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Abstract: The Azov Sea estuaries play an important role in the reproduction of semi-anadromous
fish species. Spawning efficiency is closely connected with overgrowing of those species spawning
grounds; thus, the objective of the water vegetation research has vital fisheries importance. Thus, the
main goal of the research was to develop a machine learning algorithm for the detection of water
overgrowth with Phragmites australis based on Sentinel-2 data. The research was conducted based
on field botanical and vegetation investigations in 2020–2021 in Soleniy and Chumyanniy firths.
Collected field and remote sensing data were processed with the semi-automatic classification plugin
for QGIS. For the classification of Azov Sea estuaries, a random forest algorithm was used. The
obtained results showed that in 2020 the areas occupied by reeds reached 0.37 km2, while in 2021,
they increased to 0.51 km2. There was a high level of Phragmites australis growth in the Soleniy and
Chumyanniy firths. The rapid growth of Phragmites australis in the period of 2020–2021, where
the area covered by the reed doubled, is primarily attributed to eutrophication. This is due to the
nutrient enrichment from agricultural lands located in the northern part of the research area near
Novonekrasovskiy village. Additionally, changes in water flows and hydrological conditions can also
contribute to the favorable growth of the reed. This can result in a high growth rate of Phragmites
australis, which can reach up to 2 m per year and can propagate both through vegetative and sexual
means, leading to the formation of large and dense clusters.

Keywords: Azov Sea estuaries; brackish water environment; GIS; overgrowth; remote sensing; vegetation

1. Introduction

Most biological productivity indicators of the water bodies depend directly on the
conditions and quality of the hydrobionts’ habitat areas. Thus, for sustainability and a
high quantity of water organisms support, it is important to preserve their environment.
Regarding this, littoral biotopes play a crucial role in protecting spawning grounds from
wind and water waves. Littoral zones are natural spawning spots for several commercial
fish species—zander, bream, pike, perch, and roach [1].

The term «overgrowing» usually means the process of appearance and development
of vegetation in aquatic areas of water bodies and streams. Moderate overgrowth (to 20%
of the water area) has a positive impact on coastal fauna. However, significant speed
(under 20% of the water area) leads to the accumulation of dead vegetation masses and a
decrease in the dissolved oxygen level, both of which have a negative impact on aquatic
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animals. The process of overgrowth is usually caused by submerged vegetation (mainly
Potamogeton) and air-water vegetation (mainly Phragmites). Among the latter group, the
most widespread species is Phragmites australis (Cav.) Trin. ex Steud, whose communities
can crowd out the other species [1,2].

The main indicators of reed conditions are structural characteristics—length, diameter,
thicket density, and biomass. These characteristics greatly depend on climatic conditions
and habitat features. The speed and peculiarities of water bodies overgrowing with macro-
phytes are mainly dependent on its shore configuration, types of sediments, absence, and
the speed of the currents, waves, and chemical composition of the water. Water bodies
overgrowing with macrophytes usually leads to physical, biological, and chemical changes
in the water environment and sediments.

The Azov Sea estuaries are shallow water bodies with an average depth of 0.5 to 1 m,
located on the eastern coast of the Sea of Azov; most of them have a connection between
themselves and the Sea of Azov through a system of channels. In the modern period, there
are 770 estuaries with a total area of about 77,700 hectares (from 0.9 to 6.7 thousand hectares).
The Azov Sea estuaries can be characterized as a rapidly changing ecosystem, which mainly
depends on the hydrological regime (the amount of fresh water and connection with the Sea
of Azov) [3]. Other variables (depth, macrophyte overgrowth, hydrochemical regime, fish
parasites, food resources, etc.) depend on the quantity and quality of fresh and seawater
inflow. In this ecosystem, inter-annual and intra-annual fluctuations can be observed [4].
Estuaries are spawning water bodies for semi-anadromous and non-anadromous fish
species. They reproduce 80% of zander and all rams, which form the main commercial
stocks of the Sea of Azov. In the modern period, about 7.45 billion juvenile rams and pike
perch migrate into the Sea of Azov from these estuaries; most of the juveniles (more than
75%) roll down from the estuaries of spawning and farms, in which the conditions for
spawning and feeding of early juveniles are regulated [5]. Aquatic vegetation has a great
influence on the reproduction of semi-anadromous fish [6].

The first detailed research on the overgrowth of the Azov Sea estuaries with aquatic
vegetation was conducted by A. Shekhov [7,8]. According to his research, the area of the
Azov Sea estuaries in the 1970s equaled about 90,000 ha, and the flood zone that borders
those estuaries occupied 86,000 ha. The most common «groups» of vegetation spread in
this area were as follows:

• Phragmites australis—86,000 ha;
• Potamogeton—58,000 ha;
• Charophyta—5000 ha;
• Myriophyllum spicatum—4400 ha;
• Scirpus litoralis—3500 ha.

Based on the research of E. Tsunikova [2], the area of heliophytes overgrowth (mostly
by Phragmites australis) is regularly increasing, which leads to a decrease in the open area of
the estuaries; in 1930–1988, it decreased almost by 25,000 ha.

One of the important conditions for efficient fish breeding is a water body state,
which is related to the quality and quantity of the macrophytes there. For example, for
Stizostedion lucioperca (Linnaeus, 1758), the total productivity of the phytomass should
not be higher than 10–15 t/ha, while for Rutilus heckeli (Nordmann, 1840), it is 30 t/ha.
Overgrowing with aquatic vegetation reduces the productivity and stability of the spawning
water bodies and leads to a decrease in accessible breeding areas for commercial fishes [2].
Present conditions of overgrowth with aquatic vegetation in the Azov Sea estuaries are
characterized by an open field, mainly due to hard accessibility, low water levels, siltation,
etc. Thus, one of the solutions can become the usage of remote sensing data [9].
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Remote sensing helps to evaluate an area of overgrowth by aquatic vegetation with
high accuracy [10]. In this case, it is important to determine which area is occupied by helio-
phytes and which one is occupied by hydrophytes. In estuaries, the degree of overgrowth
with helophytes is more than 10%, while the degree of overgrowth with hydrophytes is
30%; in order to remove excess vegetation, it is recommended to introduce a biological
ameliorator of grass carp and mow vegetation, followed by removal of hay mowing from
water bodies. The area overgrown with these vegetation types is an essential issue in case
of recommendations development for the biological and mechanical reclamation of the
Azov Sea estuaries.

The first experiments with remote sensing aiming at studying overgrowth by aquatic
vegetation in the Azov Sea estuaries were held by Antonenko [11]. Using a series of
Landsat data, with a spatial resolution of 30 m and Normalized Difference vegetation
index (NDVI), the authors concluded that the area of most water bodies had decreased.
In certain estuaries, the area overgrown by macrophytes varied from 2 to 100% (seasonal
and inter-annual). However, the usage of NDVI did not allow the authors to separate
helophytes and hydrophytes. Submerged hydrophytes are difficult to decipher on Landsat
data, while heliophytes can be easily recognized even on low-resolution remote sensing
data using different combinations of bands [12,13].

The problem of wetlands overgrowth is widespread throughout the world, and many
research works address it in an attempt to find an optimal way to detect vegetation that
causes overgrowing and leads to a decrease in the economic exploitation of water bodies.

One of the popular ways to detect overgrowing vegetation is using a Normalized
Difference vegetation index (NDVI). In [14], it was applied to assess the current state and
dynamics of the lakes overgrowing in the «Narochansky» National Park (Belarus). For
vegetation detection, different remote sensing data were used—Aster (Terra), Landsat-7
(ETM+), IRS(1C/1D), and WorldView-2, which were processed by means of Erdas Imagine,
ENVI, eCognition, and ArcGIS software. As a result, they could detect several features
of overgrowth:

1. Shallow parts of the water bodies that are free from vegetation usually formed near
the shoreline and deciphered in summer with maximum reflectance values about
≤450, 590–630 µm and 600–630 µm;

2. Underwater vegetation was detected in summer using remote sensing data with
maximum reflectance in the near-infrared (NIR) band and near 710 µm.

Another great case in reed detection was presented in [15] for the north of the Bohai Sea.
Analysis of the reed overgrowth was based on land-use land cover (LULC) methodology
using Landsat 5, 7, and 8 images from 1986 to 2018. After downloading and preprocessing,
they were atmospherically corrected, surface reflectance was generated, and cloud masking
was performed. After reed detection, continuous change detection per pixel was applied
based on a random forest classifier. Classification accuracy ranged from 0.89 to 0.94 for a
reed field.

Another approach for reed detection is combining SAR and multispectral remote
sensing data. As shown in [16], this combination was used for mapping wetlands and deep
waters of the Mid-Atlantic and Gulf Coast regions of the USA. In this study, Sentinel-1
C-band and Landsat-8 optical/IR imagery were used. The classification was made using a
random forest classifier and reached >80% accuracy.

The same approach was also used in [17] to find indicators of the expansion and retreat
of Phragmites in the Danube Delta. Reed detection was based on NDVI calculation and
the «ISO Cluster Unsupervised Classification» tool of ArcGIS software using Landsat 5,
7 multispectral images, and Sentinel-1 SAR data. As a result, radar data from Sentinel-1
images showed more accurate results against Landsat images while implementing reed
detection tasks.
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Thus, the main goal of the research was to develop a machine learning algorithm
for the detection of water overgrowth with Phragmites australis based on Sentinel-2 data.
Solving this problem will help by providing a reliable and efficient method for detecting
and mapping areas of water overgrowth and aquatic vegetation. This information is useful
for a variety of applications, including environmental monitoring, water management,
and agriculture.

For example, in environmental monitoring, knowledge of the distribution and extent
of aquatic vegetation can provide important information about the health of aquatic ecosys-
tems. This information can be used to inform management decisions and track changes over
time. In water management, detecting areas of water overgrowth and aquatic vegetation
can help to identify areas where water resources may be at risk due to over-consumption
or pollution. In agriculture, the information can be used to support decision-making for
crop management and to reduce the risk of water-borne disease.

Overall, the development and validation of machine learning algorithms for the
detection of water overgrowth and aquatic vegetation can provide valuable information for
a wide range of applications, helping to improve our understanding of aquatic ecosystems
and support the effective management of water resources and development of modern
methodology for reed detection using multispectral remote sensing data and a machine
learning approach based on the previous experience to improve the decision-making
process in case of the biological melioration of the overgrown water bodies.

2. Previous Work

At first, the estimation methodology of the area overgrown by heliophytes and hy-
drophytes using remote sensing data was based on field botanic studies in 2020–2021 in the
Kushchevatiy firth (1505 ha), Gorkiy firth (2224 ha), Chumyaniy firth, and Soleniy-1 firth
(water bodies of East-Akhtarskiy spawning grounds). For shoreline detection and water
body area estimation, maps of “GosGISCenter” were used.

The area overgrown by aquatic vegetation was estimated by means of Sentinel-2
data. To detect the water surface, we used the modified normalized difference water index
(mNDWI) [18,19]. The Normalized Difference Vegetation Index (NDVI) was also applied
as a vegetation indicator.

The Normalized Difference Vegetation Index (NDVI) was also used as a vegetation
index. For overgrown and transparent estuaries with a depth of 0.8 m or less, an uneven
scale with four ranges of NDVI index values was developed to interpret satellite images in
order to assess the overgrowth of aquatic vegetation:

1. 0 class—from −1.0 to −0.1 (open surfaces, free from vegetation);
2. 1 class—from −0.1 to 0.3 (hydrophytes located below the water surface);
3. 2 class—from 0.3 to 0.5 (hydrophytes located on the water surface);
4. 3 class—from 0.5 to 1.0 (emergent vegetation).

The use of a non-uniform scale with four NDVI classes made it possible to reduce
the interclass dispersion of the projective cover of water areas with different overgrowth
levels and simplified the classification of estuaries according to the overgrowth level with
vegetation to determine the need for reclamation work.

River mouth areas are also subject to seasonal and interannual fluctuations, where
it is difficult to determine the “true” water areas. In [11], the authors calculate the area
of Kulikovsky Bay using NDVI as the sum of the open water surface and the “islands”
of vegetation (reed and cattail), but they do not take into account the thickets of macro-
phytes that grow along the coastline of the estuaries. In modern conditions, the coastal
part of almost all estuaries is overgrown mainly with Phragmites australis, occasionally
with Typha angustifolia L. and Schoenoplectus litoralis. Helophytes of Chumyaniy firth were
represented by only one species, Phragmites litoralis, hydrophytes, Stuckenia pectinata L.,
Ceratophyllum demersum L., Charophyceae, and Ulothrix zonata (Web. et Mohr.) Kütz.
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According to the botanical analysis in the Chumyaniy firth, in spring, the 1st class
represents a part free from aquatic vegetation, the 2nd and 3rd classes represent a part
occupied by both hydrophytes and reed, and the 4th class represents a part fully occupied
by reed. In summer, the water level rose by 23 cm; thus, part of the hydrophytes sank to
the bottom and became unavailable for remote sensing, so they were defined as the 1st,
2nd, and 3rd classes represented by hydrophytes and the 4th represented by heliophytes.
In autumn, the estuary’s depth decreased by 30 cm compared to the depth in summer,
and part of the hydrophytes came onto the water surface and was defined as the 4th class;
moreover, most parts of the area overgrown by the reed were identified as the 3rd class due
to their color change.

The maximum calculation accuracy of the overgrowth area by hydrophytes using the
NDVI index in the Chumyaniy firth was made from images taken at the end of May, during
the period of the smallest depth of estuaries and the phase of their active growth; however,
in the same period, a part of the reed with dry leaves was identified as hydrophytes. In
mid-July, the reed was identified as the third class of NDVI. However, in the same period,
in the Chelbass group of estuaries, the water level dropped rapidly; as a result, submerged
hydrophytes came to the surface of the water and, like reed, began to correspond to
the NDVI 3rd class. Thus, studies in 2020 showed that in estuaries with an unstable
hydrological regime, it is difficult to distinguish air-aquatic vegetation from real aquatic
vegetation according to the NDVI index. In 2021, special studies were conducted to
determine the area of overgrowth of Phragmites australis in the Azov estuaries.

3. Materials and Methods
3.1. Research Area

Estuaries of the Sea of Azov are characterized by significant fluctuations in water
horizons both in annual and seasonal aspects [20]. In the winter–spring period, during
the period of entry and spawning of semi-anadromous fish, in recent years, an insufficient
amount of fresh water enters the reservoirs of the spawning and growing farms, especially
in dry years. In summer, the volume of freshwater that inflows into the estuaries increases.
The minimum depths in the estuaries are observed in the autumn–winter period. According
to previous research [20] data, in May 2020, the average depth in the Chumyaniy firth was
0.76 m, and Soleniy was 0.4 m in late June-early July due to the return of water from rice
paddies; the depth increased by 0.23–0.28 m. In May 2021, the average water depth in the
Chumyaniy firth at sampling locations increased by 48.7% or 1.13 m; in the summer period,
the depth of “model” reservoirs was 38% higher compared to the low-water 2020 year, and
seasonal fluctuations in spring–summer in 2021 were 0.17 m.

A high increase in the depth of estuaries in 2021 is associated with an increase in
freshwater inflow into them due to an increase in the water content of the Kuban River
basin, while in 2020, the water content was −53.5% of the normal values, then in 2021 it
reached +0.7% (calculated from the long-term values of water resources for the period
1936–1980). In dry years, the area of overgrowing water bodies with macrophytes reaches
80–90%.

To study Phragmites australis, maps of the FSUE “Gosgiscenter” were used as a carto-
graphic basis, which was used to determine the coastline and area of the studied water
bodies. Since the reed grows in the coastal areas of the estuaries, entering their water area
to a depth of 0.9 m, there is no visual coastline can be found. Therefore, when determining
the area overgrown with helophytes, we used constant “masks” of the estuaries. With an
average 1 m depth, even insignificant changes in the inflow amount can lead to sufficient
bioecological transformations.
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The first steps in vegetation research of the Azov Sea estuaries were made by Shekhov in
the mid-twentieth century [7,8]. According to his research, they include about 103 macrophyte
species and can be divided into six different types [9]. Based on the research of Tsunikova [2],
the biomass of soft vegetation, including the estuaries and fish spawning grounds, increased
1.5 times from 1960 to 2005 and reached 2550 thousand tons, or 39.6 t/ha, while the area of
clear water surface decreased by 500 ha annually.

3.2. Field Data Collection

The research was conducted in June–July, when the estuaries’ depth decreased. In
the low-water year of 2020, the field studies were performed in late May–June. Visual
investigations were made by a detail-route method with a thorough description of water
vegetation types (Figures 1 and 2). Vegetation was collected using frame with 50 × 50 cm
size and “Shekhov device”, specially developed for hydrophytes collection in estuaries.
Except for vegetation, we also measured water depth, total vegetation biomass, water
transparency, and biomass of dominant vegetation species.

In this research, we used water vegetation classification and botanical terms from
V. Papchenko, A. Scherbakov, and A. Lapirov [21,22], and for species determination, A.
Zernov [23] and M. Gollerbach [24] qualifiers.

J. Mar. Sci. Eng. 2023, 22, x FOR PEER REVIEW  6 of 16 
 

 

spawning grounds, increased 1.5 times from 1960 to 2005 and reached 2550 thousand tons, 

or 39.6 t/ha, while the area of clear water surface decreased by 500 ha annually. 

3.2. Field Data Collection 

The research was conducted  in June–July, when the estuaries’ depth decreased. In 

the  low‐water year of 2020,  the  field studies were performed  in  late May–June. Visual 

investigations were made by a detail‐route method with a thorough description of water 

vegetation types (Figures 1 and 2). Vegetation was collected using frame with 50 × 50 cm 

size and “Shekhov device”, specially developed for hydrophytes collection in estuaries. 

Except  for vegetation, we also measured water depth,  total vegetation biomass, water 

transparency, and biomass of dominant vegetation species. 

 

Figure 1. Research area. 

In this research, we used water vegetation classification and botanical terms from V. 

Papchenko, A.  Scherbakov,  and A. Lapirov  [21,22],  and  for  species determination, A. 

Zernov [23] and M. Gollerbach [24] qualifiers. 

Figure 1. Research area.



J. Mar. Sci. Eng. 2023, 11, 423 7 of 16
J. Mar. Sci. Eng. 2023, 22, x FOR PEER REVIEW  7 of 16 
 

 

 

Figure 2. (A) Chumyaniy firth in July 2021, herbage of Phragmites australis. In front «Model» area 

covered with greed reed in vegetation phase and small areas of tall reeds with yellow stems and 

panicles. (B) Chumyaniy firth in July 2021, herbage of Phragmites australis. In front «Model» area 

covered with greed reed in vegetation phase and small areas of tall reeds with yellow stems and 

panicles. (C) Chumyaniy firth in July 2021, herbage of Phragmites australis. In front «Model» area 

covered with low‐stemmed young reed, high‐stemmed reed is visible in the center of the thickets. 

3.3. Remote Sensing Data 

Remote sensing data for the overgrowth assessment were obtained from Sentinel‐2 

images for the years 2020 and 2021. Images from the Sentinel‐2 satellite were derived from 

the  (Copernicus Open Access Hub) website. All Sentinel‐2 data were acquired  for  late 

spring–summer seasons  (May,  June, and  July).  [25–28]. Reference data collection  is de‐

scribed in 3.2. Properties of the Sentinel‐2 bands are presented in Table 1. 

Table 1. Sentinel‐2 bands description. 

Band  Wavelength (μm)  Resolution (m)  Purpose 

B1  443  60  Blue 

B2  490  10  Green 

B3  560  10  Red 

B4  665  10  Red Edge 

B5  705  20  Vegetation Red Edge 

B6  740  20  Vegetation Red Edge 
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3.3. Remote Sensing Data

Remote sensing data for the overgrowth assessment were obtained from Sentinel-2
images for the years 2020 and 2021. Images from the Sentinel-2 satellite were derived
from the (Copernicus Open Access Hub) website. All Sentinel-2 data were acquired for
late spring–summer seasons (May, June, and July). [25–28]. Reference data collection is
described in 3.2. Properties of the Sentinel-2 bands are presented in Table 1.

Table 1. Sentinel-2 bands description.

Band Wavelength (µm) Resolution (m) Purpose

B1 443 60 Blue
B2 490 10 Green
B3 560 10 Red
B4 665 10 Red Edge
B5 705 20 Vegetation Red Edge
B6 740 20 Vegetation Red Edge
B7 783 20 Vegetation Red Edge

B8A 842 20 Near Infrared
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Table 1. Cont.

Band Wavelength (µm) Resolution (m) Purpose

B11 1610 20 Shortwave Infrared 1
B12 2190 20 Shortwave Infrared 2

Collected samples of areas with Phragmites australis and free of it were merged into
single geopackage file as a point layer. These points were used as an ROI for spectral
signatures extraction from the stacked bands of the Sentinel-2 image.

3.4. Spectral Signatures Extraction

Spectral signatures can be defined as a response pattern that characterizes optical and
electromagnetic properties of different materials on the Earth’s surface. In the GIS context,
they can be extracted from different spectral bands of remote sensing data and calculated
through the pixel values below each region of interest (ROI). ROI represents areas or points
with known land cover class or object. As a result, extraction of pixel values in different
bands allows for building a spectral signature plot to represent uniqueness or similarity
of each object [29]. In this research, digitized reed areas collected from the field research
were used.

3.5. Accuracy Assessment

As a measure of accuracy, «Intersection over Union» (IoU) was used. IoU is a mea-
sure that represents overlapping between true and predicted object areas [30,31]. Usu-
ally, for object detection tasks, it is necessary to calculate accuracy and response us-
ing IoU. If IoUpredicted > IoUthreshold, then prediction is classified as «true positive», and if
IoUpredicted > IoUthreshold, prediction is classified as «false-positive».

Calculation of IoU can be represented as follows:

IoU =
Area o f Overlap
Area o f Union

Area of overlap is an area between predicted ROI and ROI, collected from field
research, while area of union is an area encompassed by them.

AoI helps to calculate other accuracy metrics to evaluate prediction models. To
evaluate prediction model in this paper, we used precision measure. It is a measure of how
many positive predictions are true (true positive) and is calculated as follows:

Precision =
True positive

True positive + False positive

3.6. Reed Classification

In this study, a random forest classifier was used. Proposed by Breiman [32], it showed
good possibilities in image classification tasks [33–35]. Random forest algorithm is generally
a decision tree classifier with training parameters: number of trees in forest and number of
random variables in each tree.

Breiman [32] defines random forest as a classifier consisting of tree groups {h(x, Θk)k = 1, . . .},
where Θk—independent equally distributed random vectors, where each tree contributes
single vote in definition of class x.

Processing of random forest algorithm can be described as follows:
Let training dataset consist of N samples, with number of features M, then m is

a partial number of features for training. The most widespread way for decision tree
ensemble construction is bootstrap aggregation or bagging. Classification using random
forest algorithm is based on classifiers voting. Accuracy in these cases mainly depends on
classifiers’ diversity that composes ensemble or, in other words, on correlation between



J. Mar. Sci. Eng. 2023, 11, 423 9 of 16

their decisions. This means that the more classifiers that are diverse, the higher total
accuracy will be [36].

Final classifier can be calculated as follows:

a(x) =
1
N

N

∑
i=1

bi(x)

where N is a number of trees in the random forest model, i is a tree numerator, b is a
decision tree, and x is a generated dataset.

4. Results and Discussion

Extracted spectral curves that correspond to the reed areas for 2020 and 2021 are pre-
sented in Figure 3. Spectral signatures for reed in 2020 have the highest level of absorption
or lowest reflection ranging from 0.443 to 0.56 µm or in a visible part of the spectrum,
while the lowest level of absorption ranges from 0.705 to 0.842 µm or in the near-infrared
part. This pattern is typical for vegetation that is usually characterized by a similar ten-
dency: minimal reflection in the red part and maximum in the near-infrared, which can be
problematic if there is a task to differentiate reed from the other vegetation.
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Figure 3 Spectral plot for reed signatures in 2020 and 2021. Each color on the plot
represents separate Phragmites australis spectral signature from sampling locations. In 2021,
the pattern of spectral signatures changed. As in 2020, the highest level of absorption was
in a visible part of the spectrum from 0.443 to 0.56 µm, but the lowest level of absorption
ranged from 0.705 to 0.783 µm, and at 0.945 µm, the highest level of absorption can also
be seen in wavelength 0.865 µm. It should also be noted that two signatures have higher
values than the others, which could possibly be caused by a mix of reeds with different
heights of stems or different levels of photosynthesis processes, which leads to an increase
in the amount of chlorophyll (Figure 4).
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The collected dataset was split into train and test datasets with a proportion of 75% to
25%. The accuracy of the results was estimated using overlapping predicted reed locations
with test data. As a result, the calculated accuracy reached 92%. The final resolution of the
classified images was 10 m.

Despite this, the spectral reed signatures are quite similar and can be used for reed
prediction from remote sensing data.

The investigated estuaries are usually used as semi-anadromous fish spawning grounds.
Overgrowth processes here lead to a decrease in the state of spawning routes, spawning
areas, and foraging grounds. Analysis of the overgrowth vegetation using remote sensing
data and machine learning showed sufficient changes in the overgrowth speed, depending
on the freshwater supply.

Data from Table 2 show the areas’ change matrices, where one class can change to
another or stay the same in 2020–2021. From the table, a large increase in the overgrowth
speed can be noted during this period.

Table 2. Reed and water areas change matrix.

2020 2021 Area (km2)

Water Water 7.97
Reed Water 0.16
Water Reed 0.50
Reed Reed 0.37

While in 2020, the areas with reed in the Chumyaniy and Soleniy firths reached
373.7 × 103 m2 or 0.37 km2, in 2021, these areas occupied 507.9 × 103 m2 or 0.51 km2. Thus,
the area covered by reed increased by 1.36 times. The areas that turned from reed into
water also changed; those areas, which were overgrown by reed in 2020, were occupied by
water in 2021 and made up 0.162 km2. Thus, the total water area in 2021 was 8.136 km2

(Figure 5).
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Spatially, in 2020 (Figure 6), the reed areas mostly occupied western parts of the
Chumyaniy firth, Chumyaniy spit, and the coast of the Soleniy firth. Northern and eastern
areas of the Chumyaniy firth were free from reed. In 2021 (Figure 7) situation changed.
The reed could be observed in the northern and western parts of the Chumyaniy firth; the
reed areas in the west increased. In the Soleniy firth, the reed areas changed their spatial
distribution, with a small reduction of areas free from reed in the northeastern part, but its
total occupation remained the same.
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Seasonal fluctuations in the overgrowth areas of the estuaries were mainly caused by
freshwater amount, vegetation phase, and water transparency [9]. Studies of the estuaries
with the areas overgrown by reed, as well as hydrophytes phytomass, are important while
determining the fishery value of water bodies. In scarcely overgrown water bodies with low
transparency, the main identified fish species was Stizostedion lucioperca (Linnaeus, 1758);
in overgrown with reed water bodies, the main identified fish species was Rutilus heckeli
(Nordmann, 1840).

The high overgrowth speed of Phragmites australis in 2020–2021, when the reed area
doubled in size, could be mainly caused by eutrophication due to the nutrient enrich-
ment from agricultural lands located on the northern part of the research area near
Novonekrasovskiy village. Another potential cause is alterations in water flows and
hydrological regimes, which can create favorable conditions for reed growth. These can
lead to the high growing speed of Phragmites australis, which can reach up to 2 m per
year and can spread both vegetatively and sexually, leading to the formation of large,
dense stands.
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The rapid growth of Phragmites australis in Azov estuaries can have significant biologi-
cal and ecological consequences, including:

• Phragmites can outcompete native vegetation and alter the composition and structure
of wetland ecosystems, which can have a cascading effect on other species that depend
on those habitats. The invasive species can form dense, monotypic stands that displace
native vegetation, leading to the loss of biodiversity and changing the functional
dynamics of the ecosystem.

• The invasion of Phragmites can lead to a decline in native plant and animal species,
reducing biodiversity in affected areas. The displacement of native vegetation can
reduce the habitat quality and availability of many species, including those that are
threatened or endangered.

• Phragmites can change the hydrology of wetland ecosystems, leading to soil degrada-
tion and potentially altering water quality. The species has a deep root system that can
affect soil stability and water flow, leading to changes in the ecosystem’s hydrological
cycle and increasing the risk of erosion and sedimentation.
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• The dense stands of Phragmites can increase the risk of fire, which can further alter
wetland ecosystems. This can have a direct impact on the vegetation and wildlife of
the area, altering the structure and composition of the ecosystem.

• Wetlands, including those dominated by Phragmites, can play an important role in
carbon sequestration, but the rapid growth of Phragmites can alter the balance of
carbon in wetland ecosystems. The species can significantly impact the carbon stor-
age potential of wetland ecosystems, which can have wider implications for global
climate change.

The fast growth of Phragmites australis can have far-reaching ecological consequences,
making its control and management a crucial component of wetland conservation efforts.
Effective management strategies are necessary to prevent the spread of the species, restore
native vegetation, and maintain the health and functioning of wetland ecosystems.

Overgrowing reeds in water bodies used as fishing farms can also significantly impact
fish species. The dense, monotypic stands of Phragmites can reduce the amount of open
water and shade the underlying substrate, making it less suitable for many fish species.
Additionally, the species can alter the water quality and hydrology of the ecosystem, leading
to changes in the water temperature, dissolved oxygen levels, and nutrient availability that
can negatively impact fish populations.

The loss of wetland habitats and the decline of fish species can have cascading effects
on other species that depend on the ecosystem for their survival, including birds and
mammals that rely on fish as a food source. Effective management strategies are needed to
restore native vegetation and maintain the health and functioning of wetland ecosystems,
including the preservation of fish populations and their habitats.

A positive role of the Phragmites australis is its participation in self-purification pro-
cesses, where reed thickets can perform functions, such as mechanical cleaning, when they
slow down suspended and slightly soluble particles; moreover, it possesses mineraliza-
tion and oxidative properties as well as take part in detoxication of organic pollutants.
Phragmites australis is usually characterized by high photosynthetic activity and active
absorption of nitrogen and silicon.

A negative impact of the reed overgrowth is mainly related to its dying and decompo-
sition of the phytomass, which leads to secondary pollution of the water body.

5. Conclusions

In recent decades, most of the Azov Sea estuaries have reduced spawning areas for
commercial fishes, so it is important to conduct permanent monitoring of the overgrowth
processes to optimize hydrophytes biomass. Overgrowth of the estuaries strongly depends
on the annual water amount. Thus, it is essential to perform regular monitoring of the
water bodies’ overgrowth using GIS and remote sensing. Under the remote research of
vegetation, it is necessary to realize which part of the overgrown area is occupied by air–
water vegetation or heliophytes and which one is occupied by true water vegetation or
hydrophytes. Knowledge of the areas overgrown by these vegetation ecotypes is needed
to develop recommendations for biological and mechanical melioration of the Azov Sea
estuaries. As our previous research revealed, air–water vegetation can be detected with
good accuracy using remote sensing data, but the accuracy of true water vegetation mainly
depends on weather conditions, type, and the phase of growth. However, the separation
of water vegetation into hydrophytes and heliophytes using NDVI is slightly difficult in
shallow water estuaries with unstable conditions.

In this research, it has been demonstrated that the approach of using machine learning
models to determine the areas of overgrowth with Phragmites australis, which makes up
around 90% of heliophyte vegetation in the Azov Sea estuaries, showed 92% of accuracy.
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