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Abstract: Underwater robot perception is a critical task. Due to the complex underwater environment
and low quality of optical images, it is difficult to obtain accurate and stable target position informa-
tion using traditional methods, making it unable to meet practical use requirements. The relatively
low computing power of underwater robots prevents them from supporting real-time detection
with complex model algorithms for deep learning. To resolve the above problems, a lightweight
underwater target detection and recognition algorithm based on knowledge distillation optimization
is proposed based on the YOLOv5-lite model. Firstly, a dynamic sampling Transformer module is
proposed. After the feature matrix is sparsely sampled, the query matrix is dynamically shifted
to achieve the purpose of targeted attention modeling. Additionally, the shared kernel parameter
convolution is used to optimize the matrix encoding and simplify the forward-propagation memory
overhead. Then, a distillation method with decoupled localization and recognition is designed in the
model-training process. The ability to transfer the effective localization knowledge of the positive
sample boxes is enhanced, which ensures that the model maintains the same number of parameters to
improve the detection accuracy. Validated by real offshore underwater image data, the experimental
results show that our method provides an improvement of 6.6% and 5.0% over both baseline networks
with different complexity models under the statistical index of detection accuracy mAP, which also
suggests 58.8% better efficiency than models such as the standard YOLOv5. Through a comparison
with other mainstream single-stage networks, the effectiveness and sophistication of the proposed
algorithm are validated.

Keywords: underwater target detection; Transformer; YOLOv5; lightweight; knowledge distillation

1. Introduction

Underwater surveying is a crucial tasks in underwater salvaging, underwater rescue,
and autonomous robot navigation operations. Underwater intelligent robots contain a
large number of sensors, including sonar and optical cameras, to enable perception of the
surrounding environment [1,2]. In recent years, with the further development of advanced
vision-processing technology, low-cost optical cameras with integrated and efficient algo-
rithms have shown more potential than sonar in achieving higher localization accuracy in
high-resolution optical images, which have drawn extensive research interest [3,4].

Due to their powerful feature-extraction ability, existing deep-learning-based methods
for underwater image target detection use convolutional neural networks (CNNs) [5,6].
However, targets in underwater vision analysis tasks are influenced by the environment,
making it difficult to obtain accurate localization information [7–9]. Deep learning-based
methods learn high-dimensional features of images through large amounts of data, which
could alleviate the problem of the difficulty localizing underwater targets.

Existing detection methods can be divided into two-stage detection and single-stage
detection network frameworks. In the two-stage network, potential target areas are first
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extracted and then the localization boxes are fine-tuned with global information to im-
prove detection accuracy [10–12]. Single-stage detection algorithms use a backbone to
extract features and multi-scale fusion through feature pyramids [13–15]. The structural
paradigm of direct inference makes the model simple and efficient, and it is widely used
in most underwater intelligent robots. However, this type of algorithm lacks attention to
global environmental information, resulting in poor localization accuracy of underwater
targets. Current single-stage algorithms in atmospheric environments often add a spa-
tial attention structure to the multi-scale fusion structure to alleviate the lack of global
information [16,17]. In the literature [18], ROI fusion is performed on high-level feature
maps to deal with the problem of overlapping targets underwater. The authors of [19]
propose a channel-attention module combined with a sharpening preprocessing method to
improve underwater target detection accuracy. However, the hardware requirements of
the algorithm limit its applicability in underwater mobile robots, especially for real-time
purposes. The model with the above improvements is more complex, which is not suitable
for the deployment of underwater robotic devices.

To balance the performance and efficiency of the model, existing research has focused
on half-precision data, model pruning, and knowledge distillation methods for processing
large models while maintaining good accuracy and minimizing the resources required.
Geoffrey Hinton and other researchers introduced the knowledge-distillation (KD) method.
The current KD method in target detection is mainly divided into response-based dis-
tillation and deep-feature-layer-based distillation. Response-based distillation transfers
recognition knowledge using a logit simulation probability distribution to approximate the
teacher model manifold [20]. However, this method only transfers classification knowledge
and lacks feature learning under spatial constraints, which could lead to low knowledge-
transfer efficiency, making it difficult to effectively improve detection accuracy. Knowledge
distillation based on deep features is biased to enforce the consistency of the deep fea-
tures [21,22], but it is difficult to separate which knowledge is beneficial for detection and
which is beneficial for recognition. Knowledge distillation in underwater target detec-
tion has only been studied in a small number of related aspects, focusing mainly on the
consistent enhancement of the deep feature layer [23]. The above algorithm reduces the
cost of constructing global information features by downsampling when training small
student models, resulting in a global feature-point-fusion structure for student models
that lack effective feature sampling. Additionally, the use of feature-space-consistency
distillation methods introduces redundant information or even information that should be
suppressed [24], making it difficult to guarantee the detection accuracy of the algorithm.

To solve the above problems, this paper presents a dynamic sampling Transformer
module applied to deep feature fusion based on YOLOv5-lite, which is used to compensate
the global attention capability of the network. To achieve a lightweight design of the
model, the module downsamples all three mapping matrices, Q, K, and V, to reduce the
memory consumption of forward feature propagation. The extraction of key information is
enhanced by dynamic sampling of the query matrix, which balances the detection accuracy
and detection efficiency of the algorithm. In addition, a grid-localization distillation
strategy with decoupled localization and recognition knowledge is proposed in the model
KD process. Unlike the conventional KD process, the algorithm in this paper filters the
localization information along the grids, which is more in line with the training process of
YOLO, simplifies the training cost of the algorithm, and ultimately improves the detection
accuracy of the algorithm. The whole process is shown in Figure 1.

The contributions of this paper are mainly summarized as follows.

(1) A lightweight Transformer module with dynamic sampling is proposed, revealing
the importance of the Transformer sparse sampling dynamic transformation in an
underwater environment.

(2) A knowledge-distillation framework for decoupling localization and recognition
information applicable to YOLO is integrated, and the effectiveness of this detection
algorithm is analyzed.
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(3) The training cost of decoupled distillation of localization and recognition information
is investigated by experimental comparison, and the effectiveness of this paper’s
algorithm is verified by comparison with other mainstream detection algorithms.
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Figure 1. The overall architecture of our lightweight underwater target detection.

The rest of this paper is organized as follows. In Section 1, the technical lineage
is sorted out, and the problems to be solved are introduced. Related work on target
detection and knowledge distillation is presented in Section 2. The model improvement
and knowledge distillation methods are introduced in Section 3. This is followed by a
comprehensive discussion in Section 4. The conclusion is drawn in Section 5.

2. Related Work
2.1. Target Detection Models

To accommodate real-time operations, single-stage target detectors are gradually being
adopted in underwater application deployments, where Anchor-free networks eliminate
the computation of post-processing, bringing good detection performance [15]. The lit-
erature [25,26] applies a lightweight backbone to improve the Anchor-free CenterNet to
further enhance the inference speed. Information exchange is enhanced through multi-
scale feature fusion, and Vision Transform (ViT) is applied to fully focus and mine the
information on holothurian ecological scenarios of different scales and spaces. However,
the performance of the Anchor-free detector gradually degrades when the underwater
environment tends to be complex, and the targets overlap more. The Anchor-based detector
achieves stability by adapting to different morphological targets with pre-set prior box
parameters. Reference [27] applied an attention mechanism to detect underwater targets
on the basis of Anchor-free SSD. The authors of [28] applied GAN networks to enhance
the data distribution before detection. However, the above methods are more complex and
cannot simplify the model to improve detection. In the most recent method, the authors
of [29] introduced an efficient framework that combines the classic effective design of
backbone and FPN. The authors of [30–32] detected underwater targets using a single-stage
detection algorithm through well-fused features.
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2.2. YOLO-Lite Detection Algorithms

YOLO, a one-stage Anchor-based network model widely used in industry, has been
tested in most application scenarios. YOLO-lite uses the computationally intensive convo-
lutional shuffle module to reduce model parameters, reduce memory throughput overhead,
and improve network inference efficiency. In its feature-fusion structure (neck), the multi-
scale feature maps are fused by bipartite paths, and each image region is processed sepa-
rately using the convolutional unit, which lacks the potential relationships between feature
regions. The authors of [33] combined FPN-attention on the basis of YOLOv4-tiny to en-
hance the tight connection between extracted features. However, the number of parameters
for building feature attention matrices is constantly complicated by structural improve-
ments, and their accuracy and efficiency are difficult to balance. Subsequent researchers
have gradually combined detection algorithms with knowledge distillation strategies.

2.3. Knowledge Distillation Strategy

Knowledge distillation is implemented through the knowledge migration from the
teacher model to the student model. The algorithm flow is shown in Figure 2 by attaching
the feature relationships already learned by the teacher network to the student network
during training. In this way, the detection accuracy of the student model is improved, and
the student model can be widely used in the compression model.
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Knowledge distillation is trained by the teacher network by guiding the student
network, and the output categorical information is transformed into soft logits, which
converge the knowledge distribution of the student network to that of the teacher network
through a KL scatter. Common knowledge distillation methods are inefficient due to
primitive logit mimicking techniques, as they transfer only categorical knowledge and
ignore the significance under spatial information constraints. Reference [34] uses L2 Loss
to directly transfer the knowledge of the feature map containing localization and category
information by approximating the elements of the high-level feature map, which would
introduce negative knowledge in the teacher’s network, influencing the detection accuracy
of the student’s network. The recent methods are shown in Table 1, including that of [35,36],
which designs intermediate conversion modules for feature layer distillation. Reference [37]
uses semantic information on channel-dimension distillation, and they both use feature-
based distillation methods.

Table 1. A summary of feature-based distillation methods.

Methods Knowledge Types Knowledge Sources

DeFeat [34] FPN Features Hint layer
RDM [35] Prototype Generation Module Features TS-Space
PGD [36] Key Predictive Regions Hint layer
CWD [37] Channel Distribution Hint layer
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In the YOLO detector (head), each branch detector outputs localization and identifica-
tion information within a grid region, simplifying the detection process. However, it also
consequently restricts mutual information to a single branch path, limiting the algorithm’s
performance. Multiple branching paths have been shown to reduce detection efficiency [38].
In contrast, KD can deliver both localization knowledge and recognition knowledge of the
teacher network in the detector, bringing performance gains to the detection algorithm.
However, none of the existing KD algorithms consider the detection process of assigning a
positive sample Anchor in the YOLO network to deliver the localization knowledge and
recognition knowledge uniformly, which could cause an increase the risk of overfitting
during the training process of YOLO, leading to a decrease in detection accuracy due to the
inability to accurately locate the target.

3. Proposed Method

YOLOv5-lite uses the depth parameter to control the number of model parameters in
different interval ranges. In this paper, we mainly introduce dynamic sampling Transformer
on YOLOv5s-lite to enhance the network’s ability to establish global information association
in underwater target detection. In addition, localization knowledge distillation is used to
alleviate the lite model to manage the problem of blurred underwater target coordinate
boundaries in complex environments, as well as to improve the generalization capability of
the model.

3.1. Dynamic Sampling Transformer

In order to effectively aggregate the features of image regions, this paper constructs a
Reasoning Layer at the top layer of the feature fusion layer [16]. Additionally, a Transformer
structure is proposed to build a random residual structure together with convolutional
branching, which is beneficial for compensating the performance limitation of local atten-
tion. The structure of the proposed algorithm in this paper is shown in Figure 3.

The reasoning layer is built on top of YOLO’s neck structure and is used to build
the information association of the fused features. To achieve this operation, the pixels
are encoded, and then the similar information in the neighborhood is extracted by using
the channel-separable convolution through the local information aggregation module
(Local Aggregation) and aggregated by using the pooling operation. In order to obtain an
inter-domain multi-scale view, a larger perceptual field in the neighborhood is obtained
by designing the 3 × 3 grouped convolution of separable convolution as an expanded
convolution with shared kernel parameters without increasing the number of parameters.
It can be expressed as follows.

FAggregation = WConv(∑
r∈R

SiLU(DConvr(Fin, Wk=3
A , g = d))) (1)

where Fin is the encoded feature map, SiLU(·) is the activation function, DConvr(·) is
the expansion convolution operation with r as the expansion rate, Wk=3

A ∈ Rk2×d×d/g

is the kernel weight, and g is the number of grouped convolution sets. The multi-scale
spatial perception of the neighborhood can be obtained by setting different expansion
rates to improve the local aggregation ability. The multi-scale spatial perception of the
neighborhood can be obtained by setting different expansion rates to improve the local
aggregation ability. Finally, the dimensional mapping is performed using WConv(·) point-
wise convolution to obtain the representative feature point information, which is used
as the input of the subsequent multi-headed self-attention. The formula of multi-headed
self-attention is shown below.

Z(m) = SA(Q, K, V) = So f tmax(
QKT
√

dk
)V, m = 1, · · · · · · , N (2)

Q = xWq, K = xWk, V = xWv (3)
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Z = Concat(Z(1), · · · · · · , Z(N))Wo (4)

where Q and K are used as the query matrix and the key matrix obtained by linear projection
of the aggregated features X ∈ Rn×dm , which is used to model the feature relationships,
where n = w× h, dm is the feature dimension. The computational complexity of performing
encoding and the matrix dot product similarity calculations is O(2dmn2 + 4d2

mn), which is
proportional to the space and dimension squared and occupies a large amount of forward-
propagation memory space. The current compression approach is to downsample the
eigenspace of the key matrix K and the value matrix V. A large number of parameters for
obtaining global information are still retained when encoding the query matrix Q. While
encoding each element is non-essential [39], sparse sampling with r as the compression rate
can balance performance and efficiency. Therefore, the text downsamples the matrix when
computing the self-attention, compresses the feature matrix representative information
to make the representative feature points sparser, and upsamples the spatial information
to reconstruct after the attention computation is completed. Finally, the output of each
attention head is channel-concatenated, and the final result is obtained by linear projection
of the output mapping matrix.
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= =
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where inF  is the encoded feature map, ( )SiLU ⋅  is the activation function, ( )rDConv ⋅  is 

the expansion convolution operation with r as the expansion rate, 
23 /k k d d g

AW
= × ×∈  is the 

kernel weight, and g is the number of grouped convolution sets. The multi-scale spatial 
perception of the neighborhood can be obtained by setting different expansion rates to 
improve the local aggregation ability. The multi-scale spatial perception of the neighbor-
hood can be obtained by setting different expansion rates to improve the local aggregation 
ability. Finally, the dimensional mapping is performed using ( )WConv ⋅ point-wise convo-
lution to obtain the representative feature point information, which is used as the input of 
the subsequent multi-headed self-attention. The formula of multi-headed self-attention is 
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( ) ( , , ) max( ) , 1, ,
T

m

k

QKZ SA Q K V Soft V m N
d

= = = ……

 
  (2)

Figure 3. The YOLO model’s Reasoning Layer improvement structure diagram.

To reduce the number of parameters for forward propagation, uniformly sparse
sampling of representative feature information is performed as the K and V matrices of
multi-headed attention. The key matrix K modeled for the global feature map for attention
is ensured, and the computational complexity of this part is O(r2ndm). However, uniform
sampling cannot dynamically obtain information richer in target features, so a position-
offset module is designed by sampling points of the query matrix Q. The sampled point
offsets are extracted using grouped convolution, and the process of position decoding in
the literature [40] is referenced. By adding the offset with the reference sampling points and
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then bilinear interpolation, the position-sampling points of the query Q with representative
information are finally obtained, and the offset structure is shown in Figure 4.
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As depicted in Figure 4, the sampling position offset module consists of the right
region. By dynamically sampling the feature map of aggregated representative information,
the valuable query point elements can be extracted in a targeted manner. The neighbor-
hood centroid is used as the reference point and the offset θo f f set(·) is obtained using the

lightweight network branch ∆p = θo f f set(p), ∆p ∈ R H
r ×

W
r ×2. Therefore, the dynamic

sampling of sparse feature points can be expressed as follows.

Θ(X; (px, py)) = ∑
(rx ,ry)

S(px, rx)S(py, ry)X[ry, rx, :] (5)

x̂d = Θ(X; p + ∆p) (6)

where Θ(·; ·) is used to implement bilinear binary interpolation to calculate the coordi-
nate element values of dynamically sampled points. px, py denote arbitrary (fractional)
position coordinates. X[ry, rx, :] is the feature value of sparse sampling by index point and
S(a, b) = max(0, 1−|a− b|) . x̂d is the feature point for dynamic sampling. It is worth not-
ing that this paper uses the spatial attention module to encode the location of the features
before sampling dynamically, which can highlight representative aggregated information,
so the calculation of multi-headed attention is shown below.

Q̂ = x̂dWq, K̂ = x̂Wk, V̂ = x̂Wv (7)

Z(n) = So f tmax(
Q̂(n)K̂(n)T
√

d
)V̂(n) (8)

where x̂ is a uniformly sparsely sampled feature point for obtaining the global view. Z(n)

is the output of the n-dimensional self-attentive module. Finally, the feature maps are
upsampled in the local location propagation module, and the attention feature maps are
reconstructed in r-expansion multiples using transposed convolution. Propagating the
attention relation of the sampled points in the neighborhood makes the module establish
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the local connection of the feature map at a lower cost and improves the network detection
performance.

3.2. Positioning Distillation

Lightweight networks cannot adapt to the complex underwater environment and
require more data for training. This paper suggests a distillation method that separates
localization information from recognition information to transfer the more effective positive
sample-localization knowledge. Unlike the consistent propagation of deep feature maps,
the localization and recognition knowledge are transmitted separately. The recognition
knowledge is applied to KL scatter-learning teacher network probability distribution, which
can be represented as follows.

f comb
cls (cgt

i , p̂i, pT
i , ôT

i ) = f CE
cls (pgt

i , p̂i) + λ1 · ôT
i · f distill

cls (pT
i , p̂i) (9)

f CE
cls (pgt

i , p̂i) = −
1
N ∑

i

M

∑
c=1

pgt
i log( p̂i) (10)

f distill
cls (pT

i , p̂i) = ∑
i

Te( p̂i) log
Te(pT

i )

Te( p̂i)
(11)

where cgt
i , p̂i, pT

i , ôT
i denote the true category label, student network prediction category,

teacher network prediction category, and teacher network prediction target confidence,
respectively. Te(x) = exi/T

∑N
k exk/T denotes the conversion of the prediction output to soft

logit by distillation temperature T. Usually, the category distillation loss allows the model
to be fitted to the teacher model through the KL scatter, and the cross-entropy loss (CE
Loss) is utilized as the loss function for the multi-category task. Due to the difficulty of
underwater image data acquisition, the sparsity of some target categories or the presence
of labeling noise leads to the susceptibility of difficult categories. It is difficult for the CE
Loss used in YOLOv5-lite to fit such data distribution. Therefore, this paper introduces
a difficult-sample balancing factor to improve the detection of difficult samples [14]. The
computational formula and its Taylor expansion can be expressed as follows.

f FL
cls = −(1− p̂i)

γ log( p̂i) =
∞

∑
j=1

1
j
(1− p̂i)

j+γ (12)

In this case, γ is used to balance the imbalance problem of difficult and easy samples.
This term reduces the tendency of CE Loss to bias most categories, but it is difficult
for this modulation parameter to target and adjust to different data. The derivation of
the above equation shows that the gradient in backpropagation is concentrated in the
leading polynomial [41] and provides a constant gradient that makes the loss emphasize
most classes. Therefore, perturbing the important leading polynomial coefficients can
improve the robustness of the system, while adjusting the first polynomial maximizes the
enhancement effect. This can be expressed as follows.

f Poly
cls = −(1− p̂i)

γ log( p̂i) + ε(1− p̂i)
γ+1 (13)

where ε is the modulation factor of an important polynomial, and when ε > 0, it can
improve the accuracy of unbalanced data. Therefore, the polynomial modulation factor is
added to Focal Loss to replace the original CE Loss, so that the network optimization can
be adaptive to the imbalance of the underwater target class.

The localization task, as an important part of the detection algorithm, should be dis-
tinguished from the classification knowledge distillation, so this paper provides targeted
optimization of the location prediction loss. The localization knowledge is used to deter-
mine the target information within the enclosed Anchor position, and the target confidence
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is introduced in the distillation information. In addition, YOLO divides the network feature
map into grids for target identification, and the target center grid contains the most accurate
position information. The preset Anchor box in the adjacent grid also covers a certain range
of target areas, which can also contribute knowledge to the target location determination.
Therefore, the value-region screening is performed in the neighboring grids to provide
more localization knowledge of the target positive sample Anchor regression, and the
localization knowledge algorithm flow proposed in this paper is shown in Figure 5.
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The teacher model is first given to provide valid knowledge of the adjustment pa-
rameters of the N bounding boxes predicted at each element position in the last layer of
the network, which includes the target confidence and category information. Thus, its
output dimension is N × (C + 5), where C denotes the category index. Thereafter, the
localization output is separated, and the valid Anchor location index I in the surrounding
grid is determined by comparing it with the real label in the neighboring grid, and I × N
valid location information knowledge is passed to the student network as a positive sam-
ple. Finally, since the candidate boxes in the center grid have higher confidence than the
candidate boxes in the domain, the distance scaling factor between the grids is weighted
on the confidence to maintain this predictive value. The target confidence is also passed as
the target information weight of the enclosing box together with the location information.
The coordinate regression loss can be expressed as follows:

f comb
bbox (bgt

i , b̂i, bT
i , ôT

i ) = f MSE
bbox (bgt

i , b̂i) + λ2 · ôT
i · f distill

bbox (δ(bT
i ), b̂i) (14)

where bgt
i , b̂i, bT

i is the labeling label of the target enclosing boxes, the Anchor adjustment
parameter output by the student network, and the Anchor adjustment parameter output
by the teacher network, respectively. δ(·) is the effective grid filter, and the grid-filtering
algorithm can be expressed as Algorithm 1.
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Algorithm 1 The grid-filtering algorithm

Input: A set of anchor boxes Ba
f =

{
Bα

if

}
and a set of ground truth boxes BGT =

{
Ba

f
}

. Positive
threshold βpos of label assignment. Hf and Wf is the size of f-th Feature layer output. J is the
number of ground truth boxes.
Output: Af =

{
aif j
}

, aif j ∈ [0, J× n×m] encodes final position index of the grids, where n is the
number of pre-set anchor boxes and m represents the m fields of the center grid.

1: Compute max
(

anchorW
WGT

, WGT
anchorW

)
and max

(
anchorH

HGT
, HGT

anchorH

)
2: Gvl = γdistanceGcenter

3: Filter the positioning grid with indices of Gvl

4: return indicesgrid

Firstly, the Anchor candidate boxes that conform to the real annotation boxes are
obtained by thresholding the aspect ratio between the Anchor boxes and the real annotation
boxes at J kinds of resolutions. Additionally, the valuable grid boxes in the m-neighborhood
outside the centroid are obtained by the proportional size. Then, the distance weighting
is performed within the neighborhood grid. Knowledge transfer to the student network
is performed within the centroid grid and the valuable neighborhood range grid. The
effective grid filtering is performed to reduce redundant localization information or even
harmful localization information. Thus, the final loss function can be expressed as follows.

Lall = f Poly
cls (pgt

i , p̂i) + λ1 · ôT
i · f distill

cls (pT
i , p̂i) + f comb

bbox (bgt
i , b̂i, bT

i , ôT
i ) + f BCE

obj (ogt
i , ôi) + λ3 · ôT

i · f distill
obj (oT

i , ôi) (15)

where λ1, λ2, λ3 are the loss balance factors to balance the weight of knowledge distillation
for different prediction tasks; f BCE

obj (·) is the binary cross-entropy loss function of target

confidence; and f distill
obj (·) is the target confidence distillation loss function, which can be

regarded as a regression task, so the regression is performed with mean squared loss. By
decoupling localization knowledge and identification knowledge, targeted localization
knowledge distillation is performed according to YOLO’s Anchor matching strategy. The
forward polynomial gradient weights of the classification loss function are boosted so that
the algorithm detection and recognition capabilities are improved.

4. Experimental Verification and Analysis
4.1. Experimental Dataset

The proposed algorithm is investigated in optical vision-target detection of underwater
operational equipment. To improve the detection accuracy of the algorithm while ensuring
the light weight of the model, we therefore use 2900 real offshore underwater image datasets
from the underwater robot professional contest (URPC) (https://www.curpc.com.cn/
(accessed on 1 September 2020) to divide the training set, validation set, and test set by 7:2:1
for training, which includes different environments such as reefs, mud and sand, gullies,
water plants, etc. The data are images taken in shallow waters of the Bohai Sea without
artificial light. The target scale is widely distributed, which can provide generalized
validation for the algorithm application. This dataset is a dynamic image taken by an
underwater operational robot during underwater seafood recovery in Bohai Bay, which
was used in an underwater operational robot target-detection competition.

4.2. Implementation Details

In this paper, the training environment was the Ubuntu system, and the graphics card
RTX2080-11G was used as the training device to transfer the COCO pre-trained network
model, the batch size was set to 16, the image size was 416× 416, and 500 rounds of training
were iterated. For more effective training, a cosine learning rate optimization strategy was
used to set the label smoothing parameter 0.005, and λ1 = λ2 = λ3 = 0.95. To reduce the
memory consumption of forward propagation, the compression rates of the feature layers
of the three detector inputs were set to be 8, 4, and 2. The number of class instances, real

https://www.curpc.com.cn/
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frame visualization, real frame label centroids, and aspect ratio scatter plots of the dataset
are shown in Figure 6.
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Figure 6a shows the instance labeling statistics, which represents the statistics of the
number of different categories of instances in the dataset. Figure 6b shows the visualization
of the unified centroids of the positioned labeling boxes. Figure 6c shows the normal-
ized location distribution of the centroids of the labeled boxes, and Figure 6d shows the
normalized distribution of the length and width of the labeled boxes. It can be seen that
the experimental dataset suffers from unbalanced instance categories, with the minimum
category is nearly 1/10 of the maximum category. Additionally, the centroids are primarily
based on the uniform distribution of image centers with unbalanced aspect ratios and
various scales of annotation boxes.

4.3. Dynamic Sampling Branch Analysis

To better illustrate the internal variation of the dynamically sampled Transformer,
the Fourier transform of the internal features of the multi-headed attention module was
analyzed, as shown in Figure 7.
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The self-attention was calculated after feature aggregation and dynamic sampling
with the three-level feature layer of YOLO, as shown in row (a). ∆ Log amplitude of high-
frequency signals is the difference between the log amplitude at the normalized frequency
0.0π (the center) and at 1.0π (the boundary). For better visualization, we only provide the
half-diagonal components of two-dimensional Fourier-transformed feature maps. The left
subplot of Figure 7a shows the Fourier transform results after sparse downsampling of
the self-attention module. There are six frequency–response curves in the middle graph,
which are visualized after local enlargement. It is evident that the curves are sparser after
the sampled feature transform. The Fourier transform results are visualized as shown on
the right of Figure 7a after the reconstruction of the feature map information from the
attentional up-sampling. It can be observed that there is a richer frequency response in
the middle- and high-frequency parts, while the logarithmic amplitude intensity is more
concentrated. The result is consistent with the literature [42], in which it was verified
that the multi-headed self-attentive biased low-pass filter behaves differently. Dynamic
sampling is followed by upsampling, which compensates for the response of the high-
frequency features. Comparing the global sparse sampling shown in row (b), where the left
panel shows the Fourier variation results after global sparse sampling of the self-attention
module, it can be seen that in the middle panel after local scaling, there are more frequency
response curves than dynamic sparse sampling. Their different sampling methods lead to
differences in the amplitude range of the feature values after Fourier transform, while the
reconstructed transform graph on the right is consistent with row (a) in terms of frequency
change trend and feature performance. The proposed method restores information with
sparser sampling points and reduces the representation of redundant features, which could
allow more information representation to be obtained with the same number of samples.

In this paper, dynamic sampling is used in the multi-head attention head to obtain
representative feature points to sparse the query matrix to enhance the attention-modeling
effect. The visualized sampled points are shown in Figure 8.
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The left figure shows the visualization of the detection effect. The middle plot shows
the self-attention sampling-point results from the middle layer’s feature fusion module,
representing the offset sampling results for medium-scale targets. As in row 3 in the dense
target, the sampled points are shifted toward the target out, while uniform sampling is
maintained in the background. The right side of the figure shows the self-attentive sampling
results of the high-level feature fusion module, which represents the offset sampling results
of the large-scale targets. For example, rows 1 and 2 have more densely sampled points on
large targets.

The dynamic sampling points of underwater targets in different scenarios are sparser,
and the sampling locations are more representative. There are more sampled points in the
image target and representative background, which gives spatial semantics to the sampled
feature points after the feature-aggregation module and improves the attention-modeling effect.

4.4. Ablation Experiments

Downsampling the feature map could enable the multi-headed attention to establish a
sparsification matrix, which contributes to the performance improvement. Moreover, the
dynamic sampling of Q enables the selection of focused aggregation regions. Computation
with globally sampled K and V can enrich the communication between features. In this
paper, we conduct ablation experiments on the sampling method and distillation method
to verify the effectiveness of the dynamic sampling method.As shown in Table 2.

Table 2. Results of the ablation experiment with the reason-Transformer sampling method.

Method mAP Param (M) Inference Memory
(Batch = 4) GFLOPs

Original Network 72.5 1.57 2138 MB 4.0
Reason-Transformer 74.3 2.14 4622 MB 4.5

Uniform sparse
sampling 73.6 2.10 2510 MB 4.8

Dynamic sparse
sampling 74.1 2.10 2522 MB 4.9
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Building the Reason Layer with a standard Transformer in the original network could
compensate for the lack of global attention in YOLOv5-lite. Compared to the original net-
work, mAP has been improved by 1.8%, while the number of parameters grows by 589,984,
and such overhead could be enhanced by adding read-only memory in the underwater
device. However, the memory (RAM) consumed by its inference grows 2484 MB, and the
underwater device computational unit has difficulty adapting to this resource consumption.
The feature cache for forward inference is reduced by 45.69% by uniformly sparse sampling,
while the mAP is improved by 1.1%. Applying the dynamic sparse sampling Reason Layer
proposed in this paper can improve the mAP by 1.6% while maintaining the same number
of parameters, which is more suitable for target detection in an underwater environment.

To verify the effectiveness of distillation losses in this paper, ablation experiments
were conducted using different classification losses for the gridded localization distillation,
the feature-map-distillation method, and the direct-response distillation.

As shown in Table 3 above, the direct response distillation method enhances the
performance of the original network. However, the direct-response distillation method
does not improve well due to the lack of reasonable localization knowledge. Feature map
consistent distillation as the mainstream distillation strategy improves the student network
by 1.8%, but this method requires caching the feature layers of the teacher network at three
resolutions and regressing them with the corresponding features of the student network for
consistency, which takes up more training resources. YOLOv5-lite takes the feature map
centroid as the target-prediction Anchor point and undertakes the main localization task, so
the centroid location is distilled separately, and its results are improved by 1.3%. Distillation
was performed using Anchor boxes with grid-filter 8 neighborhoods and Anchor boxes
with grid-filter 4 neighborhoods determined with target confidence, respectively, and we
found that they obtained the same results. The mAP is also improved by 1.7% when the
grid filtering method described in our paper is used to extract the teacher network’s real
labeling feature points and perform neighborhood grid distillation. The aforementioned
comparison indicates that our method could use the surrounding valid prior boxes for
auxiliary regression, remove the interference of invalid candidate boxes, and increase
the knowledge of positive samples. Finally, the network achieves a performance similar
to that of the feature-map consistency method with a lower training cache. It is worth
mentioning that because the feature map consistency method makes the feature values
used to predict branches consistent, using both methods makes it difficult to achieve a large
performance improvement.

Table 3. Results of ablation experiments with different knowledge-distillation methods.

Center Point
Grid Filter 4

Neighbor-
hoods

Grid Filter 8
Neighbor-

hoods

Direct
Response

Distillation

Feature Map
Distillation mAP

- - - - - 72.5
X - - - - 73.8
- X - - - 74.2
- - X - - 74.2
- - - X - 73.5
- - - - X 74.3
- X - - X 74.3

For the problem of the difficulty obtaining an equilibrium class of underwater data
samples, the combination of different loss functions is applied to ablate the proposed
method in our paper, and the results are summarized as follows.

It can be observed from Table 4 that it is difficult to adapt the originally adopted
cross-entropy loss function to the unbalanced categories. By using the sample loss (focal)
with optimized difficulty, the AP of category 1 improves by 1.5%, and the AP of category 4
improves by 0.7%. After applying polynomial loss (poly) to the network, the AP of category
1 improves by 1.5%, the AP of category 4 improves by 0.6%, and the AP of other categories
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slightly decays. Applying the combination of the distillation strategies proposed in this
paper resulted in a 6.6% AP improvement in category 1 and a 1% AP improvement in
category 4, along with a slight AP improvement for the other categories.

Table 4. Comparison of experimental results of different recognition-loss functions.

Class-Loss
Class 1 Class 2 Class 3 Class 4

AP

CE 61.2 90.6 65.2 80.2
Focal 62.7 90.6 64.4 80.9
Ploy 63.5 88.7 64.2 80.8

Ploy-distill 67.8 90.9 66.9 81.2

To evaluate the training cost, a graph was plotted by recording the training versus
mAP values, and it was used to analyze the variation in different distillation strategies and
classification methods in training, as shown in Figure 9.
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The models’ performance metrics increased with the number of training iterations.
After approximately 90 rounds, the performance advantages and disadvantages of various
algorithmic strategies started to be gradually reflected. It can be observed that the proposed
method could obtain optimal results after the final convergence by applying the grid
localization distillation method to provide positive samples with different perspectives for
localization knowledge to help the Anchor box with regression. The CE Loss and Focal
Loss improve the performance to a limited extent. Due to the complexity of the underwater
environment, there is a tendency for the mAP to decrease in the late training period. The
method in this paper improves the performance relatively slowly in the early stage, during
which a large amount of uncertain knowledge is accumulated, but the positive sample
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regression gradually becomes accurate in the middle of training and rapidly improves the
performance.

To verify the overall performance of our proposed algorithm, for the experiments, we
selected the current mainstream deep-learning-based target-detection neural network as a
reference, compared the mAP values detected by the algorithm through the same hardware
platform, and tested them with the same data set. The experimental results are shown
in Table 5.

Table 5. Mainstream algorithm comparison experimental results.

Method Time Spent in Detection (ms) Size mAP Parameters (M)

Faster RCNN (Vgg) 35.7 300 × 300 67.4 134.7
Faster RCNN (Resnet) - 512 × 512 73.2 -

SA-FPN - 1280 × 768 75.3 -
R-FCN 25.2 1000 × 600 75.2 31.9

MobileNet-SSD - 300 × 300 61.2 5.50
SSD 21.2 300 × 300 64.5 24.2

RetinaNet - 600 × 600 68.9 53.3
CenterNet 21.8 512 × 512 73.57 32.69
YOLOv4 22.8 416 × 416 78.0 61.38
YOLOv7 21.4 416 × 416 79.1 36.9

YOLOv7-tiny 21.2 416 × 416 77.9 6.2
YOLOv5s 20.7 416 × 416 76.7 6.74
YOLOv5l 21.7 416 × 416 77.2 44.40

YOLOv5s-lite 20.5 416 × 416 70.1 1.57
YOLOv5s-lite (ours) 20.7 416 × 416 76.7 2.10

YOLOv5g-lite 20.6 416 × 416 73.8 5.32
YOLOv5g-lite (ours) 21.0 416 × 416 78.8 5.68

The proposed algorithm showed relatively high accuracy in single-stage algorithms,
with 12.2% and 15.5% improvement compared to SSD and its lightweight improvements.
The detection accuracy was improved by 3.14% compared to the Anchor-free detection
network CenterNet and 3.5% compared to the two-stage network Faster RCNN. Among
the related improvements to the YOLO series, the algorithm in this paper can improve in
detection speed over YOLOv4 by 75% and a detection speed 58.8% faster than YOLOv5-l.
It also has an advantage over the tiny model of the YOLOv7 algorithm [37] in terms of
accuracy and number of parameters. It improves accuracy over the lite type large volume
network YOLOv5g-lite by 5%, achieves the same accuracy as the standard YOLOv5s with
the lite-type minimal model, and improves over the baseline network mAP by 6.6%.

5. Discussion

The perception of underwater robots guides the subsequent actions, and their percep-
tion models require light weight and high localization accuracy. The single-stage detection
algorithm ignores the importance of global information when constructing feature fusion
modules. The ViT (Vision Transform, ViT) detection algorithm has received more attention
for its ability to construct global information associations, but it is unsuitable for underwa-
ter device deployment due to its large number of parameters. In this paper, we propose a
novel detection model with YOLOv5-lite combined with a Transformer and verify the effec-
tiveness of strengthening the global information at the deeper level of the model through
experiments and feature analysis. The proposed algorithm maintains the lightweight
model and improves the detection accuracy, and the effective mechanism is considered in
this paper to achieve dynamic sampling of the attention matrix in multi-headed attention.
Adaptive feature encoding of important local blocks in deep features could be performed,
which reduces the cost of matrix construction while acquiring important local features. The
connection between deep features can be effectively fused in Neck, eventually improv-
ing the detection accuracy. In addition, this paper proposes a distillation method with
decoupled localization and recognition. The algorithm could effectively handle regression
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and recognition information by filtering in the grid. The output response of the student
model was trained by distillation using the uncertainty of the confidence prediction. In
this paper, we discovered that the knowledge information passed separately improves
the detection ability of YOLO’s prediction head, while the use of uncertainty allowed the
accumulation of effective knowledge early in the training, ensuring the model eventually
improves performance without increasing complexity.

6. Conclusions

Current application scenarios of deep learning are limited by the devices’ computing
power. The perceptual processing units of underwater robots cannot provide complex
model-computing capabilities. Improving the models’ detection accuracy while keeping the
low complexity of the algorithms is a challenging problem. The key to underwater optical
image detection is to equip the model with the ability to adapt to complex underwater
environments. In this paper, we study the lite-type algorithm in YOLOv5. A dynamic
sampling Transformer module is proposed deep in the model, which optimizes the coding
process and saves forward propagation memory overhead. The sparsification of the feature
matrix improves the perception of the features at the region of interest at the same time,
which makes the model more easily detect targets in complex environments. Thereafter,
this paper proposes a distillation strategy for decoupling localization and recognition
knowledge in the multi-scale feature map using feature-map grids. It give the model more
positive sample target position information for model training in underwater environments
and improves the algorithm’s target-localization accuracy. Meanwhile, the gradient’s
higher-order term is introduced in the loss function to improve the accuracy of the model
in unbalanced detection of underwater data categories. Finally, the proposed algorithm
maintains a low number of parameters to improve the detection efficiency and detection
accuracy in the underwater environment.

In future work, more data-expanded training strategies and post-processing methods
will be investigated. The stability of the model under different noisy data should be
examined as a way to compensate the problem of difficult access to underwater data.
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