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Abstract: Aiming at the problem of high-precision detection of AtoN (Aids to Navigation, AtoN)
in the complex inland river environment, in the absence of sufficient AtoN image types to train
classifiers, this paper proposes an automatic AtoN detection algorithm Aids-to-Navigation-YOLOv4
(AN-YOLOv4) based on improved YOLOv4 (You Only Look Once, Yolo). Firstly, aiming at the
problem of an insufficient number of existing AtoN datasets, the Deep Convolutional Generative
Adversarial Networks (DCGAN) is used to expand and enhance the AtoN image dataset. Then,
aiming at the problem of small target recognition accuracy, the image pyramid is used to multi-scale
zoom the dataset. Finally, the K-means clustering algorithm is used to correct the candidate box
of AN-YOLOv4. The test on the test dataset shows that the improvement effect of AN-YOLOv4 is
obvious. The accuracy rate of small targets is 92%, and the average accuracy (mAP) of eight different
types of AtoN is 92%, which is 14% and 13% higher than the original YOLOv4, respectively. This
research has important theoretical significance and reference value for the intelligent perception of
the navigation environment under the intelligent shipping system.

Keywords: intelligent ship; navigation environment perception; detection of Aids to Navigation;
machine vision; YOLOv4

1. Introduction

The navigation environment of inland waterways is complex, and the light and light
quality of AtoN are easily affected by poor visibility factors such as rainfall and heavy
fog, which leads to potential safety hazards for ship navigation [1,2]. With the vigorous
development of the marine economy and shipping industry, the intelligent supervision
service of ship shore collaboration has put forward higher requirements for AtoN. At
present, the target detection in the inland waterway transport field is mainly carried out for
ships, and there is not much research on AtoN in the channel [3,4]. Although the position
of inland AtoN is relatively fixed, their volume is small, and their motion characteristics are
easily affected by wind, wave, current, and other factors, so the requirements for detection
and classification are higher. As the infrastructure for marking the boundary of navigable
waters, the accurate detection and identification of AtoN are of great significance for assist-
ing ship navigation and safety [5]. At the same time, this research can also provide support
for intelligent ships to carry out the intelligent perception of the navigation environment.

Traditional marine navigation environment perception takes the ship as the detection
target, and the detection media can be divided into three categories: radar-related tech-
nology, infrared-related technology, and visible light imaging technology [6]. Traditional
detection methods are slow in detection speed and low in accuracy and generally only
apply to fixed sea areas with poor robustness [7,8]. With the development of deep learning
technology, many scholars have begun to try to use a target detection framework for marine
target recognition. The deep learning target recognition framework is mainly divided into
a single-stage and a multi-stage method [9–13]. The single-stage method is represented
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by You Only Look Once (YOLO) [14] and Single Shot MultiBox Detector (SSD) [15]. A
bounding box is not formed by these algorithms in advance, and the bounding box and
classification are considered together when the network output. Chang et al. [16] com-
bined layers 23, 24, and 25 of YOLOv4 into one layer to avoid repeated operations, thus
reducing network running time. The AP (Average Precision, AP) obtained on the SAR
Ship Detection Dataset (SSDD) is basically the same as YOLOv4, and the test time of a
single picture is more than twice shorter. Li et al. [17] introduced Convolutional Block
Attention Module (CBAM) on a tiny YOLOv3 skeleton network to better adapt to complex
background images such as onshore buildings and complex light waves on the water
surface. The detection accuracy is basically the same as YOLOv3, and the detection speed
is faster than YOLOv3. Tang et al. [18] used the HSV algorithm to replace the traditional
RGB algorithm in color classification and obtained higher accuracy and a smaller missed
detection rate on the public ship dataset High-Resolution Ship Collections 2016 (HRSC2016).
In addition, some scholars have conducted research based on the multi-stage method. The
multi-stage method, represented by Faster Regions with Convolutional Neural Networks
(Faster-RCNN) [19], first obtains the candidate regions and then identifies and classifies
the candidate regions. You et al. [20] introduced a semantic segmentation sub-network
into Fast RCNN to identify the target area and achieved a small improvement in AP on
GaoFeng-2(GF-2) image. Gao et al. [21] proposed an effective training strategy based on
Fast-RCNN, which trains a large number of images containing only land areas as negative
samples. The effectiveness of the strategy is verified on satellite images. Zhang et al. [22]
first used a support vector machine (SVM) to divide the large detection area into small
regions of interest (ROI) that may contain ships and then connects these regions to Fast-
RCNN for positioning and classification. The experimental results show that this method
can improve the accuracy and recall of optical satellite image recognition. Although the
multi-stage method has high recognition accuracy, its efficiency is low, and the detection
speed is slow. Therefore, the multi-stage method is often not suitable for tasks requiring
real-time detection. In addition, some scholars have built their own models for specific
needs to identify marine targets. Li et al. [23] build a deep learning-based rapid detection
model for maritime targets and detect common targets at sea. It finally achieves an accuracy
rate of 87.5% for ship detection, 82.5% for AtoN detection, and 80.0% for island detection.
Although this model detects multiple types of targets, its AtoN detection accuracy is about
ten percentage points lower than this paper.

Although the research on marine target recognition based on a deep learning frame-
work has made some progress, most of the research is carried out on ship images, and there
is a lack of research on AtoN recognition. Compared with the ship target, the size of the
AtoN image is often small, and it is difficult to identify distant AtoN targets accurately. The
ship candidate box is often a long horizontal bar, while the AtoN candidate box is generally
a vertical bar, which is not consistent with the ship candidate box [24]. Moreover, at present,
there is a public dataset built for ship detection tasks, but there is no public dataset for the
detection of AtoN, which also limits the progress of research on AtoN detection to a certain
extent. To solve the above problems and to ensure the accuracy and real-time detection
of AtoN in an intelligent maritime environment, an automatic AtoN detection algorithm
based on improved YOLOv4 (Aids to Navigatio-YOLOv4, AN-YOLOv4) is proposed in
this paper. The main contributions of the proposed algorithm are as follows:

(1) Aiming at the lack of an AtoN dataset of the AN-YOLOv4 algorithm, a joint dataset
expansion method is proposed. This method first introduces DCGAN to augment the AtoN
dataset and then uses the image pyramid network to increase the dataset by more than
three times on the basis of the augmented pictures. The image pyramid network can enrich
the AtoN scale information while supplementing the dataset. It helps to enhance the ability
of the network to identify small targets.

(2) Aiming at the problem that the candidate box of the ordinary Yolov4 algorithm
cannot be effectively applied to the detection of the AtoN target, the K-means clustering al-
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gorithm is used to modify the AtoN candidate box of the AN-YOLOv4. This method solves
the difference between the AtoN candidate box and the common object candidate box.

(3) This method can accurately identify eight different types of AtoN, assist the ship-
shore cooperative system in judging the navigation environment, and ensure the safety of
ships in the inland river environment.

The rest of this article is organized as follows. In Section 2, the main algorithm YOLOv4
is stated. In Section 3, the algorithm AN-YOLOv4 is proposed, including the dataset joint
expansion method using DCGAN and image pyramid and the use of k-means to change
the candidate box. In Section 4, the effectiveness of the dataset joint expansion method and
the k-means algorithm is verified, and the AN-YOLOv4 algorithm is compared with other
algorithms. Section 5 presents the conclusions and future research directions.

2. YOLOv4 Algorithm
2.1. Algorithm Model Structure

Figure 1 shows the network structure of YOLOv4. The backbone network of YOLOv4 [25]
is CSPDarknet53 [26]. The CSP structure is shown in Figure 1c. The purpose of this
structure is to enrich the combination of gradients and reduce the amount of computation.
The activation function of YOLOv4 is modified from the LeakeyReLU function to the
Mish function. As shown in Figure 1b, Adding the Mish [27] function to the backbone
network can make the gradient smoother and penetrate deep into the neural network
while maintaining accuracy. The Mish function has the characteristics of smoothness,
non-monotonicity, lower bounded and upper unbounded, and good performance. The
expression of the Mish function is shown in Equation (1), where x and h represent the
midpoint of the Mish function, respectively. Abscissa and ordinate.

Mish = xtanh[ln(1 + ex)] (1)
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2.2. Spatial Pyramid Pooling Structure

As shown in Figure 1d, the Spatial Pyramid Pooling (SPP) [28] structure is located
after the last feature layer of YOLOv4. First, three regular convolutions are performed, and
then four different scales of maximum pooling are used to perform the same again. The
pooling kernel sizes of max pooling are 13 × 13, 9 × 9, and 5 × 5, respectively. Finally,
the three pooling layers are stacked with the original image. Using the SPP structure can
highlight the salient features of the data, greatly improve the speed of generating candidate
boxes, and save computational costs.

2.3. Path Aggregation Network Structure

YOLOv4 uses the Path Aggregation Network (PANet) [29] algorithm to replace the
Feature Pyramid Networks (FPN) [30] algorithm of YOLOv3. The PANet algorithm was
proposed by Liu et al. in 2018. PANet can accurately preserve spatial information, which
helps to locate pixels correctly. Figure 2a,b are schematic diagrams of FPN and PANet
algorithms. FPN has only one back-propagation, while PANet performs one forward-
propagation after one back-propagation. The common advantage of FPN and PANet is
that they can fuse shallow feature maps with rich, detailed features and deep feature maps
with rich semantic features, which improves the problem of poor detection of small objects.
However, compared with large target recognition, the detailed features of shallow feature
maps are more helpful for localization. The distance from FPN shallow features to the
top layer is too long, which affects the effect of deep feature maps locating large targets.
Therefore, PANet enhances the path from the shallow layer to the deep layer, shortening
the distance between the shallow layer and the deep layer. PANet enhances the localization
effect of large objects while fusing shallow and deep features to improve the detection
effect of small objects.
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The AtoN detection has its own particularity in the automatic detection of the intel-
ligent ship platform. The AtoN is of great significance in guiding the ship and ensuring
the safe navigation of the ship. Therefore, AtoN detection must be real-time, accurate, and
effective. The YOLOv4 algorithm balances the detection speed and accuracy and integrates
a large number of excellent technologies, which greatly improves the accuracy. For this
reason, this paper realizes the rapid detection of AtoN based on the YOLOv4 algorithm.

2.4. CIoU of YOLOv4

The YOLOv3 loss function takes the center coordinates and width of the detection
box as independent variables, which is not conducive to the mutual fitting between the
dimensions of the detection box. Aiming at the shortcomings of the MSE loss function of
YOLOv3, the YOLOv4 loss function comprehensively considers the information such as
the length, width, and size of the detection frame, and uses the Intersection Over Union
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(IoU) [31] loss instead of the MSE loss. On the basis of IoU, GIoU [32] loss, DioU [33] loss,
and CIoU loss are extended. CIoU loss takes into account the overlap area, center distance,
and length-width ratio of the three geometric factors, which are in good agreement with
the morphological characteristics of the ship. Therefore, this article selects the CIoU loss
function. The CIoU function is:

LCIOU = 1− IOU(A, B) +
ρ2(Actr, Bctr)

c2 + αv (2)

α =
v

(1− IOU) + v
(3)

v =
4

π2

(
arctan

wgt

hgt
− arctan

w
h

)2
(4)

where: IOU(A, B) is the IoU of the prediction frame and the real frame; ρ2(Actr, Bctr) is the
Euclidean distance between the center point of the prediction frame and the real frame; c is
the diagonal distance of the minimum closure region containing both the prediction frame
and the real frame; and wgt and hgt are the width and height of the real frame, respectively;
and w and h are the width and height of the prediction frame, respectively; α is a positive
number; v is used to measure the consistency of aspect ratio.

3. AN-YOLOv4 Algorithm
3.1. Data Enhancement Based on DCGAN

During the research process, we searched the internet and found that the current
number of training samples about AtoN images is relatively small. Therefore, this paper
uses DCGAN to enhance and expand AtoN dataset. The DCGAN originates from the
Generation Adversarial Network (GAN). The GAN is a machine learning architecture
proposed by Ian Goodflow [34] of the University of Montreal in 2014. The GAN algorithm
takes Game Theory as the basic idea, and the main components are Generator(G) and
Discriminator (D). The basic working principle of GAN is shown in Figure 3. The goal
of the Generator is to generate a picture close enough to the original picture to give the
Discriminator for judgment. The main task of the Discriminator is to check whether the
newly generated picture is close enough to the original picture [35]. If the newly generated
picture can pass the judgment of the discriminator, the newly generated picture can be
used as a supplement to the dataset [36].
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The DCGAN takes GAN as the basic prototype. The DCGAN was proposed by
Radford et al. [37] in 2015. By introducing CNN into Gan, it obtains a more stable training
process and higher-quality image samples. In order to satisfy the input of AN-YOLOv4.
This paper designs a DCGAN network model. Figure 4 shows the results of DCGAN.
Table 1 shows the DCGAN structure designed in this paper. The first nine network layers
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starting with G in the table are the generation network, and its function is the same as
that of the GAN generator, which can generate AtoN pictures. Then the network starting
with D in the next nine layers is the discriminant network, and its function is consistent
with the discriminator of GAN, which can discriminate the generated pictures. When
the network works, first, the generative network will generate a 100*1 feature map of the
AtoN image. Then, the image is resized to the same size as the original image through a
seven-layer deconvolutional network. Finally, the generated image and the original image
are put into the discriminant network at the same time, and the discriminant network is
used to judge whether the input image is a qualified image. Similar to GAN’s generator
and discriminator, the generative and discriminative networks will continuously adjust
parameters. Under the mutual adjustment, the probability of the image generated by the
generation network passing through the discriminant network remains within the preset
target, making the newly generated image more effective.
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Select the image with appropriate noise and illumination brightness as the supplementary set of
the dataset.

Table 1. The structure of the DCGAN model designed in this paper.

Layers Name Filter Size/Stride Operations Input Layer Output Size
(W × H × C)

Generator

G-random input N/A 1 × 1 × 100
Reshape BN G-random input 4 × 4 × 1024
T-Conv1 4 × 4/2 BN, ReLU Reshape 8 × 8 × 512

T-Conv2 4 × 4/2 BN, ReLU T-Conv1 16 × 16 × 512
T-Conv3 4 × 4/2 BN, ReLU T-Conv2 32 × 32 × 256

T-Conv4 4 × 4/2 BN, ReLU T-Conv3 64 × 64 × 256
T-Conv5 4 × 4/2 BN, ReLU T-Conv4 128 × 128 × 128
T-Conv6 4 × 4/2 BN, ReLU T-Conv5 256 × 256 × 128
T-Conv7 4 × 4/2 BN, tanh T-Conv6 512 × 512 × 3
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Table 1. Cont.

Layers Name Filter Size/Stride Operations Input Layer Output Size
(W × H × C)

Discriminator

D-input 3 × 3/2 N/A 512 × 512 × 3
Conv1 3 × 3/2 LeakyReLU D-input 256 × 256 × 128

Conv2 3 × 3/2 BN, LeakyReLU Conv1 128 × 128 × 128

Conv3 3 × 3/2 BN, LeakyReLU Conv2 64 × 64 × 256

Conv4 3 × 3/2 BN, LeakyReLU Conv3 32 × 32 × 256

Conv5 3 × 3/2 BN, LeakyReLU Conv4 16 × 16 × 512

Conv6 3 × 3/2 BN, LeakyReLU Conv5 8 × 8 × 512

Conv7 3 × 3/2 BN, LeakyReLU Conv6 4 × 4 × 1024

flatten N/A Conv7 1 × 1 × 16384

Sigmoid N/A flatten 1 × 2 × 1

3.2. Data Expansion Based on Image Feature Pyramid

In actual navigation tasks, the scale of the AtoN targets collected by the ship-borne
camera changes drastically, and the distant AtoN targets often occupy only a few pixels.
Early detection of AtoN helps intelligent ships to make timely decisions, which requires the
network model to have a strong ability to identify small targets. Due to the limited image
size of the training set in this paper, the network model cannot meet the recognition of
AtoN of various scales when it is actually used [38]. In order to solve the problem of AtoN
recognition of different scales, the image expanded by DCGAN is reduced and enlarged
by the image pyramid method [39]. As shown in Figure 5, the image size is changed by
re-sampling so that the images of different scales contain the same content. Finally, the
image pyramid is applied to training and testing. The effect of the image pyramid in
detection is further analyzed.
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3.3. Algorithm Improvement Based on k-means Clustering
3.3.1. Introduction to the k-means Algorithm

The detection target in this paper is AtoN, which is not consistent with the target
size of the public dataset. Therefore, it is necessary to establish a separate candidate
box for the AtoN dataset [40]. The k-means algorithm is a classical clustering algorithm
based on distance, which uses distance as the similarity evaluation index. That is, the
closer the distance between two objects, the higher the similarity. The algorithm considers
that clusters are composed of close objects, so the final goal is to obtain compact and
independent clusters. When the algorithm starts running, first input an initial value K to
the algorithm, which indicates how many classes into which data need to be divided. Then
the algorithm will randomly select k initial points as the centroid. In the first iteration,
the Euclidean distance between each point and the centroid is calculated, and the point is
classified into the nearest class. Then, recalculate the centroids of the K clusters and repeat
the above process until the center of the cluster does not change.

3.3.2. Determination of AN-YOLOv4 Candidate Box Based on k-means

When applying the above k-means algorithm to the selection of candidate boxes, due
to the different sizes of real candidate boxes, the larger real box is prone to greater error than
the smaller real box during iteration 14. Therefore, it is necessary to change the distance
judgment function of AN-YOLOv4 to:

d(box, centroid) = 1− IoU(box, centroid) (5)

where box represents the real box, centroid represents the cluster center, and IoU is the
intersection union ratio. AN-YOLOv4 predicts feature maps of three scales, with three
candidate boxes on each scale feature map, for a total of nine candidate boxes. Therefore,
nine cluster centers need to be set, considering that in scenes at different scales, the size of
each target box is different. Therefore, the width and height of the bounding box need to be
normalized to the width and height of the image. After multiple iterations on the self-built
dataset, the obtained clustering results are shown in Figure 6. After clustering, the optimal
coordinates and ratios of nine candidate boxes are shown in Table 2. It can be seen from the
table that there are huge differences between the candidate box of AtoN and other target
recognition tasks. Selecting this candidate box will help the network model to fit faster and
improve the accuracy of the model.
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Table 2. The coordinates and scale of the candidate box of AtoN.

Number Candidate Box Coordinates Ration

1 17, 28 0.61:1
2 58, 47 1.23:1
3 44, 147 0.30:1
4 135, 77 1.75:1
5 229, 141 1.62:1
6 102, 292 0.35:1
7 318, 260 1.22:1
8 194, 438 0.44:1
9 352, 431 0.82:1

4. Evaluation
4.1. Data Preparation

The AtoN dataset in this paper comes from the Internet, a total of 425. The training
set and test set are divided, as shown in Table 3. Among them, there are 60 left lateral
marks, 59 right lateral marks, 62 north side marks, 61 south side marks, 57 West Side marks,
55 East Side marks, and 71 isolated danger marks. In order to verify the effectiveness of the
algorithm. Take 20 pieces of each category at random as the test set. The remaining pictures
are used for training, a total of 285. After data expansion by DCGAN and multi-scale
scaling of the image pyramid, the training set is expanded from 285 to 1035. The Labelling
Annotation Tool is used to label the categories according to the PASCAL-VOC dataset
format, and the training set of this paper is obtained.

Table 3. Division of training set and test set.

Types of AtoN Original Training Set Improving Training Set Testing Set

left lateral marks 40 148 20
right lateral marks 39 148 20
north side marks 42 150 20
south side marks 41 149 20
west side marks 37 147 20
east side marks 35 138 20

isolated danger marks 51 155 20
total 285 1035 140

4.2. Experimental Environment and Parameter Configuration

The experimental simulation environment of this paper: Windows platform, CPU
i7-10700f, memory 32GB, GPU processor NVIDIA ® GeForce ® RTX 2070 super, software
environment: Python 3.7.8, pycham2019, Anaconda 3.4.1, TensorFlow 2.3, CUDA 10.1.234,
cudnn7.6.5. In this paper, 1035 pictures are divided into 207 batches. Each batch has five
pictures. The SGD optimizer is used for optimization. The initial learning rate is 0.001,
the attenuation coefficient is 0.0005, the random gradient drop is 0.9, and the confidence
threshold is 0.3. After testing, when Epoch is set to 500 times, the algorithm loss will not
decrease. The training process is shown in Figure 7. Save the model every 1 Epoch, evaluate
the model performance through the test set, and select the model with the best performance
in the test set for comparison.
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4.3. Analysis of Experimental Results

In this paper, the network performance is judged by four indicators: small target
accuracy, category AP value, mAP value, and FPS (Frame Per Second). STA is small target
accuracy.The frame rate is used to compare with other mainstream algorithms. The small
target division method refers to the MS COCO dataset [41]. When the resolution is less
than 32*32, it is a small target. Considering that the recall rate of small targets is more
important in practical applications, the small target accuracy is set as the percentage of all
small targets found. The experimental IoU is selected as 0.5. The confidence threshold is
selected as 0.5. That is, when the detection network believes that a predicted target has a
probability of more than 0.5 to be the real target, it considers this target to be the predicted
real target. The functions of AP and mAP are shown as follows:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

AP =
∫ 1

0
p(r)dr (8)

mAP =
1
n

n

∑
i=1

APi (9)

where TP represents the number of positive samples correctly identified as positive samples;
FP represents the number of negative samples incorrectly identified as positive samples;
FN represents the number of positive samples incorrectly identified as negative samples.
The PR curve can be drawn by taking different precision and recall values, and the area
under the PR curve is defined as a single category AP. The mean of all detection categories
is mAP.

Part of the experimental results of AN-YOLOv4’s identification of AtoN types is
shown in Figure 8. As discussed in Section 3, our ship detection framework is proposed
by taking into consideration several modules, e.g., the DCGAN of the dataset(DG), the
Image Pyramid Network(IPN), and the K-means function to modify the candidate box
(K-m). The ablation experiments will thus be implemented to investigate which plays a
more important role in improving detection performance. The numerical experiments are
illustrated detailedly in Table 4.
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Table 4. Model performance evaluation with different improvement methods.

Algorithm DG IPN K-m STA APleft APright APeast APwest APsouth APnorth APdanger mAP

YOLOv4_0 0.78 0.88 0.90 0.77 0.78 0.75 0.83 0.60 0.79
YOLOv4_1

√
0.82 0.95 0.93 0.80 0.82 0.76 0.88 0.71 0.84

YOLOv4_2
√ √

0.89 0.95 0.95 0.88 0.83 0.90 0.87 0.80 0.88

YOLOv4_3
√

0.82 0.95 0.92 0.82 0.81 0.82 0.82 0.72 0.84
YOLOv4_4

√ √
0.85 0.95 0.95 0.90 0.91 0.88 0.92 0.77 0.90

AN-YOLOv4
√ √ √

0.92 1 0.95 0.92 0.93 0.93 0.95 0.78 0.92

In Table 4, YOLOv4_0 does not use any improvement method; YOLOv4_1 uses the
DCGAN method alone; YOLOv4_2 uses the data joint improvement method; YOLOv4_3
uses k-means alone; YOLOv4_4 uses the combination of DCGAN and k-means; AN-
YOLOv4 uses all improvements method. After testing, it was found that the mAP of
YOLOv4_1 and YOLOv4_3 both reached 0.84, and the small target accuracy of AtoN
reached 0.82, which were 0.05 and 0.04 percentage points higher than that of YOLOv4_0
without any improvement, respectively. This proves that using DCGAN to improve the
dataset and using k-means to improve the candidate box can both improve the detection
accuracy of the algorithm. YOLOv4_2 uses the data joint improvement method, and the
mAP reaches 0.89, which is 0.05 better than DCGAN alone. However, the small target
accuracy rate of YOLOv4_2 has achieved a high score of 0.89, which is 7% higher than that
of YOLOv4_1, which shows that the image pyramid network is of great help in improving
the accuracy of small AtoN targets. Based on all experiments, the three improvements
proposed in this study can effectively improve the accuracy of network detection. The final
network detection result has a small AtoN target accuracy of 0.92 and mAP of 0.92, which
are 0.14 and 0.13 more than the original unimproved YOLOv4, respectively.

Although many scholars improved and tested the algorithm by migrating the feature
extraction network, it is undeniable that some feature extraction structures performed
better in the original algorithm [42]. Therefore, mainstream algorithms using different
feature extraction networks are selected to test and compare with AN-YOLOv4 on the
self-built Aids to Navigation dataset. These algorithms include YOLOv4, YOLOv4 tiny,
Faster R-CNN, and Mask RCNN. Part of the test results is shown in Figure 9. The four
scenes shown in the figure are complex background, fog, low brightness, and small target
detection. In the complex background detection scene, YOLOv4-tiny detects the wrong
target. In low brightness and small target detection scenarios, YOLOv4-tiny, YOLOv4, and
Fast-RCNN have different degrees of missed detection, and Mask-RCNN has repeatedly
detected the navigation target. In general, the proposed algorithm NM-YOLOv4 can spend
less time on accurate detection in different scenarios.
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In four different scenarios (complex background, foggy, low brightness, and small target), test results
of algorithms YOLOv4-tiny, YOLOv4, Faster-RCNN Mask-RCNN, and NM-YOLOv4(ours).

The mAP value and PR curve of this algorithm and other algorithms for the detection
of AtoN are shown in Table 5 and Figure 10, respectively. Table 5 lists the test of different
algorithms on AIDS datasets. Through comparative experiments, it is found that the AN-
YOLOv4 algorithm surpasses other algorithms in various accuracy indicators. Among
them, YOLOv4-tiny runs faster than the algorithm in this paper, but its accuracy and
mAP are too low to be suitable for intelligent ship tasks with high accuracy requirements.
Mask-RCNN, as a multi-stage algorithm, has high accuracy and mAP, but its model size is
too large, and FPS is low, so it is not suitable for real-time detection tasks. The improved
AtoN detection algorithm AN-YOLOv4 based on YOLOv4 proposed in this paper has a
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higher detection rate and accuracy of small targets and runs faster. Figure 10a shows the PR
curve of different algorithms for a small target of AtoN. It can be seen from the PR curve
that other algorithms have a high false positive rate for small targets. This is because other
algorithms are easy to identify noise as small AtoN. Figure 10b–i shows the PR curves of
different algorithms for different AtoN targets. It can be seen that the algorithm in this
paper is superior to other algorithms in terms of accuracy and recall rate. Overall, the
AN-YOLOv4 algorithm is superior to the current mainstream target detection algorithms.

Table 5. Comparison of algorithms superiority.

Algorithm STA APleft APright APeast APwest APsouth APnorth APdanger mAP FPS

YOLOv4 0.78 0.88 0.9 0.77 0.78 0.75 0.83 0.6 0.79 30.8
YOLOv4-tiny 0.54 0.7 0.67 0.6 0.61 0.6 0.59 0.6 0.62 62
Faster-RCNN 0.82 0.86 0.85 0.8 0.72 0.76 0.75 0.71 0.78 12.0
Mask-RCNN 0.89 0.93 0.95 0.87 0.82 0.88 0.87 0.8 0.87 9.5
AN-YOLOv4 0.92 1 0.95 0.92 0.93 0.93 0.95 0.78 0.92 30.8
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5. Conclusions

This paper proposes an AtoN target detection algorithm AN-YOLOv4 based on im-
proved YOLOv4. The DCGAN is used to enrich the AtoN dataset, and the image pyramid
network is used to divide the AtoN data at multiple scales so that the number of the original
dataset is expanded by more than three times. Considering that the candidate box used in
the existing public dataset is not suitable for AtoN, K-means is used to improve the size of
the candidate box. The experimental results show that the expansion of the AtoN dataset
and the improvement of candidate box size makes the AN-YOLOv4 improve the accuracy
of AtoN recognition and still maintain a high detection speed. The AN-YOLOv4 method
optimizes and improves the algorithm on the framework of YOLOv4. Under the accuracy
that meets the requirements of actual AtoN target recognition applications, the method in
this paper has a simpler structure, consumes less computing resources, and has a faster
detection speed. This method can be used in a smart ship for environment perception and
monitoring systems to ensure the accurate position of the AtoN. At the same time, this
method can identify the type of AtoN target and assist the ship-shore cooperative system
in judging the channel environment.

In the future, smart ships can be equipped with AtoN monitoring terminals for real-
time detection of the channel environment. Therefore, the AtoN target detection method
based on AN-YOLOv4 has strong applicability and scalability. In addition, the algorithm
only detects targets for AtoN. On the premise of ensuring accuracy and detection speed,
how to detect ships, islands, and other sea targets and integrate information with other
sensing algorithms to achieve an intelligent perception of the navigation environment is
the follow-up research direction.
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