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Abstract: When performing simulations using computational fluid dynamics, the grid systems in
the viscous boundary layer regions are important because the velocity and pressure change very
rapidly in these regions. Especially for the turbulent flows, thin grids should be arranged densely
in the direction perpendicular to the wall. In this study, the advancing layer method, which has
been applied mostly to tetrahedral meshes, is applied to trimmed hexahedral meshes. To generate
boundary layer meshes with non-intersecting grid lines near the wall boundaries having concave
corners and narrow gaps, the directional vectors of grid lines and faces are smoothed, and the
displacement vector fields calculated using the Laplace equation were utilized. Firstly, the details on
the newly developed methods are introduced showing simple two-dimensional cases as examples.
After applying the methods for a complex three-dimensional geometry to check its applicability
and investigating the generated grid systems, the numerical simulations of propeller open water
test for INSEAN E779A marine propeller were carried out by simpleFoam, one of the standard
solvers of OpenFOAM. The computational results showed good agreement with the experimental
results. Therefore, in conclusion, the developed advancing layer method is an appropriate method
for generating boundary layer grids of a trimmed hexahedral mesh.

Keywords: boundary layer grids; trimmed hexahedral volume mesh; advancing layer method;
smoothed normal vector; displacement vectors; Laplace equation; propeller open water test

1. Introduction

The recent major issues in the Korean shipbuilding and maritime industry are en-
vironmental, social, governance (ESG) management, and digital transformation (DX); in
particular, DX has been highly promoted as a breakthrough that can overcome the overall
industrial downturn and enhance global competitiveness. DX can be largely classified
into digital, management, engineering, manufacturing, product, platform, and culture,
and computer-aided engineering (CAE) is one of the core components. CAE, such as
computational fluid dynamics (CFD), finite element analysis, and multi-physics simulation
using computers, has attracted a great deal of attention and is widely used in various
fields of academia, research, and industry due to the rapid progression in computational
performance and technology.

For CFD simulations, grid systems are generally used in the Eulerian frames for
both the structured grids [1], unstructured grids [2], and solvers compatible with the
adopted grids. Recently, unstructured grids and solvers that use the finite volume method
(FVM) [3] have been largely applied to discretize the governing equations owing to their
ease of representing complex objects despite their relatively lower accuracy and higher
computational costs compared with those of structured ones. Unlike the grid-based method,
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which must maintain connection information with adjacent grids, the gridless method,
which is also referred to as meshless or mesh-free, requires only the location information
and physical quantities of computational points for spatial differential approximation at
the points [4].

When utilizing CFD for the simulations of viscous flows facing wall boundaries, proper
arrangement of computational points and grid systems near the boundaries are one of the
most important factors to ensure the accuracy and stability of the simulations, whether it
is based on grid or gridless methods. In the case of grid-based methods, grids should be
composed of grid lines parallel and normal to the wall boundary, in principle, because the
velocity and pressure in the boundary layer regions change very rapidly. Especially for the
turbulent flows, thin grids should be arranged densely in the direction perpendicular to the
wall. However, if a three-dimensional (3-D) body with a complex geometry exists inside
the fluid domain or the shape of the bounding wall boundaries are complex, the generation
of proper boundary layer grids are difficult. Concave edges and/or narrow gaps makes the
generation more difficult. Therefore, many researchers have invested considerable effort
in developing fast, efficient, and automatic methods for generating volume meshes with
boundary layers grids.

Generally, methods based on tetrahedral mesh and octree-based Cartesian meshes
are used to generate unstructured volume meshes for the problem including 3-D com-
plex geometries. A tetrahedral mesh accurately implements complex shapes, and three-
dimensional advancing front method [5] and Delaunay-based [6,7] tetrahedral meshes are
widely used. However, because the grid is isotropic, these methods are suitable for inviscid
flow simulations. Therefore, it needs to adopt a method of generating anisotropic meshes
or hybrid meshes around the walls for viscous flows. Although cartesian mesh is fast, it
is difficult to precisely represent the shape. To solve this problem, methods such as the
cut-cell method [8], building-cube method [9], and immersed boundary method [10] have
been proposed. Recently, a trimmed hexahedral mesh method based on a cartesian cut-cell
has also been developed [11,12].

To generate boundary layer grids, the advancing layer method was proposed by Zhi
and Jaime [13]. In their research, the whole-layer inflation method and the layer-by-layer
approach were introduced. The merits of the former method are the robustness and quality
adopting partial generation of boundary grids, that is, the boundary layer continues to
be stacked where the grid can be stacked but not stacked in difficult regions. In the latter
case, whole-layer inflation method has an advantage over the very fast generation speed.
However, the thickness of the boundary layer grids becomes significantly thin in a narrow
region, which can deteriorate the shape of the volume mesh, and the volume ratio becomes
very large because the same number of boundary layers are forced to be stacked around
the all the wall boundaries.

Methods of generating the boundary layer grids can be divided into the open advanc-
ing layer method, which inflates the wall grid to create the boundary layer grids and then
creates the volume grid, and the closed advancing layer method, which first creates the
volume grid and then inflates the boundary layer grids [13,14]. In their studies, it was
said that the advantage of the closed advancing layer method is that it always ensures that
grids are valid because it departs from a valid volumetric mesh. However, it is also noted
that an effective, efficient, and robust volumetric mesh deformation algorithm is the key to
achieving high quality meshes, especially when dealing with highly complex geometries.
In [14], grid optimization was performed at each stage while inflating in a layer-by-layer
method. In addition, three calculating methods for normal vectors and the comparisons
of the grids generated by these methods were introduced because the normal vectors at
vertices play a fundamental role in boundary layer meshing, as the mesh is extruded from
the surface triangulation along the point normal vectors.

To summarize, most of the developed methods are based on the tetrahedral volume
meshes and there still have been difficulties generating boundary layer grids for espe-
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cially turbulent, viscous flow simulations. Moreover, the importance of the volume mesh
deformation and normal vectors were pointed out.

In the present study, the advancing layer method is applied to the trimmed hexahedral
meshes generated by the previously developed cut-cell method [11]. To generate boundary
layer meshes with grid lines that are not intersected near the wall boundaries where
concave corners and narrow gaps exist, the directional vectors of grid lines and faces are
smoothed, and the displacement vector fields calculated using the Laplace equation were
utilized. The details of the newly developed method are introduced by considering a simple
two-dimensional (2-D) case as an example first. After applying the method to complex
three-dimensional geometries to check its applicability and investigate the generated grid
system, numerical simulations of the propeller open water (POW) test for a marine propeller
were performed using one of the standard solvers of OpenFOAM. The reason for choosing
the POW test as for the validation is that the marine propeller has complex shape, and its
efficiency is highly significant because it directly affects the propulsion performance of a
marine vessel.

2. Numerical Methods

In this chapter, the newly developed advancing layer method is introduced. The main
target of the method is to generate boundary layer meshes with grid lines that are not
intersected near the wall boundaries where concave corners and narrow gaps exist. Fully
polyhedral meshes based on the locally anisotropic (2N-tree) refined cut-cell method, which
was developed by Jeong and Seo [11], were used for the base volume meshes.

The overall procedure for the boundary layer grid generation is shown in Figure 1 and
summarized as follows:

i. Calculating normal vectors of boundary faces,
ii. Calculating smoothed normal vector and displacement vector,
iii. Searching for the regions where boundary layer grids cannot be generated,
iv. Recalculating smoothed normal vector and displacement vector,
v. Creating very thin boundary layer grids by copying corresponding boundary grids,
vi. Creating a boundary layer grid by moving the copied grid points while gradually

increasing the displacement vector,
vii. Cutting and finalizing the boundary layer grids.
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Hereafter, the main algorithms of the developed method are introduced with the
simplified notation of ‘normal vector’ instead of ‘unit normal vector’.
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2.1. Advancing Direction Calculation

Solving the Laplace equation using surface normal vectors as its boundary conditions
is one of the well-known and typical grid generation methods for the body-fitted tetrahedral
grids [14,15] and boundary layer grids. However, evidently, boundary layer grids are not
generated at the concave edges, such as the corners of a rectangular, by calculating the
distributions of displacement and moving the grids using the Laplace equation. The
reason for this problem is that the boundary conditions of each boundary face constrain
the tangential displacement of the boundary grid lines. To solve such type of problems,
a method to smooth the normal vector at the concave edges is developed and applied in
this study.

To get the smoothed normal vectors of boundary grid line and faces, the Laplace
equation in Equation (1) is iteratively solved.

∇·(Γ∇
→
D) = 0, (1)

where Γ is the constant diffusion coefficient, and
→
D is the smoothed normal vector

→
SN or

displacement vector
→
Db. The normal vector of the grid line

→
NE is calculated by Equation (2)

and used as the boundary condition in the Equation (1)

→
NE =

(
→
Ni +

→
Nj)

| (
→
Ni +

→
Nj) |

, (2)

where
→
Ni and

→
Nj are the normal vectors of the neighboring grid faces.

An example of
→
NE,

→
Ni, and

→
Nj can be found in Figure 2a, where the black and red

arrows represent the normal vectors of boundary grid face and boundary grid line, re-

spectively. In the figure, the start point of
→
NE is the point or edge in 2-D and 3-D spaces,

respectively, where two boundary grid lines share a point or edge. For the boundary
condition of the Laplace equation, normal vectors inside the dashed boxes were used.
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The point or edge, where the intersecting angle between the normal vectors of the 
neighboring boundary grid faces is significantly large, is set as and used for the boundary 
condition for the Laplace equation, as marked by the blue dashed box in Figure 2. The 
purpose for this treatment is to prevent the difference between the initial and smoothed 

Figure 2. Schematic of (a) initial and (b) smoothed normal vectors of boundary grid lines and faces.
Normal vectors inside the boxes are used for boundary conditions for the Laplace equation.

The point or edge, where the intersecting angle between the normal vectors of the
neighboring boundary grid faces is significantly large, is set as and used for the boundary
condition for the Laplace equation, as marked by the blue dashed box in Figure 2. The
purpose for this treatment is to prevent the difference between the initial and smoothed



J. Mar. Sci. Eng. 2023, 11, 454 5 of 17

normal vectors from becoming excessively large. In the present study, Equation (3) is used
to judge whether the intersecting angle is large.

i f
→
Ni·
→
Nj <

1√
2

, (3)

If the difference of the initial and smoothed normal vectors are small, as marked in the
green dashed box in Figure 2, the normal vector or boundary grid line is set as and used
for the boundary condition of the Laplace equation. The purpose of this treatment is to
limit the smoothing region and remove the unnecessary iteration and deformation. The
judgement of whether this works is based on the ratio of the distance between the inflated
grid points and the distance between the initial grid points, as shown in Equation (4).

i f
(
→

SNi −
→

SNj)·ttarget∣∣pi − pj
∣∣ < 0.1 (4)

Here,
→

SNi and
→

SNj are the smoothed normal vectors, ttarget is the total thickness of the
boundary layer to be generated, and pi and pj are the center points of the boundary grid

faces. The initial values of
→

SNi and
→

SNj are the same as normal vectors. If ttarget is small, a
relatively small region is computed, and the difference between the initial and smoothed
normal vectors becomes small. During the iterative calculation process, the boundary
conditions for the Laplace equation are changed from the initial state to converged state, as
shown in Figure 2a,b, respectively.

The displacement vector
→
Db, which is scaled so that the magnitude of the normal

direction component of a smoothed normal vector is 1, of a grid face is calculated using
Equation (5).

→
Db =

→
SN
→
N·
→

SN
, (5)

Figure 3 shows the initial and smoothed normal vectors and the displacement vectors
of boundary faces in a rectangular domain. From the figure, it can be observed that the
vectors chosen as the boundary condition for the Laplace equation works properly.
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2.2. Front Advancing Technique

To avoid intersecting grid lines, i.e., a grid line of a mesh piercing through a grid line
of another mesh, the front advancing technique is developed and applied.

2.2.1. Exclusion of Narrow Regions

To calculate the gradient fields of the displacement vectors of volume meshes, the

Laplace equation in Equation (1) is solved using the initial displacement vector
→
D0, which

is the value of
→
Db multiplied by the thickness of the first boundary layer t f irst and is shown

in Equation (6), as the boundary condition. The diffusion coefficient Γ is determined by
the reciprocal of the mesh’s volume. When the grid size is small, the gradient of the
displacement reduces, and consequently, the deformation of the grid becomes relatively
small. In contrast, when the grid size is large, the grid formation becomes relatively large.
For the Γ of the boundary layer grids, the adjacent volume mesh is used instead of the
reciprocal of the volume. Through this, it is possible to avoid the problem of excessively
deformed volume cell, which is due to the boundary grid and results in deterioration of
the grid quality, or generation of excessively thin boundary layer grid. The values of Γ are
recalculated at every iteration due to volume change.

→
D0 =

→
Db·t f irst, (6)

When the magnitude of the gradient of displacement is greater than 1, the correspond-
ing grid face is judged to have a very narrow gap and is classified as the boundary grid face
where the boundary layer is not generated. After checking the narrow gaps and considering

classified grid surfaces without the boundary layer meshes, the smooth normal vector
→

SN

and displacement vector
→
Db are recalculated.

2.2.2. Gradual Front Advancing Method

The boundary layer grids are advanced by moving its grid points after copying the
grid points of the boundary face to generate excessively thin boundary layer grids and
calculating the displacement vector field of the volume mesh. To prevent the grid lines
from intersecting, the amount of movement of the grid points is made to match that of
displacement calculated at the moved position. Moreover, to avoid the grid from being
excessively deformed and its quality being deteriorated in narrow gap regions, the value of
Equation (6) was used for the initial displacement of the boundary face. Calculations are
repeatedly carried out with the gradual increase in the displacement of the boundary faces
in consideration of the thickness of the boundary layer grid while moving the grid points.
Details on the process for preventing the grid lines from being intersected are as follows.

The displacement vector at the center of the grid is obtained by solving the Laplace

equation. Furthermore, the displacement vector
→
D of the grid point p,

→
Dpi , is calculated

by performing the weighted averaging method on the displacement vectors of the grids
cj that contains the grid point. The weighting function—which is inversely proportional
to the distance between the center point and displacement vector and proportional to the

diffusion coefficient Γj—and its application for the
→

Dpi are shown in Equations (7) and (8),

respectively. A temporary position ptemp is calculated by adding the displacement vector
→
D

at the current grid point position to the initial grid position p0 and under-relaxation is per-
formed to calculate the new position of the grid point, as shown in Equations (9) and (10),
which are iteratively solved. In the present study, 0.5 is used for the relaxation factor ω in
Equation (10). Moving grid points in this manner does not cause problems of intersecting
grid lines inside a continuous displacement vector field.
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wj =
Γj∣∣cj − pi

∣∣ , (7)

→
Dpi =

∑j wj
→

Dcj

∑j wj
, (8)

ptemp = p0 +
→

Dpi , (9)

pn = ω·pn−1 + (1−ω)·ptemp, (10)

If the thickness of the boundary layer grid is smaller or larger than the target value
after moving the grid points, calculations are repeated by increasing or decreasing the
displacement of the boundary faces until the thickness of the boundary layer grid ap-
proaches the target value. Once the thickness of the entire boundary layer grid is converged
sufficiently, the grids are cut and split from the highest boundary layer grid line with a
number of thin boundary layer grids. The grid is not cut if the grid thickness is less than
60% of the target thickness when the boundary layer grid is cut.

Figure 4a shows the initial volume mesh of a rectangular domain enclosed by four
wall boundaries with four concave corners. The boundary layer grids generated near the
wall boundaries using only normal vectors and smoothed normal vector together with
displacement vectors are depicted in Figure 4a,b, respectively. It can be found that the
boundary layer grids are generated as intended, although the grid line of the last boundary
layer meshes is not perfectly flat, and some areas that are not perfectly perpendicular to the
wall are observed.
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by present methods, respectively. From Figure 5b, it can be observed that the numbers of 
the boundary layer grids near the region where gap exists are reduced; the farther away 
from the gap, the greater the numbers. In addition, the grid sizes near the gap are similar 
to each other even when the volume decreases due to the deformation of the grid near the 
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Figure 4. (a) Initial volume mesh without boundary layer grids and final volume meshes with
boundary grids generated using (b) normal vectors and (c) smoothed normal vectors together with
displacement vectors.

The developed techniques are applied for the multiple bodies with a narrow gap be-
tween the bodies in a square domain. Figure 5a,b shows the initial volume mesh generated
by the cut-cell method [11] and the final grid systems with boundary layer grids generated
by present methods, respectively. From Figure 5b, it can be observed that the numbers of
the boundary layer grids near the region where gap exists are reduced; the farther away
from the gap, the greater the numbers. In addition, the grid sizes near the gap are similar
to each other even when the volume decreases due to the deformation of the grid near the
region. This is because the change of displacement is suppressed by adopting the method
to use the diffusion coefficient Γ in Equation (1) as the reciprocal of the volume.
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2.3. Applicatioon for Complex 3-D Geometry

The developed techniques are applied for a flange in a rectangular domain to check its
applicability for a complex three-dimensional geometry. As shown in Figure 6, there are
three holes in the y direction, of which the holes vary in size, and one hole that varies in
size in the z direction.
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Figure 6. Geometry of a 3-D flange.

To verify the validity of the developed method, relatively large-sized initial volume
meshes were used to make it difficult to generate the boundary layer grids. For instance,
the size of a hexahedral mesh on the surface of the flange is approximately 1.5 times that of
the diameter of the small hole in the z-direction. The volume mesh and the boundary layer
grids at several cross-sections are shown in Figure 7. In the figure, the boundary layer grids
are well-generated at concave or convex corners, and grid lines do not intersect, even inside
the relatively narrow holes. As shown in Figure 7a, only one boundary layer is created in
the smallest hole where all the boundary layer grids cannot be inserted. In addition, from
Figure 7d,e, the boundary layer grids are well-generated, even in small holes compared
with that of the boundary layer.
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Figure 7. Generated volume meshed in the constant planes of (a) x = 0.001, (b) x = 0.018, (c) y = 0.015, 
(d) y = 0.0, and (e) y = −0.015 for a 3-D flange in a rectangular domain where left, middle, and right 
columns indicate the plane position, grids on those plane, and the grids in the magnified region 
marked by red box in the middle one, respectively. 

Figure 7. Generated volume meshed in the constant planes of (a) x = 0.001, (b) x = 0.018, (c) y = 0.015,
(d) y = 0.0, and (e) y = −0.015 for a 3-D flange in a rectangular domain where left, middle, and right
columns indicate the plane position, grids on those plane, and the grids in the magnified region
marked by red box in the middle one, respectively.
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As previously mentioned, the smoothed normal vector is calculated with the boundary
conditions expressed in Equations (3) and (4) to select the normal vector at the corner edge
and limit the smoothing region, respectively. The effects of limiting the smoothing region
can be found in Figure 8, where the upper part of the grids on the x = 0.001 plane is
magnified and indicated. The orthogonality of the boundary layer grids without limiting,
shown in Figure 8a, are much worse than those with limiting as shown in Figure 8b. The
deformation of volume meshes in the first is slightly smaller than that in the latter since the
restriction of smoothing region increases the difference between neighboring smoothed
normal vectors. In short, it is found that the limiting technique improves the orthogonality
of the boundary layer grids and increases the deformation of the volume meshes.
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3. Numerical Simulations: Application to Propeller Open Water (POW) Test

The hydrodynamic performances of a marine vessel or floating type offshore structures
can be categorized into seakeeping, maneuvering, and resistance and propulsion. Regard-
ing the latter performance, tests of resistance, POW, and self-propulsion should be carried
out to estimate the performance of a marine vessel. Although CFD has been traditionally
and mainly applied to estimate the resistance and propulsion performance [11,16–18], it
has been widening its range of application for other hydrodynamic cases [19,20] and more
complicated problems related to resistance and propulsion, such as ship–ice interaction [21],
energy-saving devices [22,23], hull form optimization [24], and so forth.

To check the applicability of the developed methods, numerical simulations of the
POW test of a marine propeller were carried out. The initial volume mesh and boundary
layer grid were generated by the fully polyhedral meshes on the basis of the trimmed hexa-
hedral mesh [11] and proposed advancing layer method, respectively. The investigation
on the generated grids is introduced, and then, the POW simulation results, which were
performed by an open source CFD software OpenFOAM with the generated mesh, are
explained and compared with other experimental and numerical results.

3.1. Subject Marine Propeller

In this study, the INSEAN E779A propeller, which was developed by INSEAN (Italian
Ship Model Basin), was selected and used as the test-case propeller. The propeller is
widely used in experimental studies under uniform and non-uniform flow conditions, and
experimental results can be used as guidelines for validating the numerical test cases. The
solid model of the propeller with a shaft is shown in Figure 9, where four very thin blades
with skew and rake can be observed. The geometrical data of the propeller are listed in
Table 1 [25–29].
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Table 1. Geometrical characteristics of INSEAN E779A propeller.

Parameter (Unit) Value

Diameter D (m) 0.2272
Radius R (m) 0.1136

Chord length at r = 0.7R C0.7R (m) 0.086
Number of blades (-) 4

Pitch ratio (-) 1.1
Skew angle at the blade tip (◦) 4.80 (positive)

Nominal rake (◦) 4.59 (forward)
Expanded area ratio (-) 0.689

Hub diameter (m) 0.04553
Hub length (m) 0.06830

3.2. Non-Dimensional Coefficients

The non-dimensional coefficients relevant to the present simulation are introduced.
Regarding the performance of a marine propeller, the important parameters are advance
ratio J, thrust coefficient KT , torque coefficient KQ, and efficiency of the propeller η0, which
are defined as in Equations (11)–(14).

J =
U∞

nD
(11)

KT =
T

ρn2D4 (12)

KQ =
Q

ρn2D5 (13)

η0 =
U∞T
2πnQ

=
J

2π

KT
KQ

(14)

Here, U∞ is the inflow velocity, and n and D are the rotation rate and diameter of the
propeller, respectively. T and Q are the thrust and torque of the propeller measured or
estimated by numerical simulations, respectively. Furthermore, ρ is the fluid density.

The Reynolds number for POW test Re0.7R is generally defined as shown in Equation (15)
by the chord length c and velocity considering the rotation speed of the blades, where the
distance from the origin of the propeller r is 0.7 times of the radius of the propeller, as shown
in the Figure 9b.

Re0.7R =
C0.7R·

√
(π·D·0.7·R·n)2 + U2

∞

ν
, (15)
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3.3. Grid Systems

Grid systems for the simulation of the POW tests of INSEAN E779A propeller were
generated by the trimmed hexahedral mesh and the proposed advancing layer method for
the initial volume meshes and boundary layer grids, respectively.

Figure 10 shows the generated grid systems where the figures in the left columns are
the meshes of the entire domain, and the right columns are the magnified ones around the
propeller. The upper and lower figures show those in the constant y = 0 and x = 0 planes,
respectively. The region where the size of the volume meshes are larger than others, in
which the same among them are fixed domains and others are multiple reference frame
(MRF) domains, will be explained later. The total number of the grids was approximately
2.927× 106, of which 2.889× 106 were those of the rotating zone. The number of surface
grids on a blade was 30,400. The length of the smallest volume mesh was approximately
2.3× 10−4 m. To preserve the shape of the propeller blades as precisely as possible and to
detect the rapid change in the pressure and velocity near the leading and trailing edges of
the blades, boundary layer grids were densely placed on the wall boundaries. The total
number of the boundary layer grids was 14, with the extension ratio of 1.3. The height of
the first boundary layer grid was 1.0× 10−5 m.
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Figure 11 shows the boundary layer grids near the blade tip and root. In Figure 11a, it
can be observed that the quality of the grids is quite good at the tip of the blade despite the
existence of regions where the targeted number of the boundary layer grids, i.e., 14, are not
generated because of small volume mesh and large Γ in Equation (1). If all the boundary
layer grids are forcefully placed around the tip, it gives rise to the problem of a boundary
layer grid size larger than that of the volume mesh. As shown in Figure 11b, the boundary
layer grids were not perfectly perpendicular to the boundary surfaces. However, the
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quality of the grids is acceptable where the blade root and hub meet with concave angle.
Because the propeller pitch angle changes with respect to the distance from the origin of
the propeller r and the volume cell was different depending on the position, some regions
were observed where the targeted number of the boundary layer grids were not generated.
However, the authors believed that it did not significantly affect the simulation results.
The mesh qualities were checked by checkMesh utility of OpenFOAM. The maximum
aspect ratio was 374.8. The maximum and average non-orthogonality were 166.6 and 15.0,
respectively. The maximum skewness was 191.2.
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3.4. Solver, Schemes, and Conditions

For the POW tests, Reynolds-averaged Navier–Stokes equation (RANS) simulations
with the transient turbulent model were performed. The solver used was simpleFoam,
which is one of the standard solvers of Open Field Operation and Manipulation (Open-
FOAM) 6 CFD toolbox. The simpleFoam is a steady-state solver for incompressible, tur-
bulent flow using the SIMPLE (Semi-Implicit Method for Pressure Linked Equations)
algorithm [30]. For the rotation of the propeller and shaft, the MRF method was chosen
because this method is the simplest way of modeling for rotating multiple zones and suit-
able for present simulations. It is a steady-state approximation where there is no transient
interaction between the rotating and static domains, as the mesh of the rotating part does
not move.

The γ− Reθ transition model [31–33] (kOmegaSSTLM in OpenFOAM) was adopted
because the Reynolds numbers of the propeller Re0.7R were in the laminar-to-turbulent
transient regime. The turbulence intensity of the inflow was set to 1% or less. To accelerate
the computational time, the pressure and velocity fields obtained from the simulations
by potentialFoam were used as for the initial values. Boundary conditions and numerical
schemes are listed in Tables 2 and 3, respectively.

Table 2. Boundary conditions.

Boundaris P U k Omega γ

Blade, hub, shaft fixedFluxPressure rotatingWallVelocity kqRWallFunction omegaWallFunction zeroGradient
Inlet zeroGradient fixedValue

Outlet fixedValue zeroGradient
Interface1 cyclicAMI
Interface2 cyclicAMI

Side symmetry
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Table 3. Numerical schemes.

Convection Terms Gauss Linear Upwind with Cell Limiter

Diffusion terms Gauss linear

Matrix solver
Pressure: Geometric algebraic multi-grid (GAMG) with

Gauss–Seidel smoother
Other: smoothSolver with symGaussSeidel;

The speed of rotation n was fixed and the inflow velocity U∞ was determined to match
the selected advance ratio J, which varied in the range of 0.119 ∼ 1.094. The corresponding
Reynolds numbers were between 4.58× 105 and 5.10× 105, as listed in Table 4.

Table 4. Simulation conditions.

Parameter (Unit) Value

RPS of propeller n (/s) 11.7881
Inflow velocity U∞ (m/s) 0.533~2.931

Advance ratio J (-) 0.199~1.094
Density of water ρ (kg/m3) 1006.5

Dynamic viscosity of water ν (m2/s) 1.1099× 10−6

Reynolds number at r = 0.7R Re0.7R (-) 4.58× 105∼ 5.10× 105

3.5. Results

Figure 12 shows the comparisons between thrust and torque coefficients KT and KQ
and propeller efficiency η0 obtained from the present simulations and those of experi-
ment [29]. From the figure, it can be observed that the results agree well with each other.
Although a small discrepancy exists when the advance ratio J is higher than 0.946, where
the maximum value of η0 is observed, it is a general tendency of most POW simulations.
The error level of the present results is similar to that of the previous studies [34–36].
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The speed of rotation 𝒏𝒏 was fixed and the inflow velocity 𝑼𝑼∞ was determined to 
match the selected advance ratio 𝑱𝑱, which varied in the range of 0.119 ~1.094. The cor-
responding Reynolds numbers were between 4.58 × 105 and 5.10 × 105, as listed in Ta-
ble 4. 

Table 4. Simulation conditions. 

Parameter (Unit) Value 
RPS of propeller 𝒏𝒏 (/s) 11.7881 

Inflow velocity 𝑼𝑼∞ (m/s) 0.533~2.931 
Advance ratio 𝑱𝑱 (–)  0.199~1.094 

Density of water 𝝆𝝆 (kg/m3) 1006.5 
Dynamic viscosity of water 𝝂𝝂 (m2/s) 1.1099 × 10−6 

Reynolds number at 𝑟𝑟 = 0.7𝑅𝑅 𝑹𝑹𝑹𝑹𝟎𝟎.𝟕𝟕𝟕𝟕 (–) 4.58 × 105~5.10 × 105 

3.5. Results 
Figure 12 shows the comparisons between thrust and torque coefficients 𝐾𝐾𝑇𝑇 and 𝐾𝐾𝑄𝑄 

and propeller efficiency 𝜂𝜂0 obtained from the present simulations and those of experi-
ment [29]. From the figure, it can be observed that the results agree well with each other. 
Although a small discrepancy exists when the advance ratio 𝐽𝐽 is higher than 0.946, where 
the maximum value of 𝜂𝜂0 is observed, it is a general tendency of most POW simulations. 
The error level of the present results is similar to that of the previous studies [34–36]. 

 
Figure 12. Comparisons of POW simulation results with experimental results.

Figure 13 shows the distribution of y+ and pressure on a blade surface when J = 0.946,
where η0 has the largest value. In the figure, face and back indicate the pressure side and
suction side, respectively. The value of y+ was approximately 3.2, which is slightly higher
than 2.5, where the thickness of the first boundary layer was determined when generating
grid systems. This slightly high value may be one of the reasons for the differences in thrust
and torque.



J. Mar. Sci. Eng. 2023, 11, 454 15 of 17

J. Mar. Sci. Eng. 2023, 11, 454 15 of 17 
 

 

Figure 12. Comparisons of POW simulation results with experimental results. 

Figure 13 shows the distribution of 𝑦ା and pressure on a blade surface when J = 0.946, 
where 𝜂଴ has the largest value. In the figure, face and back indicate the pressure side and 
suction side, respectively. The value of 𝑦ା was approximately 3.2, which is slightly higher 
than 2.5, where the thickness of the first boundary layer was determined when generating 
grid systems. This slightly high value may be one of the reasons for the differences in 
thrust and torque. 

From the results of checking the mesh qualities and simulations, it can be said that 
the developed advancing layer method is an appropriate method for generating the 
boundary layer grids of a trimmed hexahedral mesh. In addition, better results are ex-
pected by adjusting the boundary layer height with respect to the radius. 

   

(a) (b)  𝑦ା  

   
(c) (d) 𝑃 

Figure 13. Contours maps of 𝑦ା and pressure on blade surfaces of face and back when 𝐽 = 0.946: 
(a) face, (b) back, (c) face, and (d) back.  

4. Conclusions 
A robust and effective method based on the advancing layer method was developed 
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aries where the concave corners and narrow gaps exist. The advancing layer method was 
modified and applied to the trimmed hexahedral volume meshes generated by the cut-
cell method developed in the previous study. The Laplace equation of the normal and 
displacement vectors were used to smooth the normal vectors and obtain the displace-
ment vector fields. The boundary layer grids were well-generated, even at the concave 
corner by smoothing the normal vectors of grid lines and faces. By utilizing the displace-
ment vectors, the problem of intersecting grid lines in the narrow gap did not occur. The 
developed method was applied for a marine propeller, which has a complex geometry, 

Figure 13. Contours maps of y+ and pressure on blade surfaces of face and back when J = 0.946:
(a) face, (b) back, (c) face, and (d) back.

From the results of checking the mesh qualities and simulations, it can be said that the
developed advancing layer method is an appropriate method for generating the boundary
layer grids of a trimmed hexahedral mesh. In addition, better results are expected by
adjusting the boundary layer height with respect to the radius.

4. Conclusions

A robust and effective method based on the advancing layer method was developed to
generate the boundary layer grids with non-intersecting grid lines near the wall boundaries
where the concave corners and narrow gaps exist. The advancing layer method was
modified and applied to the trimmed hexahedral volume meshes generated by the cut-
cell method developed in the previous study. The Laplace equation of the normal and
displacement vectors were used to smooth the normal vectors and obtain the displacement
vector fields. The boundary layer grids were well-generated, even at the concave corner
by smoothing the normal vectors of grid lines and faces. By utilizing the displacement
vectors, the problem of intersecting grid lines in the narrow gap did not occur. The
developed method was applied for a marine propeller, which has a complex geometry,
and the propeller open water simulations were carried out with the generated grid system.
Investigations on the grids and the simulation results compared with experimental results
provide evidence of the applicability and effectiveness of the proposed method for practical
problems. Further study will be carried out in the future to improve the quality of the
present method, such as layer-by-layer generation of the boundary layer grids to make the
grid lines more perpendicular to the wall boundaries.
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