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Abstract: With the development of emerging techniques, maritime autonomous surface ships 
(MASS) have attracted much attention, and the remote control ships’ future seems promising. How-
ever, due to communication issues, ship–shore transmission faces the challenge of time delay. The 
use of the transmitted information without compensation could reduce the effectiveness of control-
ling or could cause the remote control to be unstable. To eliminate the negative effects of uncertain 
delays during navigation, an Augmented State Cubature Kalman Filter (AS-CKF) is proposed. First, 
the uncertainty of the transmission delays is modeled using a probability density function (PDF). 
Second, the ship’s states are updated and estimated using the delayed observed data, and then the 
real state of the ship is simultaneously corrected in the augmented state vector. In this way, the 
delay compensation problem becomes a one-step prediction problem. To test the proposed AS-CKF 
for MASS, we simulate scenarios with the remote control ship under different communication time 
delays. The results show improvements compared to the traditional CKF, EKF, or AS-EKF, which 
indicates the potential of the proposed methods in remote control MASS. 
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1. Introduction 
With the development of artificial intelligence technologies, intelligent vehicles that 

integrate computer science, automation technology, and communication technology have 
become the research frontier in the field of high tech [1–3]. As an intelligent surface vehi-
cle, maritime autonomous surface ships (MASS) are considered to be a useful platform in 
waterborne transportation, ocean surveying and mapping, and maritime security, among 
other fields [4,5]. Remote control ships that can be controlled by operators shoreside pro-
vide operators and managers with convenient, efficient, and free operation options, which 
have received much attention in recent years [6,7]. However, there may be challenges in 
implementing MASS remote control due to varying communication time delays. These 
time delays are frequently caused by issues such as with the status of the communication 
network or the communication distance between remote controllers and MASS [8]. In 
such cases, the signals obtained by the remote controllers cannot truly reflect the current 
state of the ship, thereby reducing the experience of controlling the ship or causing the 
ship to be unstable. Therefore, it is necessary to compensate for the delay in the navigation 
of MASS.  
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Many techniques have been proposed to estimate the system states, e.g., a family of 
Kalman Filters (KF). Extended Kalman Filter (EKF) is the most common filtering algo-
rithm used to estimate the navigation state. EKF is used when KF cannot be applied to 
nonlinear systems. EKF maintains a low computational complexity, but the negligibility 
of higher-order terms of the nonlinear system in EKF will degrade the estimation accuracy 
[9,10]. Unscented Kalman Filter (UKF) and Cubature Kalman Filter (CKF) are two other 
popular methods for sampling filtering. UKF uses a series of sigma points to propagate 
the states and covariance matrix [9,11]. CKF computes integrals, such as nonlinear func-
tion times for Gaussian density [12,13]. Unlike UKF, which uses 2n + 1 unscented points 
to propagate the state and covariance matrix, CKF propagates the state and covariance 
matrix with 2n Cubature points. CKF thereby has a relatively lower computational load 
than UKF when the same matrix decomposition methods, such as singular value decom-
position or the Cholesky method, are applied to UKF and CKF. For high-level systems, 
CKF has better stability and higher accuracy [14]. However, these filters do not consider 
the delay of the system in the design. When there is a delayed observation of the sensor, 
CKF cannot be applied. 

In general, it is assumed that the measurement time is consistent with the filter time, 
but there is a time delay during the transmission of the filter measurement in some cases, 
such as remote control MASS. In such cases, the communication network quality and re-
gional bandwidth, among other factors, cause a time delay during transmission of the 
measurement data collected by on-board sensors to the shore-based control center (SCC). 
The issue of delayed filter measurement availability is referred to as Out Of Sequence 
Measurement (OOSM) [15,16].  

In order to solve the issue of estimation in the case of time-delayed observation, 
scholars have conducted related work. For a time delay that is known, the past state can 
be predicted by applying backward prediction of the current state. In such cases, Hua [17] 
proposed a multiple linear regression method to predict the network delay jitter for a net-
worked teleoperation system, with the effectiveness of the proposed method being veri-
fied by simulation. Bar-Shalom [18] proposed an optimal and suboptimal algorithm for 
one-step delayed measurement. Chen et al. [19] improved the method so that it can be 
used in the case of multi-step delayed measurements. The literature verified that algo-
rithms that work for one-step-lag OOSM also work for multi-step-lag OOSM. 

For the time delay that is unknown, Kyuman Lee [20] estimated the delay of meas-
urement by incorporating a parameter estimation technique into state estimation. How-
ever, since the delay itself is random, it is difficult to obtain a converged delay estimate in 
practical applications. Shijie Zhang [21] proposed a state estimation error compensation 
method to solve the decrease in positioning accuracy caused by communication delay in 
multi-robot systems. This study, however, only considers the invariable time delay. Choi, 
M [22] solved these delayed measurement problems with an augmented state Kalman 
filter, and the uncertainty of the delayed time was resolved based on the probability dis-
tribution of the delay. Considering the actual situation, an augmented EKF was proposed 
by Das B [23], and the method was applied to a telepresence robot system. Adachi R [24] 
proposed a maximum-likelihood estimation method for delay compensation, which ad-
dressed the delay problem by writing the observation equation as an observation with 
experiments and an observation equation without delay. This method was an augmented-
matrix method. When augmenting the state, the state corresponding to the maximum de-
lay needs to be calculated, which will cause the augmented state vector to widen. Further-
more, calculations with a large-sized vector may require additional extensive computa-
tional effort. 

In order to reduce the computational complexity of the algorithm, and to improve its 
adaptability to the nonlinearity of the system, AS-CKF is proposed. AS-CKF is combined 
with the ideas of CKF and state augmentation in this paper. First, the augmented state is 
used to replace the original state, and the past state is updated through delayed observa-
tion. Second, the new predicted value of the current state is obtained from the corrected 
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past state. To overcome dimension challenges, the uncertain delay is replaced by the dis-
tributed expectation, which reduces the extensive computational effort. Third, a set of 
simulation experiments is designed to simulate the performance of the algorithm when 
the uncertain time delay obeys the Gaussian distribution.  

The rest of the paper is organized as follows: In Section 2, the state compensation for 
MASS is described and modelled. In Section 3, the original CKF and the CKF considering 
the uncertainty of time delay are introduced. Section 4 introduces the methodology for 
delayed measurement. In Section 5, the experimental framework is presented and the ex-
periment results are analyzed and evaluated. Then, Section 6 concludes the paper. 

2. Problem Statement 
When the MASS is remotely controlled, the ship’s movement status is not timely be-

cause of the communication delay due to network quality, communication distance, etc., 
causing challenges for the controllers and thus compromising their ability to control the 
ship safely. The kinematic model of a ship is defined as follows: 

1 ( cos( ) sin( ))k k s k k kx x T u vψ ψ−= + −  (1)

1 ( sin( ) cos( ))k k s k k ky y T u vψ ψ−= + +  (2)

1k k sT rψ ψ −= +  (3)

where kx , ky  are the Cartesian coordinates of the ship, ku  is surge velocity and kv  is 
sway velocity, kψ  is yaw, r  is yaw rate, and sT  is discrete sampling time. 

In this study, we aim to estimate the motion state of the intelligent ship. For the gen-
eral nonlinear discrete system, the system equation can be established as follows: 

1 1( , )
( , )

k k k

k k k

x f x w
z h x v

− −=
 =

, (4)

where n
kx R∈  is a 1n ×  state vector, m

kz R∈  is an 1m ×  observation vector, 

1
n

kw R− ∈  is system noise, and m
kv R∈  is an observation vector; both noises are assumed 

to be Gaussian white noise sequences with zero mean. Additionally, 1 1 1
T

k k kE w w Q− − −  =  , 
T

k k kE v v R  =  ; ( )f �  is the dynamics model of the system; and ( )h �  is the measurement 
function.  

It can be seen from the observation equation in Equation (4) that the observation vec-
tor kz  contains information about kx . It also shows that the timing of the state infor-
mation perceived by the sensor is consistent with the time at which the information is 
used for filtering (as shown in Figure 1). However, this may not be the case in the remote 
control scenario. 

 Sensor 
Mearsurement time 

at the ship

Mearsurement 
arrive at shore

t1

t2

t2

tn

tn

t1

 
Figure 1. The ship–shore sensor measurement without delay. 

When the ship is remotely controlled by a shoreside control center (SCC), the per-
ceived information by ship-side sensors may not be used simultaneously in the SCC due 
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to the time delay. The delay arises from the communication time between the ship and the 
SCC and the algorithm processing time, among other factors. Therefore, measurement 
time will be different from filter time, as shown in Figure 2. In this case, the measurement 
equation is rewritten as follows: 

( , )
k kk k kz h x vτ τ− −=  (5)

where kτ  represents the step of the delay of measurement data. The measurement kz  
is related to the step before kτ ; the current state cannot be corrected by the received meas-
urement data. If the delay time is precise, the state corresponding to the measurement can 
be estimated. However, in a real state, the time delays kτ  may not be precisely measured 
due to various delays, namely, feedback delay and transmission delay, and data packet 
drop-outs over the Internet. Hence, the arrival time in filter measurement time durations 
will be random, as shown in Figure 3.  

 

 Sensor 
Mearsurement time 

at the ship

Mearsurement 
arrive at shore

t1+τ1 

t2

t2+τ2 

tn

tn+τn 

t1

 
Figure 2. The ship–shore sensor measurement with communication delay. 

Mearsurement 
arrive at shore

tn

tn+τn 

 Sensor 
Mearsurement time 

at the ship

P(t)

PDF

 
Figure 3. The time delay is modeled using a probability density function. 

3. Improved Cubature Kalman Filter Considering Uncertain Delays 
3.1. Original Cubature Kalman Filter  

The derivation of the Cubature Kalman Filter (CKF) utilizes the third-degree spheri-
cal–radial cubature rule, and the detailed derivation process can be found in [13,25]. This 
article only gives a brief introduction to the algorithm. For a nonlinear system, e.g., Equa-
tion (4), the CKF is calculated with the following steps: 

Step 1: Initialization 


0 0[ ]x E x= , 

 
0 00 0 0[( )( ) ]TP E x x x x= − −  (6)

where E is the expectation operator. 
Step 2: Time update 

1/ 1 1/ 1( )k k k kS chol P− − − −=  (7)
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
1/ 1, 1/ 1 1/ 1 k ki k k k k iX S xξ − −− − − −= +    1, 2,3, , 2i n=   (8)

where chol represents the Cholesky decomposition method, S  is the square root of co-
variance matrix P ,  1/ 1k kx − −  is the estimated value of the previous, i is the Cubature point 
serial number, and iξ  stands for column i of ξ  that is formulated as: 

1 1
1 1

1 1

nξ

− 
 − =
 
 − 

 
 

In matrix ξ, only one element in each column is 1 or −1, and the other elements are 0. 

, / 1 , 1/ 1( )i k k i k kX f X∗
− − −=  (9)


, / 1

2
*

/ 1
1

1
2 i k k

n

k k
i

x X
n −

−
=

=   (10)

 
2

* *
/ 1 / 1/ 1 , / 1 , / 1 1

1

1 ( - )
2

n TT
k k k kk k i k k i k k k

i

P X X x x Q
n

− −− − − −
=

= +  (11)

where , / 1i k kX −  is the Cubature point generated from states, , / 1( )i k k−•  represents the one-

step prediction of relevant parameters, and the symbol   represents the accumulation 

operation. 
Step 3: Measurement update 

/ 1 / 1 / 1
T

k k k k k kP S S− − −=  (12)


/ 1, / 1 / 1 k ki k k k k iX S xξ −− −= +  (13)

, / 1 , / 1( )i k k i k kZ h X− −=  (14)

2

/ 1 , / 1
1

1
2

n

k k i k k
i

z Z
n

− −
=

=   (15)

/ 1k kk kZ zη −= −   (16)

2

/ 1 / 1, / 1 , / 1 , / 1
1

1 ( - )
2

n TT
k k k kzz k k i k k i k k k

i

P Z Z z z R
n

− −− − −
=

= +    (17)


2

/ 1/ 1, / 1 , / 1 , / 1
1

1 ( - )
2

n TT
k kk kxz k k i k k i k k

i

P X Z x z
n

−−− − −
=

=    (18)

where , / 1i k kZ −  represents the Cubature point generated from measurements. 
Step 4: State update 

1
, / 1 , / 1k zz k k xz k kK P P−

− −=  (19)

 
/ 1/ / 1 ( )k kk k k k k kx x K z z −−= + −   (20)

/ / 1 , /
T

k k k k k zz k k kP P K P K−= −  (21)
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where kK  is the gain of the CKF,  /k kx  is the state after updating, and /k kP  is the error-

covariance of state  /k kx . 

3.2. Improved CKF considering Uncertain Time Delay 
The delay time is modeled as a PDF to solve the issue that the delay cannot be accu-

rately obtained and is random. When a measurement arrives in the filter, the probability 
of a step of time delay can be calculated by integrating the PDF.  

The probability that the measured value is in the n-th time step can be calculated as: 

t
2

t
2

((t ) t (t ))
2 2

(t)n

n

n n n

t

t

t tP

p dt

α
Δ+

Δ−

Δ Δ= − ≤ ≤ +

= 
 (22)

where ( )P •  means a probability, and ( )p •  is the probabilistic density functions. Sup-
pose that the measurement value z( )k  is given, and a correspondence nc  means that 
the value z( )k  is in the n-th time step, a probability that represents the measurement is 
in the n-th step is written as: 

( | z( ))n nP c k α=  (23)

Considering the correspondence nc , a state estimator can be derived: 

 { }
{ }

{ }

/

( | z(

( ) | z( )

( ) | z( ),

( ) | z( ,

))

)

n

k k

n
n

n
n n

x E x k k

E x k kP c c

E x k k c

k

α

=

=

=




 (24)


/k kx  is the expectation of the current state when there is a delay in the measurement 

z( )k . From Figure 4, we can see that the total number of ic  will affect the computation 
of the algorithm. To reduce the amount of computation, we consider such average delay 
(modeled by PDF) as a continuous input to the system, which will allow us to calculate 
only one E , i.e., one status update and corresponding multiple one-step predictions. 
Based on the framework of CKF, the current state can be calculated by augmenting several 
steps of the past state. The detailed calculation process is provided in Section 4.2. 

Δt

P(t)

tn tn+1tn-2tn-1 tn+2

1nα − 1nα +

nα

 
Figure 4. The probability density function of uncertainty. 
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4. Delay-Compensated State Estimation for MASS 
4.1. Framework of Method 

In the scenario of remote control, the information on the MASS movement status re-
ceived by the shore-based controller may not be synchronized with the information gen-
erated by the MASS. The currently received measurement information cannot directly es-
timate the current state. Thus, the present state and the past states are combined into sev-
eral augmented state vectors, which are used to estimate the ship’s true position.  

Figure 5 illustrates a flow diagram of the proposed algorithm. The current measure-
ment state, which contains information on the past states, directly corrects the augmented 
state vector. In this way, the past state is updated using the delayed measurement data 
and the current state is simultaneously corrected in the augmented state vector. The esti-
mation of current state consists of two parts: the first part is the estimation of the corre-
sponding past state, and the other part is given by multiple one-step predictions. Figure 5 
illustrates a flow diagram of the proposed algorithm.  

S（k−1）S（k−2）S（k −τ+1）S(k−τ)

S（k−1）S（k−2）S（k−τ+1）

Z（k+1） 
with τ   step 

delay

K（k+1）

S（k−τ+2） S（k+1）S（k）S（k−τ+3）

Measurement update

S（k）

Z（k） with 
τ  step delay

K（k）

S（k+1）S（k）

Z（k+2） 
with τ   step 

delay

K（k+2）

S（k+2）

Estimate the state of the current 
moment

One step pridict

 
Figure 5. Flow diagram of the proposed algorithm. 

4.2. Augmented State Cubature Kalman Filter (AS-CKF) 
We solve the problem of ship-state estimation under observation delay using an aug-

mented state CKF. We combine the current state and past state into a new system state to 
estimate the true position of the ship. In a time-delay system, by updating the augmented 
state with the measured value of the past state information, the past state can be updated 
directly, and then the current state can be further corrected according to the updated past 
state. Taking one-step delay as an example, the system equation is rewritten as follows: 

1 1 / 1 1 / 1
1

1 1 1/ 2 2 1/ 2

( , ) 0 0
0 0

k k k k k k k kaug
k

k k k k k k k

x f x w x
x

x x x
− − − − −

−
− − − − − − −

Φ Γ          
= = = +          Φ Γ          

(25)

where ()aug  is the augmented state vector, 
1/ 1

( , ) |
kk k x x

f x w
x −− =

∂Φ =
∂

, 

1/ 1
( , ) |

kk k w w
f x w
w −− =

∂Γ =
∂

. Similarly, 1/ 2k k− −Φ , 1/ 2k k− −Γ  can be calculated using the follow-

ing measurement equation: 
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1
1

1 1 1 1/ 2 2 1/ 2

0 0 0 0
([0, ] , )

0
k k kaug

k
k k k k k k k k

x v x
z h

z x v H x w
−

−
− − − − − − − −

           
= = = +           
           

I  (26)

where 21/ 2
( , ) |

−− − =

∂=
∂ kk k x x
h x wH
x . 

For the system represented by Equations (25) and (26), Equations (5) and (7) are re-
written as follows: 

1/ 1 1/ 1
1/ 1

2/ 2 2/ 2

0
0

T T

k k k kaug
k k T

k k k k

S AS
P

A S S
− − − −

− −
− − − −

  
 =  
    

 (27)

1/ 1 1/ 1
, 1/ 1

2/ 2 1/ 2

ˆ0
ˆ

k k k kaug aug
i k k i

k k k k

S x
X

A S x
ξ− − − −

− −
− − − −

   
= +   
   

,
0 0

2
0 0
n n n naug

n n n n

I I
n

I I
ξ × ×

× ×

−
=

−
 (28)

If let 1/ 1 1, 1/ 1 2, 1/ 1 i, 1/ 1
aug aug aug aug
k k k k k k k kX X X X− − − − − − − − = • ••  ,then have: 

1/ 1 1/ 1 1/ 1 1/ 1
1/ 1

1/ 2 2/ 2 1/ 2 2/ 2

ˆ ˆ0 0
ˆ ˆ
k k k k k k k kaug

k k
k k k k k k k kn n

x S x S
X

x A S x A S
− − − − − − − −

− −
− − − − − − − −

        
= + −        
         

 

 
where [ ]nX represents an n n× -dimensional matrix constructed by repeating n times 

column vector, and X , , 1/ 1
aug
i k kX − −  represents the i-th column vector of 1/ 1

aug
k kX − − . 

 
Combining Equations (9) and (25), we get: 

, / 1

, 1/ 2

*
/ 1

, / 1 , 1/ 1*
1/ 2

0
0

i k k

i k k

k kaug aug
i k k i k k

k k

X
X X

X
−

− −

−∗
− − −

− −

  Φ 
= =   Φ    

 (29)

, / 1

, 1/ 2

*2
/ 1

/ 1 *
1 1/ 2

ˆ1ˆ
ˆ2

i k k

i k k

n
k kaug

k k
i k k

X x
x

xn X
−

− −

−
−

= − −

   
= =   

    
  (30)

So, we can calculate time update: 

 
2

/ 1 / 1/ 1 , / 1 , / 1 1
1

1 ( - )
2

n aug augTaug aug augT aug
k k k kk k i k k i k k k

i

P X X x x Q
n

− −− − − −
=

= +  (31)

, / 1

, 1/ 2

*2
/ 1

/ 1 *
1 1/ 2

ˆ1ˆ
ˆ2

i k k

i k k

n
k kaug

k k
i k k

X x
x

xn X
−

− −

−
−

= − −

   
= =   

    
  (32)

Pay attention to the change of the size of dimension n in the calculation. Since a new 
augmented state is constructed and the historical state is included in the state, the dimen-
sion of the new augmented state should be twice the original state, that is, n will also be 
doubled. Combining Equations (12)–(21) and (26), a state update can be calculated: 

2

/ 1, / 1, / 1
1 / 1, / 1 1

, 1/ 2

00 0 01 0 0
02

0 0
0

n Taug T T T
k ki k kzz k k

i k ki k k k

zz k k

P Z z
Z Rn z

P

−−−
= −− −

− −

      = − +              
 

==  
 

 


 (33)
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1

0 0
0

aug
k

k

K
K −

 
=  
 

 (34)

 / 1

1 1/ 2

/
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It can be seen from the equation of state update that after the past state is updated 
with the time-delay observation, a one-step prediction is performed to estimate the cur-
rent state. 

5. Simulation and Analysis 
5.1. Setups 

In this section, a set of simulation experiments will be used to verify that the pro-
posed algorithm can track the ship within various maneuvering states under the condition 
of time delay. When simulating the running track and motion state of the ship, the com-
mon motion behaviors of the ship are considered, including acceleration, deceleration, 
uniform speed, left rotation, right rotation, etc. The ship’s general maneuvering charac-
teristics are considered in the design of the simulation experiment, and the maximal sail-
ing speed and turning radius of the ship are limited. In this simulation, the simulated ship 
has maximal speed of 16 knots, and the length of ship is 40 m. Table 1 shows the specific 
process of trajectory simulation, and its motion trajectory is shown in Figure 6. Figure 7 
presents the ship’s changes of velocity and attitude. In this simulation experiment, the 
sampling frequency of IMU is set to 50 Hz, the sampling frequency of GPS is 1 Hz, and 
other parameter settings are shown in Table 2. By superimposing the time delay of the 
IMU and GPS data generated by the simulation to simulate the time when the remote 
driver obtains the sampled data, five groups of time delays are introduced, which obey 
the following Gaussian distribution: N(μ, σ), where σ = 1/5μ, μ = (10,20,40,100). 

Table 1. Ship motion state and related parameter design. 

Time(s) Status of Smart Ships Changes in Motion Parameters 

(0,70] 
System initialization and ini-

tial alignment 
- 

(70,110] Accelerate (m/s2) Forward acceleration = 0.2 m/s2 
(110,200] Straight ahead Forward acceleration = 0 m/s2 
(200,204] Rolling left (°/s) Roll rate = −1.836°/s 

(204,249] Turning left (°/s) 
Heading rate = 2°/s 

Roll rate = 0°/s 

(249,253] Rolling right (°/s) 
Heading rate = 0°/s 
Roll rate = 1.836°/s 

(253,343] Straight ahead (°/s) Roll rate = 0°/s 
343,347] Rolling right (°/s) Roll rate = 4.12°/s 

(347,447] Turning right (°/s) 
Heading rate = 4.5°/s 

Roll rate = 0°/s 

(447,451] Rolling left (°/s) 
Heading rate = 0°/s 
Roll rate = −4.12°/s 

(451,541] Straight ahead (°/s) Roll rate = 0°/s 
(541,581] Decelerate (m/s2) Forward acceleration = −0.2 m/s2 
(581,661] Still Forward acceleration = 0 m/s2 
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Table 2. Simulation parameter. 

 Parameter Value 

Initial position error East (m) 
North (m) 

1 
1 

Initial speed error 
East (m/s) 

North (m/s) 
0.1 
0.1 

Initial attitude error Roll (arcsec) 30 
 Pitch (arcsec) −30 
 Heading (arcmin) 30 

Parameters of the gyroscope 
Constant bias (°/h) 

Random walk (°/√h) 
0.05 
0.005 

Parameters of accelerometer 
Constant bias (ug) 

Random walk (ug/√HZ) 
400 
20 

GPS noise  Noise of Position (m) 
Noise of velocity (m/s) 

(1,1,3) 
(0.1,0.1,0.1) 

Delay parameter setting Gaussian distribution (μ,σ) Μ = (10,20,40,100), σ = 1/5μ 

 
Figure 6. Simulated trajectory of the MASS. 
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Figure 7. Simulated angle and velocity information. 

5.2. Simulation Results 
Figures 8 and 9 show the filtering conditions of the Cubature Kalman filter under 

different delay conditions. It can be seen from the results that the CKF cannot handle the 
error caused by the delay very well. It is actually an estimation of a certain state in the 
past, where the existence of time delay will introduce new errors. At (70, 110], (353,451], 
and (541,581], there is a significant increase in error, and it continues to maneuver at 
360~470. In this case, the error increases significantly, which shows that the delay error 
reduces the dynamic performance of the system. With the aforementioned method, the 
past state is updated through the observation with time delay, and then the current state 
is predicted to solve the influence of the time delay on the filtering state. 

 
Figure 8. Error velocity of CKF filter under different delay conditions. 
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Figure 9. Error situation of CKF filter under different delay conditions. 
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AS-EKF. The results are shown in Figures 10–13. It can be seen from the results that the 
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the delayed measurement. It can be seen that estimation of CKF and EKF have obvious 
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algorithms in the accuracy of position estimation, which is most obvious at 100 ms. 
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Figure 10. Velocity error comparison of AS-CKF, CKF, AS-EKF, and EKF estimation in delayed time: 
(a) represents the time delay τ = 20 ms, (b) represents the time delay τ = 40 ms, and (c) represents 
the time delay τ = 100 ms. 
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Figure 11. Position error comparison of AS-CKF, CKF, AS-EKF, and EKF estimation in delayed time: 
(a) represents the time delay τ = 20 ms, (b) represents the time delay τ = 40 ms, and (c) represents 
the time delay τ = 100 ms. 

   
(a) (b) (c) 

Figure 12. Velocity error boxplots of different algorithms under different delay conditions: (a) rep-
resents the time delay τ = 20 ms, (b) represents the time delay τ = 40 ms, and (c) represents the time 
delay τ = 100 ms. 

   
(a) (b) (c) 

Figure 13. Position error boxplots of different algorithms under different delay conditions: (a) rep-
resents the time delay τ = 20 ms, (b) represents the time delay τ = 40 ms, and (c) represents the time 
delay τ = 100 ms. 

The root mean square errors (RMSE) of the three algorithms, CKF, AS-EKF, and AS-
CKF, for position and speed are compared, as shown in Tables 3 and 4. Both AS-EKF and 
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the accuracy of positioning and velocity are both improved by more than 10%. Compared 
with the CKF algorithm, the algorithm proposed in this paper has a greater improvement. 
Specifically, the accuracy of positioning and velocity estimation are improved by 9.38% 
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and 11.01%, respectively. The estimation accuracy of positioning and speed with 40 ms 
delay are improved by 28.06% and 27.04%, respectively. The estimation accuracy of posi-
tioning and speed with 100 ms delay are improved by 26.96% and 33.41%, respectively. 
The accuracy of positioning and velocity estimation at 40 ms and 100 ms are increased 
mainly because the error of CKF algorithm increases under this condition. 

Table 3. RMSE error of velocity (m/s). 

Average Delay 
in Time (ms) 

RMSE   Improvement Improvement 
CKF AS-EKF AS-CKF Compared with CKF (%) Compared with AS-CKF (%) 

20 0.02122 0.0200 0.0194 9.38 <5 
40 0.02530 0.0199 0.0187 28.06 6.9 

100 0.02690 0.0210 0.0190 26.92 10.52 

Table 4. RMSE error of velocity(m). 

Average Delay  
in Time (ms) 

RMSE   Improvement Improvement 
CKF AS-EKF AS-CKF Compared with CKF (%) Compared with AS-CKF (%) 

20 0.5033 0.4389 0.4379 13.01 <5 
40 0.5798 0.4577 0.4424 23.78 <5 

100 0.6395 0.4845 0.4254 33.41 13.89 

5.3. Discussion 
The delay-compensated state estimation approach successfully estimated the ship’s 

true position during navigation and compensated for the time delay from the measure-
ment data as described in preceding sections. During the experiments we used the ship’s 
original simulation parameters, and the general maneuvering characteristics of the ship 
were considered in the design of the simulation experiment, so that the algorithm pro-
posed in this paper is applicable to the remote control ship scenario.  

We combined the current state and the past state into a new system state to estimate 
the true position of the ship. The current measurement state, which contains information 
on the past states, directly corrects the augmented state vector. In this way, the past state 
was updated using the delayed measurement data, and the current state was simultane-
ously corrected in the augmented state vector. 

By comparing it with the existing EKF, CKF, and AS-EKF techniques for estimating 
a ship’s true position, we showed that our delay-compensated AS-CKF approach im-
proves the estimation of ship positions in scenarios with delayed noisy sensor measure-
ments. The traditional state estimation methods, such as EKF and CKF, are not suitable 
when there is time delay in the system’s observation. Estimating the current state through 
time-delayed observations will produce a large error, especially if the ship is maneuver-
ing. Compared to AS-EKF, the CKF framework enables the method proposed in this paper 
to obtain a better dynamic performance in nonlinear systems. 

The application of this method requires us to assume prior information, such as the 
expectation of delay distribution and use that expectation to address the delay uncer-
tainty. Applying the algorithm proposed in this paper requires less delay. Otherwise, the 
dimension of the augmented state will be substantial, which is difficult to achieve in en-
gineering. This method does not discuss the performance of the sensing device in different 
usage scenarios. For example, when the carrier is maneuvering, the accuracy of the sens-
ing value will decrease with the increase in the nonlinearity of the system, which will 
directly affect the filtering accuracy. 

The proposed algorithm can effectively estimate the state of the ship under the con-
dition of time delay. By enlarging the states, we can update the past states with the obser-
vation quantity and time delay and estimate the current states with the updated state 
quantity and maintain a high estimation accuracy for the uncertain delay. 
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6. Conclusions 
In this paper, a delay-compensated state estimation approach for a remote control 

ship with uncertain delayed navigation measurement was presented. By augmenting the 
state in CKF and introducing the historical state into the state, the historical state can be 
updated through the observation with delay. The current state then can be predicted 
through the updated historical state. Modeling the uncertain delay means the algorithm 
does not need to explicitly know the delay at each moment to achieve the state estimation, 
and by using the average of the modeled delay as the input of the system, the challenge 
of calculating too many states is avoided and the computational complexity of the algo-
rithm is reduced. To demonstrate and verify this method, scenarios with varying trans-
mission time delays were simulated and it was shown that the proposed method reduced 
the observed errors compared to the original CKF, EKF, and AS-EKF.  

This study made some assumptions, such as the white noise assumption, the accurate 
delay distribution modeling, etc. To apply the proposed method in practical scenarios, 
further studies are needed. For instance, the performance of AS-CKF has been insuffi-
ciently explored, ship dynamics are unknown, and sensing device errors are unknown.  
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