x,
which contains all the constitutive information of the materials.

To simplify the notation, the relative position in the initial configuration and its relative
displacement are denoted as ξ = x′ − x and η = u(x′, t)− u(x, t), respectively. Therefore,
the relative position of the two interacting particles at t in the current configuration is ξ+η

and the pairwise force density function can be described as f(η,ξ).
For the prototype micro-elastic brittle (PMB) material defined by Silling and Askari [41],

the pairwise force density function can be expressed as

f(η,ξ) =
ξ+ η

|ξ+ η| csµ(t,η,ξ)∀η,ξ (2)

where c = 12E/πδ4 is the micro modulus, E is Young’s modulus, and s(η,ξ) is denoted as
the stretch of the bond, which can be defined as

s =
|ξ+ η| − |ξ|

|ξ| (3)

When the deformation stretch s exceeds a limit s0 (described as the critical stretch for
failure), the bond between the two particles breaks and no pairwise force remains. The term
µ(t,η,ξ) is a history-dependent scalar-valued function, which is introduced to represent
the bond failure of two particles. This can be defined as

µ(t,η,ξ) =
{

1, s < s0
0, s ≥ s0

(4)
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Accordingly, the level of damage is illustrated by the local damage at one particle,
defined as

ϕ(x, t) = 1−
∫

Hx
µ(t,η,ξ)dVξ∫

Hx
dVξ

(5)

When solving the elastic problem in which the damage is not considered, the critical
stretch can be set to infinity. Dealing with the damage problem, the value of s0 can be
obtained from the energy release rate.

3. Coupling of PD-FEM
3.1. Coupling Scheme

The PD-FEM coupling approach proposed by Liu et al. [39] is adopted and presented.
The coupling scheme is as follows: the domain to be solved is partitioned into FEM
subregions, which are modeled as a non-failure area and a PD subregion containing the
area expected to be damaged. An interface element is introduced to bridge from the FEM
subregion to the PD subregion. The interface element contains several peridynamic nodes
for calculating the coupling forces, which are the interaction forces between embedded
peridynamics nodes and peridynamics nodes outside the interface element. The coupling
scheme is illustrated in Figure 1.
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Figure 1. PD-FEM coupling scheme.

To implement the coupling scheme, interfaces between the peridynamics subregion
and the FEM subregion should be defined prior to analysis. The coupling forces on
embedded nodes are divided between the FEM nodes on the interface segment, as shown
in Figure 2, by
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fi,cp = Ni
(
ξ ′, η′, ψ′

)
fp (6)

where fi,cp is the force of the FEM nodes on the interface segment, Ni is the shape function
on the interface segment, fp is the coupling force on the embedded nodes, (ξ ′, η′, ψ′) are the
natural coordinates of the projection of an embedded node onto the interface segment, i is
the number of FEM nodes on the interface segment, and m is the total number of embedded
nodes. Note that for FEM nodes that are not on the interface segment, fi,cp = 0.

For the FEM subregion, the equation of motion for the FEM nodes is written as

Mi
..
un

i = Fi,ext + Fi,int (7)

where Fi,ext is the external force and the internal force is given by FEM nodes on segment
FEM nodes not on segment,

Fi,int = fi, f em + fi,cp =


[

∑
e

K(e)u(e)
]

i
+ fi,cp, FEM nodes on segment[

∑
e

K(e)u(e)
]

i
, FEM nodes not on segment

(8)

The displacements of the embedded peridynamics nodes are determined by

uep =
8

∑
i=1

Ni(ξ, η, ψ)ui i = 1, . . . , 8 (9)

where (ξ, η, ψ) are the natural coordinates of an embedded peridynamics node in the
interface element and ui is the nodal displacement of an interface element.

3.2. Numerical Implementation

The peridynamics equation of motion after discretization is written as

ρ
..
un

i =
m

∑
j=1

f
(

un
j − un

i , xj − xi

)
Vj + bn

i (10)

For the FEM subregion, the equation of motion for the FEM nodes is written as

Mi
..
un

i = Fn
i,ext + Fn

i,int (11)

where n denotes the number of time steps. The displacement of node i can be obtained
by approximating the acceleration in Equations (12) and (13) using an explicit central
difference formula

..
un

i =
un+1

i − 2un
i + un−1

i
∆t2 (12)

un+1
i =


∆t2

ρ

[
m
∑

j=1
f
(

un
j − un

i , xj − xi

)
Vj + bn

i

]
+ 2un

i − un−1
i , for PD nodes

∆t2

ρ

[
Fn

i,ext − Fn
i,int

]
+ 2un

i − un−1
i , for FEM nodes

(13)

where ∆t is the size of the time step. A stability condition derived by Silling and Askri [41]
can be used to determine the time step size, ∆t as

∆t <

√√√√ 2ρ

∑m
j=1

c
|(xp−xi)|Vj

(14)
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Moreover, for the PD particles, the horizon size δ has a significant influence on the
accuracy of the numerical simulations. The horizon size can be selected using the scale
characteristics of the simulated object. In practice, δ = 3∆x usually works well [42].
Therefore, the horizon size is set to δ = 3∆x.

The numerical code for the proposed PD-FEM coupling approach is compiled using
Fortran 90. A flowchart of the PD-FEM coupling approach is shown in Figure 3.
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4. Validation of PD-FEM Coupling Approach
4.1. Bending Deformation of Cantilever Beam

A three-dimensional cantilever beam subjected to a transverse loading of F = 0.64 N
at the free end is examined, and the solutions given by the proposed coupling approach
are compared with the FEM solutions. Because the bending deformation of a cantilever
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beam is a quasi-static problem, and to achieve a quantitative quasi-static calculation, the
dynamic relaxation method is introduced to peridynamics [43].

The cantilever beam is 8 mm long, 2 mm wide, and 2 mm thick with Young’s modulus
of 1.0 GPa, Poisson’s ratio of 0.25, and a density of 900 kg/m3. Figure 4 shows the
PD-FEM coupling model of this cantilever beam, which is partitioned into one FEM
subregion and one PD subregion. The FEM subregion consists of 16 hexahedral elements
of size 1 mm × 1 mm × 1 mm, whereas the PD subregion is discretized uniformly into
16 × 8 × 8 = 1024 particles with the grid spacing ∆x = 0.25 mm and horizon size δ = 3∆x.
Three layers of peridynamics nodes are embedded in four interface elements for the
coupling force calculations.
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Figure 4. PD-FEM coupling model of the cantilever beamThe simulated deflection at the free end of
the beam and the coupling force are presented in Table 1. The deflection and force obtained from the
proposed coupling approach are very close to the FEM results (error less than 2%), which indicates
that the coupling approach transfers the force accurately.

Table 1. Simulation results of bending beam.

PD-FEM FEM Errors

Deflection 8.0492 × 10−5 m 8.19 × 10−5 m 1.74%

Force −0.6327 N −0.64 N 1.14%

Figure 5 shows the change in deflection along the central line of the beam. The
displacement curve obtained by the numerical simulation is in good agreement with that of
FEM, and its smoothness verifies the displacement coordination of the coupling approach.
From Figure 5, it can be found that the ratio of the characteristic scale to the horizon size
should be no less than 1 to obtain an acceptable result, however, more cases may be need
to achieve this conclusion. The above results prove that the coupling algorithm achieves
good accuracy and displacement coordination in the calculation of bending deformation,
verifying the correctness of the proposed PD-FEM coupling approach in static problem.

4.2. Failure of 2D Plate with Central Crack

Mode-I crack is selected to simulate crack initiation and propagation along the plate.
A 50 mm × 50 mm square plate with a 10 mm central pre-crack is stretched from both ends
at a velocity of 50 mm/s, as shown in Figure 6.
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Figure 6. Geometry and loading condition of a plate with a central crack.

The PMB material properties used in this example are as follows: Young’s modulus is
E = 192 GPa, Poisson’s ratio is v = 0.33, mass density is 8000 kg/m3, and the critical stretch
s0 is 0.04472. These material parameters, geometry, and loading conditions are the same as
the simulation example reported by Madenci and Oterkus [42]. For the coupling model,
the plate is partitioned into one PD subregion and two FEM subregions (see Figure 6). The
PD zone contains 100 × 200 = 20,000 particles, which are discretized regularly with a grid
spacing of ∆x = 0.25 mm and a horizon size of δ = 3∆x. The FEM parts are composed of
32 four-node rectangular elements of size 6.25 mm × 6.25 mm. The interface region has
three additional layers of peridynamics nodes (total of 2 × 3 × 200 = 1200 nodes). The time
step is ∆t = 3.34× 10−8 s, which satisfies the stable time step condition.

For comparison, the PD solution is considered, as shown in Figure 6. The model size
and load conditions are the same as for the coupling model, and the region is discretized
regularly into 200 × 200 = 20,000 nodes with a grid spacing of ∆x = 0.25 mm and horizon
size of δ = 3∆x. In the velocity boundary area, three virtual boundary layers are added,
each with 3 × 200 = 600 nodes.

Figure 7 shows numerical simulation results of crack tracks using the PD-FEM cou-
pling model and PD model (see Figure 7). Crack paths obtained from the proposed coupling
method resemble the mode-I failure in brittle material, and are in good agreement with
those obtained from the PD method. These results are similar to those reported by Madenci
and Oterkus [42]. The displacements along the y-axis obtained from the PD-FEM and PD
methods are plotted in Figure 8. We can find that they are in close agreement. Therefore,
the PD-FEM coupling method can simulate crack propagation well, which verifies the
correctness of the coupling approach in dynamic conditions.
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5. PD-FEM Simulation of Icebreaker Navigation in Ice Level
5.1. Numerical Simulation
5.1.1. Ice Constitutive Model and Failure Criterion

Ice is a complex material that is affected by factors such as temperature, porosity,
and grain size. Several laboratory tests have analyzed the brittle strength and failure
patterns of ice, as well as the characteristics of ice–structure interactions [44,45]. The
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compressive strength and tensile strength of ice varies, with the compressive strength
being around 3–4 times the tensile strength. The ductile–brittle transition of ice is another
challenging topic, and ice shows different behavior at different strain rates (i.e., loading
rate), as discussed by Schulson [45].

At low-speed loading rates, ice behaves as a ductile material, whereas at high-speed
strain rates, the ice presents the characteristics of a linear elastic material, with a brittle mode
when damage occurs. Therefore, ice is regarded as an elastic brittle material (PMB material
in bond-based peridynamics) when interacting with an icebreaker, as the relatively high
speed of icebreaker vessels corresponds to a high strain rate in the ice. Hence, a reasonable
linear elastic constitutive model of ice is established for the bond-based peridynamics.
Mechanical ice tests conducted by Schulson can be used to demonstrate the rationality of
this linear elastic constitutive model.

In bond-based peridynamics, the bond force represents stress and the bond stretch
represents strain. Let st = s0 be the critical bond stretch and |sc| = 4s0 be the critical bond
compression. If the bond stretch exceeds st in the tensile case or sc in the compressive case,
the bond will break and the bond force becomes zero.

Based on the bond-based peridynamics theory [42], the critical bond stretch in 3D
cases is defined as

s0 =

√
5πG0

18Eδ
(15)

where G0 is the energy release rate, which reflects the resistance of a material to crack
propagation and can be derived from fracture mechanics. Linear elastic fracture mechanics
is based on linear elastic theory and is applicable to brittle fractures. From the perspective
of energy conservation, the condition for crack propagation is

G0 ≥ GC (16)

where GC is the energy absorption rate. The primary fracture mode is tensile failures,
because its compression strength is 3–4 times of tensile strength. G0 can be expressed as

G0 =
K2

I
E

(17)

where KI is the fracture toughness, which reflects the resistance of a material to brittle fracture
and can be measured experimentally. Therefore, the critical stretch can be calculated as

s0 =

√
5πK2

I
18E2δ

(18)

5.1.2. The Gravity and Buoyancy Model of Ice

The gravity and buoyancy of the ice are in balance in still water. when interacting
with a ship, the ice will deviate from its equilibrium position as the gravity and buoyancy
become unbalanced. To simplify the influence of gravity and buoyancy, a body force density
bz is introduced.

If a particle is completely under the waterline, we have

bz = −gρi + gρw (19)

If a particle is completely above the waterline, we have

bz = −gρi (20)

For other particles, we have

bz = −gρi + gρwlw/d (21)
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where ρi is the density of ice, ρw is the density of water, lw is the length of particles immersed
in water, and d is the size of particles.

5.1.3. Ship-Ice Contact Model

The hull is modeled with FEM. The ice sheet contacting with the hull is modeled
with peridynamics. Therefore, the ship–ice contact can be transformed into the interaction
between peridynamics and the FEM models. In this case, the contact model developed by
Liu [30] is introduced to calculate the contact force between the triangular elements of FEM
and the particles of PD. To determine contact between a particle and a triangular element,
some specific points must be defined (see Figure 9), namely the vertexes of the triangular
element A, B, C and the particle P.
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The determination of contact is divided into two stages. In the first stage, we estimate
whether the distance between the particle and the plane of triangle ABC is less than the
particle radius r = ∆x/2. The distance is calculated with Equation (22), and the critical
distance is defined by Equation (23)

|PQ| = PA · BA× CB
|BA× CB| (22)

|PQ| < r (23)

where Q is the projection of P onto the plane of triangle ABC.
If the criterion in the first stage is not satisfied, the particle P does not contact the triangle

element. When the first stage criterion is satisfied, it is necessary to further decide whether
the projection point Q of P is inside the triangular region ABC, and this is the second stage.
The centroid of the particle is checked to determine whether it is inside the triangle.

For any point Q in the plane ABC, the vector d = AQ can be expressed by two non-
parallel vectors a = AC and b = AB in plane ABC as

d = ua + vb (24)

where the coefficients u and v are defined as

u =
(b · b)(d · a)− (b · a)(d · b)
(b · b)(a · a)− (b · a)(a · b) (25)

v =
(a · a)(d · b)− (a · b)(d · a)
(a · a)(b · b)− (a · b)(b · a) (26)

If the projection point Q is inside the triangular element ABC, the two coefficients
must satisfy conditions, as

u ≥ 0
v ≥ 0
u + v ≤ 1

(27)
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If the criteria in these two stages are satisfied, the particle P is in contact with the
triangular element. The contact force is defined by the repelling short-range force. The
force between two particles is given as

f = − PQ
|PQ|min

{
0, csh

(
|PQ|

r
− 1
)}

(28)

where csh is the short-range force coefficient, can be choose as csh = 5c.

5.1.4. Numerical Model

This section describes numerical simulations of icebreaker navigation in level ice.
Numerical models for the icebreaker and the level ice are illustrated in Figure 10.
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Xuelong icebreaker is selected and its bow is modeled. Main parameters are listed in
Table 2. The FEM model of the ship’s bow consists of 304 triangular elements. The ship
is treated as a rigid body sailing in a straight line at a speed of 3 kn. The ice constitutive
model is elastic-brittle, as described in Section 5.1.1. The ice sheet is a rectangle whose
edges are fixed, except the one interacting with the icebreaker. The parameters of the ice
sheet are presented in Table 3, and the critical bond stretch is calculated using Equation (18).
The level ice is modeled using the proposed PD-FEM coupling approach, with PD and
FEM subregions. In the PD subregion (width = 40 m, length = 70 m), the grid spacing
is ∆x = 0.25 m and the horizon radius is δ = 3∆x. In the interface between the PD
and FEM subregions, three layers of peridynamics nodes are embedded in each edge.
Therefore, there are approximately 187,840 PD nodes. The FEM subregion is discretized
into 1800 hexahedral elements of size 2 × 2 × 1 m and 3936 nodes. The size of time step is
∆t = 1.0× 10−7 s, which is satisfies with the stability time step condition. The total time
steps are 300,000,000 steps.

5.1.5. Numerical Result and Discussion

The numerical simulation of the ice-breaking process of an icebreaker navigating
through level ice is illustrated in Figure 11. Xuelong model test is performed in the ice
mechanics and ice engineering laboratory of Tianjin University to observe the failure model
of level ice and the motion of broken ice. After the test is finished, Xuelong model is
dragged to slowly retreat by the main trailer, and then a more complete ice breaking area
can be shown on the water surface.
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Table 2. Main parameters of icebreaker.

Parameter Variable Value

Ship length L 166.0 m

Ship breadth B 22.6 m

Ship depth D 13.5 m

Bow length l 29.6 m

Bow breadth b 22.6 m

Draft T 8.0 m

Stem angle α 20◦

Flooding angle β 24◦

Ship-ice friction coefficient µ 0.15

Table 3. Parameters of level ice.

Parameter Variable Value

Young’s modulus E 6.83 GPa

Poisson’s ratio ν 0.25

Bending strength σf 2.96 MPa

Fracture toughness KI 115 kNm−3/2

Density ρ 894 kg/m3

Area A 100 × 100 m2

Thickness h 1.0 m

When the icebreaker first contacts the ice, the ice is subjected to a compressive force
from the bow tip, mainly along the x-axis. Once the force is greater than the ice critical
strength, ice particles fall from the level ice, and a notch like the tip of the bow is formed
(see Figure 11a). As the ship moves, the notch expands. The three-dimensional curved hull
makes the ice bear the force in three directions. The force along the y-axis causes the ice to
tear, and the notch along the profile forms a radial crack, as shown in Figure 11b.

As the contact area increases, the force along the z-axis exceeds the ice critical strength,
resulting in ice sheet bending deformation and failure. Accordingly, circular cracks form,
as shown in Figure 11c; these are like the circumferential cracks in model test, as shown in
Figure 12.

With the ship continuous movement, the contact force increases in all three directions
and radial cracks and circular cracks propagate, which is in good agreement with the ice
sheet failure model observed in Xuelong model test as shown in Figure 12. The front
segments of the level ice form a wedge shape, as shown in Figure 11d. The further
movement of the ship causes wedge ice to form on the two sides of the bow, like the real
phenomenon observed in Xuelong model test. Subsequently, ice blocks fall off, flip, push
away, and pile up, as shown in Figure 11g,h.

Numerical simulation results in the generation and propagation of radial and circular
cracks, as well as phenomena such as the shedding of wedge ice, flipping of brash ice,
and cleaning of the channel, which are in broad agreement with experimental and real
phenomena. In addition, the coupling method of finite element and perdynamics can
effectively suppress the boundary effect when the level ice is failure, compared with
bond-based peridynamics [28–37].
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To show the computational efficiency of PD-FEM coupling approach, the PD solution
is considered. Except the level ice is completely modeled by PD solution, loading conditions
are the same as the PD-FEM coupling approach. Table 4 shows the comparison results of
PD and PD-FEM coupling method in computational time. Both two methods are compiled
using Fortran 90, and use CPU_TIME function in Fortran language to calculate the program
running time. In the case of the same equipment condition and 300,000 steps of the
calculation time steps, the PD method needs calculate 135.47 h, while the PD-FEM coupling
approach only needs 52.32 h. Compared with PD model, PD-FEM coupling model is
2.59 times more efficient and reduces the calculation time.

Table 4. Comparison of PD and PD-FEM coupling approach in computational efficiency.

Item PD-FEM PD

Particle number 187,840 654,400

Element number 1800 0

Total time steps 300,000 300,000

Total CPU time 52.32 h 135.47 h
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5.2. Influence of Ship Speed on Ice Load

To further validate sailing speed influence on the ice load, six simulation sets are
selected as speeds with 2, 3, 4, 5, 6 and 7 kn with an ice thickness of 1 m. The ice load results
are shown in Figure 13. The average ice force during the period of ship-ice interaction is
calculated and compared with Lindqvist’s empirical formula as shown in Figure 14.
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Figure 13. Time history of ice load with different ship velocity.
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for different speeds.

Lindqvist’s empirical formula divides the icebreaking resistance into crushing at the
stem, breaking by bending and submersion resistance. When ice is broken, the crushed ice
can be cleared from both sides of the ship, and the opened channel will be larger than the
ship’s width. Therefore, the ice crushing at the stem and breaking by bending parts of ice
resistance are mainly caused by the bow. Therefore, the ice load obtained from numerical
simulation is compared with the crushing at the stem and breaking by bending resistance
calculated by Lindqvist’s empirical formula.

Figure 13 shows that the ice load curves (blue solid lines) are periodic. When the
icebreaker interacts with the level ice, the ice load increases, but when wedge ice falls from
the level ice and the icebreaker is not in contact with the ice, the ice load decreases. This is a
reason for impulsive ice loads. Figure 13 also indicates that, as the ship speed increases, the
period of the ice load becomes shorter and the ship velocity influences the peak of ice load.
The ice load shows a rise trend as the velocity increases. From Figure 14, although there are
some differences between the mean ice load results and those obtained from Lindqvist’s
empirical formula, they are generally in a good agreement (see Table 5 and Figure 14).

Table 5. Ice resistance calculated by PD-FEM coupling model and Lindqvist empirical formula.

Method 2 kn 3 kn 4 kn 5 kn 6 kn 7 kn

Lindqvist 2.370 × 106 N 2.743 × 106 N 3.120 × 106 N 3.490 × 106 N 3.863 × 106 N 4.237 × 106 N

PD-FEM 2.202 × 106 N 3.921 × 106 N 3.008 × 106 N 4.612 × 106 N 4.307 × 106 N 4.560 × 106 N

Errors 7.1% 42.9% 3.6% 32.1% 11.5% 7.6%

5.3. Influence of Ice Thickness on Ice Load

Numerical simulations of an icebreaker moving at a fixed speed are performed with
different ice thicknesses. The ice thickness is selected as 0.5 m, 0.75 m, and 1 m, and the
ship’s speed is set to 3 kn.

The results of the ice load for different ice thicknesses are shown in Figure 15. It can be
found that ice load presents an increasing trend in general. The mean ice load is 0.978 MN,
1.569 MN and 3.921 MN at ice thicknesses of 0.5 m, 0.75 m and 1.0 m, respectively. From
Figure 16, we can find that the numerical results are in well agreement with those from
Lindqvist’s empirical formula.
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J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 19 of 22 
 

 

  

(a) 0.5 m (b) 0.75 m 

 

(c) 1 m 

Figure 15. Time history of ice load with different ice thicknesses. 

 

Figure 16. Ice resistance obtain by Lindqvist formula and FEM-PD coupling model for different ice 

thicknesses. 

6. Conclusions 

The coupling model of peridynamics with the finite element method is employed to 

simulate ship–ice interaction. The characteristics of the ice-breaking scenarios and the ice 

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18
x 10

5

Time /s

F
o
rc

e
 /

N

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3
x 10

6

Time /s

F
o
rc

e
 /

N

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

Tine /s

F
o
rc

e
 /

N

Figure 16. Ice resistance obtain by Lindqvist formula and FEM-PD coupling model for different
ice thicknesses.



J. Mar. Sci. Eng. 2023, 11, 481 18 of 20

6. Conclusions

The coupling model of peridynamics with the finite element method is employed to
simulate ship–ice interaction. The characteristics of the ice-breaking scenarios and the ice
load are captured successfully. From the simulation results, the following conclusions can
be drawn.

(1) The PD-FEM coupling model can successfully simulate the generation and propagation
of radial and circular cracks in level ice, as well as the phenomena of wedge ice shedding,
broken ice flipping, and ice cleaning of the channel during the ice-breaking process.

(2) Compared with bond-based peridynamics, the PD-FEM coupling model has better
computational efficiency, and can effectively suppress the boundary effect when the
level ice is failure.

(3) The ice load obtained from the PD-FEM coupling model is in good agreement with
that obtained from Lindqvist’s empirical formula.
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