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Abstract: Sensitivity analysis is applied to ship manoeuvring mathematical models as a means of
dealing with model uncertainties, and often leads to model simplifications. A rather standard 3DOF
manoeuvring model was tuned with the available results of full-scale trials of a naval combatant
and was further used as the reference model for sensitivity analysis. The present research was based
on multiple perturbed simulations of the turning, zigzag and spiral manoeuvres. A salient feature
of the present study is that the perturbations were applied to the total hydrodynamic forces and
moments as well as separately to their characteristic parts, i.e., to the linear and nonlinear single-
variable and coupled components. Another special feature is that the deviations of the perturbated
responses were estimated not only considering the standard manoeuvring performance indices, but
also through application of the Euclidean metric directly to the time histories and to the spiral curve.
The performed analysis permitted the sensitivity of the model to be traced to various parameters and
groups thereof. It was established that the highest sensitivity of the model was to linear and some
nonlinear multivariable parameters, and the Euclidean metric permitted a more detailed analysis
than that based only on standard discrete manoeuvring indices. The obtained results are expected
to be useful in the application of system identification methods to typical inherently stable fast
surface-displacement ships.

Keywords: sensitivity analysis; uncertainty; indirect method; L2 metric; manoeuvring model of a
naval combatant

1. Introduction

Ship manoeuvring mathematical models are an important part of all existing bridge
and desktop manoeuvring simulators. As these simulators must provide high simulation
speeds in real or accelerated time and must also guarantee good realism of simulations,
the models used must represent a compromise between complexity and effectiveness [1,2].
This requirement precludes the use of in-the-loop CFD computations to simulate the
manoeuvring forces. Instead, much faster holistic or modular models based on ordinary
differential equations depending on a limited number of parameters are applied. The values
of these parameters must be specified to assure acceptable adequacy of the simulation [3,4].
However, there is always uncertainty associated with these manoeuvring models, both
arising from external factors and inherent to the mathematical model. This jeopardises
the accuracy of the simulated responses and trajectories based on such models [5]. The
uncertainty associated with the initial conditions of the ship was addressed in [6], but it is
also important to analyse the effect of the uncertainty of the manoeuvring model and its
coefficients.

To reduce the uncertainty of a model, offline CFD computations [7] or physical captive-
model tests [8] can be used, but the obtained values of the parameters of the model must
typically be adjusted or tuned, either manually or using system identification often based
on full-scale trials. In any case, the uncertainty of the model depends on its sensitivity
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to variations in its parameters [9,10]. These facts triggered the interest in performing the
present sensitivity studies.

This work contributes to the general effort developed by the ISSC-ITTC Joint Commit-
tee on Uncertainty Modelling, which is promoting the further development of methods of
uncertainty modelling of waves [11,12] and ship responses [13,14].

The sensitivity analysis studies on manoeuvring may have started with Hwang [15,16],
who performed a sensitivity analysis within the process of system identification of a 3DOF
mathematical model modelling the OSAKA super tanker, applying the so-called indirect
method to zigzag and turning circle manoeuvres.

In the indirect method, one runs the reference model and saves the results yi(θ0), then
changes one model parameter by a certain amount ∆θj, reruns the mathematical model
and saves the corresponding results yi

(
θj + ∆θj

)
. The goal of calculating the sensitivity

of model parameters is to determine the ratio between the relative changes of the model
parameters and the model output [17,18], as shown in

Sj
i =

∂yi
∂θj
≈

yi
(
θj + ∆θj

)
− yi

(
θj
)

∆θj
(1)

where Sj
i is a measure of sensitivity, yi is the ith motion parameter and θj is the jth mathe-

matical model coefficient. The measure of sensitivity is based on the maximum distance
between the values of the reference output parameters and those obtained by a 20% per-
turbation of the input parameters. It has been found that the linear coefficients are always
important, and the inertia terms and the nonlinear coefficients play a more important
role in tight manoeuvres. The yaw force and moment due to the rudder angle become
more influential when the manoeuvre is tighter. The yaw moments due to sway and yaw
velocities exchange relevance from moderate to tight manoeuvres.

Kose and Misiag [19,20] studied the sensitivity of a modular mathematical model
belonging to the so-called MMG family to variations in its parameters. They aimed to find
the parameters that most affected the estimation of the manoeuvring performance, namely
the hull added mass coefficients, the linear manoeuvring derivatives and some interaction
parameters for the rudder and propeller. Using the indirect method, they studied the
effects of variation of these parameters on zigzag and turning manoeuvres. The disturbed
parameters were treated as Gaussian random numbers, having the mean as a reference
value and six levels of standard deviation, from 1 to 25 percent of the reference value.
This study showed that the most influencing parameters were the linear manoeuvring
derivatives and the least influencing were the added mass coefficients.

Ishiguro et al. [21], using the indirect method, performed a sensitivity analysis on the
simulation parameters of an MMG mathematical model applied to different hull forms.
The authors were looking for the parameters that should be considered at the early design
stage for more accurate results on the prediction of a ship’s manoeuvrability. Therefore,
they performed a sensitivity study wherein the simulation parameters were categorised
into linear hydrodynamic derivatives, nonlinear hydrodynamic derivatives, interaction
coefficients and inertial coefficients. The manoeuvres used for the study were the turning
circle and zigzag. Sensitivity was measured as “relative sensitivity”: the ratio of change in
the results when each parameter is individually increased by 10%. This value is 1.0 when
the output parameter increases by 10% as a result of a 10% increase in an input parameter.
They concluded that almost every linear hydrodynamic derivative significantly affected the
predicted results. These sensitivities became higher when the degree of directional stability
was reduced.

Rhee and Kim [22] performed a sensitivity analysis on an MMG mathematical model
of the Esso Osaka. The sensitivity analysis was performed to clarify the effect of each input
parameter on the system before performing system identification. It was argued that if
there is no effect of a coefficient on the system, it is nearly impossible to estimate it; mutatis
mutandis, if a coefficient has a significant effect on the system, it is more identifiable.
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Using zigzag and turning manoeuvres, they concluded that linear coefficients had the
highest influence on the model’s behaviour and that their influence diminished with tighter
manoeuvres. The model showed lower sensitivity to nonlinear coefficients, but their
influence increased with the steepness of the manoeuvre. It was also concluded that the
higher the sensitivity, the higher the identification efficiency.

While the authors reviewed so far have made use of the indirect method of sensitivity
analysis, Yeo and Rhee [17] proposed to use a direct method arguing that the indirect
method implies that the number of required simulations increases together with the number
of input parameters thus making generalization of the sensitivity analysis impossible. The
direct method is more computationally demanding since it requires the differentiation
of mathematical models with respect to the model coefficients. However, it shows the
sensitivity history of the dynamic system during the manoeuvring simulation. Zigzag
and turning circle manoeuvres were simulated and it was concluded that different hull
geometries differently affected the sensitivity of the hydrodynamic coefficients, and the
sensitivity was dependent on the type of manoeuvre.

Wang et al. [18] performed a sensitivity analysis using the direct method proposed by
Yeo and Rhee [17], using a 4DOF mathematical model for a container ship. The aim was to
reduce the number of hydrodynamic coefficients to be determined by employing system
identification. The chosen performance parameters were the surge and sway velocities,
rate of yaw and rate of roll. For the sensitivity calculation, they simulated one spiral
manoeuvre. To decide which coefficients to keep in the mathematical model, minimum
threshold values were defined for the total sensitivity value. The validity of the simplified
model was verified by simulating a zigzag manoeuvre using the original and the simplified
mathematical models.

Wang et al. [18] performed a sensitivity analysis using the indirect method on the
4DOF mathematical model developed by Pérez and Blank [23]. They argued that the
direct method, while providing the sensitivity history in one run, is computationally very
demanding, while the indirect method requires more runs but the computational effort
and memory storage in each run are small. For the sensitivity calculation, they simulated
an “S-type” manoeuvre. A sensitivity analysis was then performed by perturbing the
reference parameters by 10% to 50%. The decision of which coefficients to keep in the
mathematical model was based on minimum threshold values defined for the sensitivity
indices, which varied from 0.045% to 0.145%. The validity of the simplified model was
verified for simulating zigzag and turning manoeuvres using the original and the simplified
mathematical models.

From this review, it can be seen that sensitivity analysis as a means of improving the
efficiency of system identification or simplifying mathematical models while keeping the
response as close as possible to real ship behaviour has been in practice in the manoeuvring
research community since at least 1969 [15].

There are two approaches for implementing sensitivity analysis in manoeuvring: the
direct method [17,24] and the indirect method [16,18–21]. Both methods yield similar
trends in the sense that the “linear” derivatives have more influence than the “nonlinear”
derivatives and the added mass coefficients, although the level of sensitivity changes
depending on the manoeuvre and the hull configuration. The tighter the manoeuvre, the
more sensitive the mathematical model is to the nonlinear coefficients. The direct method
demands much more computational effort than the indirect method.

There is no standard metric and method for sensitivity analysis. However, any metric
and method considered must account for the output parameters which are of interest and
soundly show the sensitivity of these output parameters to the input parameters per type
of manoeuvre.

Significant scientific research has been done to find reliable yet simplified mathematical
models of manoeuvring using sensitivity analysis tools. However, there is still no provision
for a common methodological ground for carrying out a sensitivity analysis or how to
define a threshold to keep the relevant parameters and discard the remaining ones.
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In most previous studies on the sensitivity of manoeuvring models, traditional ma-
noeuvring indices, e.g., tactical diameter, advance and peak overshoots, were used to
measure changes in the model’s response. Others inspected and analysed the plots of
outputs directly [4]. In this study, the focus was on the application of the Euclidean metric
directly to the time histories of selected kinematic parameters in three standard definitive
manoeuvres. This approach represents some novelty in the field of manoeuvring studies,
and it is possible that this measure of the variation of the output is more consistent, as
the closeness of kinematic responses in the Euclidean sense infers closeness of traditional
manoeuvrability measures while the opposite is not necessarily true.

The analysis was performed on a 3DOF frigate mathematical model. Besides the
metric used in this investigation, it is believed from the review that the method used to
perform the sensitivity analysis in this work is also new, with four output parameters and
three manoeuvres in six variations: the turning manoeuvre with 10/20/30 deg helms, the
zigzag manoeuvre at 10–10 and 20–20 deg and the spiral manoeuvre. The work provides
evidence not only of the relevant hydrodynamic input parameters, but also of the relevance
of each manoeuvre and its tightness. The study was performed in a pattern of deepening
detail, simulating 420 manoeuvring runs, starting with total perturbations induced to
the hydrodynamic forces in surge, sway and yaw, followed by partial and semipartial
perturbations applied first to the linear regressors and then to the nonlinear uncoupled and
coupled (mixed) regressors.

Section 2 of the present article includes a description of the methods used for the
sensitivity analysis (Subsection 2.2), a detailed description of the reference ship mathemati-
cal model (Subsection 2.2) and an outline of all specifics related to the application of the
sensitivity analysis to the ship mathematical model under consideration (Sections 2.3–2.5).
The obtained numerical results and their discussion are located in Section 3. The final
section of the article contains the conclusions.

2. Materials and Methods
2.1. Method of Sensitivity Analysis

This work intended to analyse the responses of the mathematical model to rather
large (±50%) perturbations of its parameters. This level of perturbation is believed to be
significant for an inherently directionally stable ship and is within the range referred to
by Pérez and Blank [23] and Wang et al. [18]. The sensitivity analysis used the indirect
method, which relies on running a reference simulation with unperturbed parameters
followed by simulations with perturbed models. The SA did not explicitly include the
level of uncertainty of the input parameters and its propagation to the output parameters
in a global SA sense, as was performed by Silva and Guedes Soares [6], in whose study
the mathematical model parameters were modelled as uncertain throughout the ship’s
operational life due to the inherent stochastic variation of ship trim, draft and displacement.

The model’s behaviour was studied in deepening detail. First, the total perturbation of
the external forces was performed, part of which, total perturbation without combinations,
was previously developed and discussed by Silva et al. [25]. They concluded that the
relevant forces in the turning manoeuvre and zigzag manoeuvre are the quasi-steady sway
force and the yaw moment. The relevant forces in the outputs of the spiral manoeuvre are
the sway force and, less clearly, the yaw moment.

This study further investigated the total perturbation with combinations and partial
perturbation. Partial perturbation was applied first to the linear coefficients, then to the
nonlinear single-variable coefficients and finally to the nonlinear multivariable coefficients.
This approach itself is novel, to the best of our knowledge.

Several k vectors of the output parameters yk, (k corresponding to the number of
perturbed input parameters θ) were considered. Each vector y of length N = T/∆t,
where T is the time of simulation and ∆t is the timestep. Consider also that nM = 6
manoeuvres: nt = 3, 10◦/20◦/30◦ turning, nz = 2, 10◦/20◦ zigzag and ns = 1, spiral.
One possible sensitivity measure is the distance between two vector responses, i.e., the



J. Mar. Sci. Eng. 2023, 11, 416 5 of 34

perturbed y = (y1, . . . , yN)
T and the reference y = (y1, . . . , yN)

T of equal dimension N,
defined as follows:

ρ(y, y) =
N

∑
i=1

ρ(yi, yi) (2)

where ρ(yi, yi) is the metric for scalar responses. There are several options for choosing this
metric in the functional space. Sutulo and Guedes Soares [26] tested the following metrics:
the L1 metric or absolute-value metric, the Euclidean or L2 metric and the Hausdorff metric.
The latter was demonstrated to be superior in the case of noisy responses. However, when
the noise was absent, none of the tested metrics showed any tangible superiority. As no
noise was present in this research, the most common Euclidean metric ρE was preferred. It
is defined as follows:

ρE(y, y) =

 T∫
0

(y(t)− y(t))2dt

1/2

(3)

where t ∈ [0, T], T is the total duration of the simulation.
For the sensitivity analysis, an averaged L2 metric over time was used as a “sensitivity

index” S to compare the effects of the kth perturbations. The discretised analogue to (3)
was assumed in the following form:

L̃2 =

[
∑N

i=1(y(ti)− y(ti))
2

N

]1/2

(4)

It can be easily noticed that (4) is not quite equivalent to (3), as the latter is not
multiplied by the duration time T; however, this is neither essential nor desirable for
comparative studies where the L2 metric of the ith kinematic parameter relative to the jth
coefficient would be affected by the simulation duration, as is the case for the Z-manoeuvre.
At the same time, dependence on the number of samples is removed.

2.2. Manoeuvring Mathematical Model

For the present work, a 3DOF nonlinear model was used, namely the standard Euler
system of equations for a ship considered as a rigid body moving in the horizontal plane,
in the following form:

(m + µ11)
.
u−mvr−mxgr2 = Xq + Xp,

(m + µ22)
.
v +

(
mxg + µ26

) .
r + mur = Yq, (5)(

mxg + µ62
) .
v + (Izz + µ66)

.
r + mxgur = Nq,

where u is the surge velocity, v is the sway velocity and r is the yaw rate; the dotted vari-
ables are the corresponding accelerations, m is the ship mass and µij are the added mass
coefficients. The forces on the hull due to the rudder are grouped as quasi-steady hydrody-
namic forces (subscript q) on the hull and rudder in surge, sway and yaw, respectively. Xp
is the surge force exerted by the propeller (effective thrust). The forces may be represented
as follows:

Xq = X′q
(
u′, v′, δR

)ρV2

2
LT,

Yq = Y′q
(
u′, v′, δR

)ρV2

2
LT, (6)

Nq = N′q
(
u′, v′, δR

)ρV2

2
L2T,

where X′q, Y′q and N′q are the dimensionless force or moment coefficients, ρ is the water
density, V2 = u2 + v2 is the squared instantaneous ship speed, L is the length of the ship
and T is the draught amidships.
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The quasi-steady forces on Equations (5) and (6) are modelled as multivariate third-
order regression polynomials depending on the nondimensional velocity components and
rudder angle, with some terms dropped as insignificant.

X′q = X′uuu′2 + X′vrv′r′ + X′δδδ2
R

Y′q = Y′vv′ + Y′rr′+ Y′vvvv′3 + Y′vvrv′2r′ + Y′δδR + Y′δvvv′2δR + Y′δδvv′δ2
R+

Y′δδδδ3
R

N′q = N′vv′ + N′rr + N′vvvv′3 + N′vvrv′2r′ + N′δδR + N′δvvv′2δR+
N′δδvv′δ2

R + N′δδδδ3
R

(7)

where X′uu . . . N′δδδ are the regression coefficients and δR is the rudder angle; u′, v′ and r′

are the nondimensional velocity components, defined as

u′ =
u
V

; v′ =
v
V

; r′ =
rL
V

. (8)

A first-order nonlinear model was used for the steering gear in the form proposed by
Sutulo and Guedes Soares [27]. The coefficients in the model, the constant parameters and
the propeller force model were as defined in [26]. The propulsion model for the propeller
surge force was based on that described by the four-quadrant model proposed by Oltmann
and Sharma [28] but adjusted using the procedure described in [29].

In general, this mathematical model can be viewed as half-modular, i.e., holistic for the
hull–rudder system but with a separate submodel for the propeller. The model expressed
in Equation (5) was extended with the kinematic equations needed for the transformation
of the velocity components from the ship coordinate frame to the earth coordinate frame,
given as

.
ξ = u cos ψ− v sin ψ,
.
η = u sin ψ + v cos ψ

(9)

with the positive senses as presented in Figure 1.
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Figure 1. Coordinate frames: surface ship case (all angles and angular velocities are shown as
positive).

The ship used as a case study to demonstrate the application of the method has a
length between perpendiculars of 110m, a maximum beam of 13.8m, a draught of 4.1m
and a mass of 3200 tonnes. The block coefficient is 0.505. The properties of mass/inertia
are as follows: Izz = 2.475 × 109 kgm2, µ11 = 6.407 × 104 kg, µ22 = 1.896 × 106 kg,
µ26 = µ62 = −7.30× 106kgm2, µ66 = 1.199× 109 kgm2. The nominal approach speed
is V0 = 7.97 m/s. Unfortunately, because of confidentiality issues, it is not possible to
provide the body plan of the ship, but the hull shape is qualitatively typical of a frigate or
destroyer-class surface-displacement ship. It has a transom stern and a large aft cut-off with
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a streamlined stabilising skeg. The propulsion-and-steering arrangement is also classic and
includes two open screw propellers with a single rudder between them.

Table 1 presents the reference parameters for the mathematical model—Equation (7). The
primary values were taken as those for the Mariner ship as presented by Crane et al. [30],
then adjusted according to Sutulo and Guedes Soares [26] such that the resulting model
matched the full-scale data available for the ship under study.

Table 1. Manoeuvring model coefficients for the ship under analysis.

Force/Moment
DOF

Coefficient
Value

X
X′uu X′vr X′δδ

−0.0091 −0.483 −0.0142

Y
Y′v Y′r Y′δ Y′vvv Y′δδδ Y′vvr Y′δvv Y′δδv
−0.2580 0.0716 −0.0417 −1.702 0.0069 3.23 −0.1778 −0.000569

N
N′v N′r N′δ N′vvv N′δδδ N′vvr N′δvv N′δδv
−0.0552 −0.0410 0.0208 0.3450 −0.0034 −1.158 −0.0734 0.0019

The sensitivity analysis presumed that all these coefficients were to be perturbed
(individually or in groups). The coefficients related to resistance and propulsion were not
perturbed as they are not directly related to manoeuvring and typically can be predicted
rather reliably. Similarly, the sensitivity analysis did not involve the added mass coefficients
present in Equation (5). First, weak sensitivity to variations of these parameters was
previously established by Kose and Misiag [19] and Ishiguro et al. [21]. Second, it is clear
from Equation (5) that variations in the added masses can be compensated by variations of
the right-hand side of the equations and it is usually more reasonable to fix their values,
e.g., in identification studies.

2.3. Sensitivity Analysis of the Manoeuvring Mathematical Model

Some authors use as output parameters such numerical measures as the zigzag
overshoot angles and the advance, transfer and tactical diameter in the turning manoeu-
vre [20,25], while others [16,24] use such kinematic parameters as u, v, r a, ψ viewed as
time responses.

The parameters used in the present study were the time histories for the dimension-
less kinematic variables: the dimensionless yaw rate r′, the heading ψ, the velocity ratio
V′ = V(t)/V0 and the drift angle β. The heading is related to the yaw rate and is most rele-
vant in the zigzag manoeuvre; the velocity ratio shows the speed drop that occurs especially
in turning and spiral manoeuvres. The drift angle is the least observable parameter.

The following output parameters were used, as they were considered the ones that
best evinced the kinematics of each manoeuvre:

• Turning manoeuvre: r′, drift angle, β, velocity ratio V(t)/V0;
• Zigzag manoeuvre: heading, ψ, r′, β;
• Spiral manoeuvre: V(t)/V0, r′, β.

A special remark must be made concerning the computation of the Euclidean distance
for the spiral manoeuvre. As the result of this manoeuvre is represented as a static de-
pendence of the steady kinematic parameter on the rudder angle, δ, the latter could be
considered instead of the time in the metric’s definition, leading to a spiral sensitivity index
of the following kind:

S =

[
∑N

i=1(y(δi)− y(δi))
2

N

]1/2

(10)

However, as the spiral curve was obtained through extraction of the settled steady
data from the specific time-domain simulation, both definitions of the metric in the spiral
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manoeuvre were coherent while complication of the code was avoided using the same
Equation (4). The sensitivity of these output parameters to perturbations in the mathe-
matical model was studied in deepening detail. First, a total perturbation of the external
forces was performed, and then a partial perturbation of the coefficients was performed.
The partial perturbation was performed first for the linear coefficients (e.g., Y′v, N′r), then
for the nonlinear single variable coefficients (e.g., X′δδ, Y′vvv) and finally for the nonlinear
multivariable coefficients (e.g., X′vr, Y′vvr).

The decision of which coefficients were more relevant to the mathematical model in
each group of simulations was based on values of the sensitivity value, identified in the
remaining text as L2, for the different performance parameters that were within 75–100% of
the maximum L2 value.

2.4. Total Perturbation of the Force and Moment Components

The force and moment coefficients in Equation (7) can only be predicted with some
degree of uncertainty. These coefficients can be represented as

X′q = X′0 + ∆X′ = X′0(1 + CX),
Y′q = Y′0 + ∆Y′ = Y′0(1 + CY),

N′q = N′0 + ∆N′ = N′0(1 + CN),
(11)

where X′0, Y′0, N′0 are the reference dimensionless force values, ∆X′, ∆Y′, ∆N′ are the
perturbation terms and CX, CY, CN are the corresponding perturbation coefficients, of
which the typical values, as mentioned before, range from ±0.1 to ±0.5. In the present
study, we used only±0.5 and all the combinations of these coefficients’ values are presented
in Table 2.

Table 2. Perturbation coefficients.

Perturbation Coefficient Value

CX −0.5, 0,+0.5

CY −0.5, 0,+0.5

CN −0.5, 0,+0.5

When all the coefficients take the value 0, the results are those of the reference model.
The choice of these 50% perturbations was driven firstly by the desire to obtain a rather
tangible reaction of the responses, and secondly because such variations are typically used
in identification studies (see Sutulo and Guedes Soares) [4,26]. It must be noted that in the
cases of highly directionally unstable ships [31], some variations of the parameters can lead
to unacceptable degrees of instability resulting in divergent responses; this did not happen
in this case as the base ship model was highly stable.

As a starting point, we studied the effect of perturbating the forces in the DOFs X,
Y and N on the relevant output parameters. To perform the sensitivity analysis for these
perturbations, Equation (7) was expressed in the perturbed form of Equation (11) as follows:

X′q = X′uuu′2 + X′vrv′r′ + X′δδδ2
R + ∆X′,

Y′q = Y′vv′ + Y′rr′ + Y′vvvv′3 + Y′vvrv′2r′ + Y′δδR + Y′δvvv′2δR + Y′δδvv′δ2
R + Y′δδδδ3

R + ∆Y′,
N′q =

(
N′vv′ + N′rr + N′vvvv′3 + N′vvrv′2r′ + N′δδR + N′δvvv′2δR + N′δδvv′δ2

R + N′δδδδ3
R
)
+ ∆N′.

(12)

As u′2 = 1− v′2, and assuming that the straight run resistance coefficient is not subject
to perturbations, the equations (12) can be re-written as:

X′q = X′uu +
(
−X′uuv′2 + X′vrv′r′ + X′δδδ2

R
)
(1 + CX ′),

Y′q =
(

Y′vv′ + Y′rr′ + Y′vvvv′3 + Y′vvrv′2r′ + Y′δδR + Y′δvvv′2δR + Y′δδvv′δ2
R + Y′δδδδ3

R

)
(1 + CY′),

N′q =
(

N′vv′ + N′rr + N′vvvv′3 + N′vvrv′2r′ + N′δδR + N′δvvv′2δR + N′δδvv′δ2
R + N′δδδδ3

R
)
(1 + CN ′).

(13)
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The sensitivity analysis started with a total force perturbation without combinations,
which gave a total of 6 simulations (variants) per manoeuvre and respective rudder angles,
for a total of 36 simulations. These simulations and the reference motion (variant #0) are
identified as the variants in Table 3.

Table 3. Total perturbation of force/moment components without combinations.

Variant # ∆X’/Xq
’ ∆Y’/Yq

’ ∆N’/Nq
’

0 0 0 0

1 −0.5 0 0

2 0 −0.5 0

3 0 0 −0.5

4 0 0 +0.5

5 0 +0.5 0

6 +0.5 0 0

This first set of simulations was followed by a set of the total combinations of the total
perturbation forces/moments, giving a total of 27 combinations and 162 simulations as
presented in Table 4.

Table 4. Total perturbation of force/moment components with combinations.

Variant # ∆X’/Xq
’ ∆Y’/Yq

’ ∆N’/Nq
’

0 0 0 0

1 −0.5 −0.5 −0.5

2 −0.5 −0.5 0

3 −0.5 −0.5 +0.5

4 −0.5 0 −0.5

5 −0.5 0 0

6 −0.5 0 +0.5

7 −0.5 +0.5 −0.5

8 −0.5 +0.5 0

9 −0.5 +0.5 +0.5

10 0 −0.5 −0.5

11 0 −0.5 0

12 0 −0.5 +0.5

13 0 0 −0.5

14 0 0 +0.5

15 0 +0.5 −0.5

16 0 +0.5 0

17 0 +0.5 +0.5

18 +0.5 −0.5 −0.5

19 +0.5 −0.5 0

20 +0.5 −0.5 +0.5

21 +0.5 0 −0.5

22 +0.5 0 0

23 +0.5 0 +0.5
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Table 4. Cont.

Variant # ∆X’/Xq
’ ∆Y’/Yq

’ ∆N’/Nq
’

24 +0.5 +0.5 −0.5

25 +0.5 +0.5 0

26 +0.5 +0.5 +0.5

2.5. Partial Perturbations of the Parameters

It was assumed that the perturbations would be relatively small, depending on the
parameters v′, r′ and δR. Considering the symmetry conditions, the perturbations ∆X′,
∆Y′ or ∆N′ in Equation (11) can be written and the total perturbation force/moment in
Equation (11) can be decomposed into partial perturbation coefficients as follows:

∆X′ = Cvv
X X′uuv′2 + Cvr

X X′vrv′r′ + Cδδ
X X′δδδ2

R,
∆Y′ = Cv

YY′vv′ + Cr
YY′rr′ + Cδ

YY′δδR + Cvvv
Y Y′vvvv′3 + Cvvr

Y Y′vvrv′2r′ + Cδvv
Y Y′δvvv′2δR+

Cδδv
Y Y′δδvv′δ2

R + Cδδδ
Y Y′δδδδ3

R,
∆N′ = Cv

N N′vv′ + Cr
N N′rr + Cδ

N N′δδR + Cvvv
N N′vvvv′3 + Cvvr

N N′vvrv′2r′ + Cδvv
N N′δvvv′2δR+

Cδδv
N N′δδvv′δ2

R + Cδδδ
N N′δδδδ3

R.

(14)

It is, however, clear that this is equivalent to perturbing the regression coefficients
(“manoeuvring derivatives”). The coefficients like Cvv

X , Cδδδ
N can take the same values as

CX , CY and CN in Table 2 for a 50% perturbation.
The equation of the total perturbed nondimensional forces (13) can then be transformed

into an equation of partially perturbed forces by the means of the perturbation coefficients
in Equation (14), written as follows:

X′q = X′uu +
(
−X′uuv′2 + X′vrv′r′ + X′δδδ2

R
)
+ ∆X′,

Y′q =
(

Y′vv′ + Y′rr′ + Y′vvvv′3 + Y′vvrv′2r′ + Y′δδR + Y′δvvv′2δR + Y′δδvv′δ2
R + Y′δδδδ3

R

)
+ ∆Y′,

N′q =
(

N′vv′ + N′rr + N′vvvv′3 + N′vvrv′2r′ + N′δδR + N′δvvv′2δR + N′δδvv′δ2
R + N′δδδδ3

R
)
+ ∆N′.

(15)

2.5.1. Perturbation of the Linear Coefficients

The sensitivity analysis gave a total of 13 simulations per manoeuvre and the respective
rudder angles, which was a total of 78 simulations/runs. These simulations and the
reference motions are identified in the captions as the variants in Table 5.

Table 5. Variant identification for partial perturbation of linear coefficients.

Variant # Cv
Y Cr

Y Cδ
Y Cv

N Cr
N Cδ

N

0 0 0 0 0 0 0

1 −0.5 0 0 0 0 0

2 +0.5 0 0 0 0 0

3 0 −0.5 0 0 0 0

4 0 +0.5 0 0 0 0

5 0 0 −0.5 0 0 0

6 0 0 +0.5 0 0 0

7 0 0 0 −0.5 0 0

8 0 0 0 +0.5 0 0

9 0 0 0 0 −0.5 0

10 0 0 0 0 0.5 0

11 0 0 0 0 0 −0.5

12 0 0 0 0 0 +0.5
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2.5.2. Perturbation of the Nonlinear Single-Variable Coefficients

The perturbations for the sensitivity analysis of nonlinear single-variable coefficients
(NLS) were performed as explained for linear coefficients, using Equations (14) and (15).
However, the simulations were performed such that only one nonlinear single-variable
perturbation coefficient was changed in each run, as follows:

Run 1: Cvv
X 6= 0, Cδδ

X = 0, Cvvv
Y = 0, Cδδδ

Y = 0, Cvvv
N = 0, Cδδδ

N = 0
Run 2: Cvv

X = 0, Cδδ
X 6= 0, Cvvv

Y = 0, Cδδδ
Y = 0, Cvvv

N = 0, Cδδδ
N = 0

. . .
Run n: Cvv

X = 0, Cδδ
X = 0, Cvvv

Y = 0, Cδδδ
Y = 0, Cvvv

N = 0, Cδδδ
N 6= 0

which gave a total of 13 simulations per manoeuvre and the respective rudder an-
gles, i.e., a total of 78 simulations/runs. Those simulations and the reference motion are
identified in the captions as the variants in Table 6.

Table 6. Variant identification for partial perturbation of nonlinear single-variable coefficients (NLS
perturbation).

Variant # Cuu
X Cδδ

X Cvvv
Y Cδδδ

Y Cvvv
N Cδδδ

N

0 0 0 0 0 0 0

1 −0.5 0 0 0 0 0

2 +0.5 0 0 0 0 0

3 0 −0.5 0 0 0 0

4 0 +0.5 0 0 0 0

5 0 0 −0.5 0 0 0

6 0 0 +0.5 0 0 0

7 0 0 0 −0.5 0 0

8 0 0 0 +0.5 0 0

9 0 0 0 0 −0.5 0

10 0 0 0 0 0.5 0

11 0 0 0 0 0 −0.5

12 0 0 0 0 0 +0.5

2.5.3. Perturbation of the Nonlinear Multivariable Coefficients

The perturbations for the sensitivity analysis of the nonlinear multivariable coefficients
(NLM) were performed as explained for linear coefficients, using Equations (14) and (15),
but the simulations were performed as for NLS perturbations, as follows:

Run 1: Cvr
X 6= 0, Cvvr

Y = Cδvv
Y = Cδδv

Y = Cvvr
N = Cδvv

N = Cδδv
N = 0

Run 2: Cvr
X = 0, Cvvr

Y 6= 0, Cδvv
Y = Cδδv

Y = Cvvr
N = Cδvv

N = Cδδv
N = 0

. . .
Run n: Cvr

X = Cvvr
Y = Cδvv

Y = Cδδv
Y = Cvvr

N = Cδvv
N = 0, Cδδv

N 6= 0
which gave a total of 15 simulations per manoeuvre and the respective rudder angles,

for a total of 90 simulations. These simulations and the reference motion are identified in
the legends as the variants in Table 7.
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Table 7. Variant identification for partial perturbation of nonlinear multivariable coefficients (NLM
perturbation).

Variant # Cvr
X Cvvr

Y Cδvv
Y Cδδv

Y Cvvr
N Cδvv

N Cδδv
N

0 0 0 0 0 0 0 0

1 −0.5 0 0 0 0 0 0

2 0.5 0 0 0 0 0 0

3 0 −0.5 0 0 0 0 0

4 0 0.5 0 0 0 0 0

5 0 0 −0.5 0 0 0 0

6 0 0 0.5 0 0 0 0

7 0 0 0 −0.5 0 0 0

8 0 0 0 0.5 0 0 0

9 0 0 0 0 −0.5 0 0

10 0 0 0 0 0.5 0 0

11 0 0 0 0 0 −0.5 0

12 0 0 0 0 0 0.5 0

13 0 0 0 0 0 0 −0.5

14 0 0 0 0 0 0 0.5

3. Results

In this section, results from sensitivity analysis are presented and interpreted. The
sequence of presentation is as follows: results of simulations of manoeuvres for total
perturbation, results of simulations of the manoeuvres for perturbation of the linear co-
efficients, results of simulations of the manoeuvres for nonlinear single-variable (NLS)
perturbation and results of simulations of the manoeuvres for nonlinear multivariable
(NLM) perturbation. The 10 and 20 degree zigzag manoeuvres are sometimes identified as
ZZ10 and ZZ20.

3.1. Sensitivity Analysis of the Manoeuvres for Total Perturbation

For the studied manoeuvres and total perturbation without combinations, Figure 2
presents the L2-sensitivity value for the most influenced output parameters vs. variant
(perturbation in Table 3). Table 8 presents all the output parameters and lists the most
relevant variants.

In turning, Y′q and N′q influenced the output parameters r′ and β. In the zigzag
manoeuvre, Y′q and N′q influenced all output parameters, ψ, r′ and β. In the spiral
manoeuvre, the parameters β and r′ showed the highest sensitivity values, essentially from
the influence of both Y′q and N′q. V′ showed a complex diffuse sensitivity behaviour in
turning and spiral manoeuvres, but it can be said that it was mostly influenced by Y′q at
lower rudder angles and by X′q as the rudder angle increased.
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Figure 2. Examples of kinematic variables most sensitive to the perturbation variants: (a) 20◦ turning
manoeuvre, (b) ZZ20 manoeuvre, (c) spiral manoeuvre. Perturbated forces without combinations:
X′q; Y′q; N′q. Perturbation variants in Table 3 in the abscissa.

Table 8. Most influential perturbation variants in all manoeuvres: total perturbation without combinations.

Turning

Rudder order Most influential variants

Output parameters Yaw rate
r′

Drift angle
β

Velocity ratio
V′

10◦ 3, 5 2, 5 2, 5

20◦ 2, 3 2, 5 2, 5

30◦ 2, 3 2, 5 1, 6

Zigzag

Rudder order Most influential variants

Output parameters Yaw rate
r′

Heading
ψ

Drift angle
β

10◦ 2, 3, 2, 3 2, 3

20◦ 2, 3 2, 3 2, 3

Spiral

Rudder order Most influential variants

Output parameters Yaw rate
r′

Drift angle
β

Velocity ratio
V(t)/V0

2, 3 2, 5 2, 1, 6, 5
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From results with and without combinations of the perturbations, it was observed that
when the input parameters were perturbed in all possible combinations of the three degrees
of freedom, the maxima values’ sensitivities were a complex combination of summation
and cancellation effects of the most relevant variants, as occurs in real motion. As such, no
clearer sensitivity insight can be taken from the perturbations with combinations than the
simpler and less time-consuming approach of the perturbations without combinations (see
Figure 3). More interesting are the results from the partial perturbation sensitivity analyses.
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turning manoeuvre, (b) ZZ20 manoeuvre, (c) spiral manoeuvre. Perturbated forces with combinations:
X′q; Y′q; N′q. Perturbation variants in Table 4 in the abscissa.

3.2. Sensitivity Analysis of the Manoeuvres for Perturbation of the Linear Coefficients

Figure 4 presents the reference run (variant #0) and the variants causing the maximum
output parameter variation (maximum L2) in some simulated manoeuvres when partial
perturbation of the linear coefficients was performed.
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(b) Z20 manoeuvre, (c) spiral manoeuvre—perturbation of linear coefficients (LC) with perturbation
variants of Table 5 in the abscissa.

Table 9 presents the most influential perturbation variants in turning, zigzag and spiral
manoeuvres for perturbation of the linear coefficients (LC), grouped as variants of similar
sensitivity within 75–100% of the maximum L2 value for each output variable.

Table 9. Most influential perturbation variants in all manoeuvres: linear coefficient perturbation.

Turning

Rudder order Most influential variants

Output parameters Yaw rate
r′

Drift angle
β

Velocity ratio
V ′

10◦
9, 10

11, 12
7, 8

3, 4
1, 2

9, 10
11, 12

7,8

20◦ 9, 10
11, 12

3, 4
1, 2

9, 10
11, 12

30◦ 11, 12
9, 10

3, 4
1, 2
5, 6

11, 12
9, 10

Zigzag

Rudder order Most influential variants

Output parameters Yaw rate
r′

Heading
ψ

Drift angle
β

10◦
12, 11
10, 9
1,2

12, 11
10, 9
1,2

12, 11
10, 9
1,2

20◦
12, 11
9, 10
1,2

11, 12
10, 9
1,2

11, 12
10, 9
1,2
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Table 9. Cont.

Spiral

Rudder order Most influential variants

Output parameters Yaw rate
r′

Drift angle
β

Velocity ratio
V(t)/V0

9, 10 11, 12
7, 8

1, 2
3, 4
5, 6

9, 10
11 12
7, 8

Table 10 presents a synthesis of L2 results for the different performance parameters
and the different manoeuvres. The values are an average of the maximum L2 value of
each kinematic variable, y, from the 10/20/30 turning manoeuvres—Equation (16)—and
10/20 Z-manoeuvres—Equation (17). For the spiral manoeuvre, as only one manoeuvre
was performed, Table 10 presents the maximum L2 value of the corresponding kinematic
variable. Tables 10–14 present the same information for nonlinear coefficients. This allows
the highest-sensitivity performance parameters to be connected with the corresponding
perturbation coefficient(s) for each manoeuvre.

Lavg
2y =

Lt10
2 + Lt20

2 + Lt30
2

nt
(16)

where nt is the number of turning manoeuvres,

Lavg
2y =

Lz10
2 + Lz20

2
nz

(17)

Table 10. Synthesis of performance parameters’ L2 results for the different manoeuvres: linear
coefficient perturbation.

Average L2

Turn Zigzag Spiral

Yaw rate
r′ 0.084 0.26 0.13

Drift angle
β

0.022 0.081 0.026

Velocity ratio
V′ 0.024 – 0.044

Heading
ψ

– 0.38 –

From Table 10, it can be seen that the most sensitive output parameter was the yaw
rate r′, followed by the velocity ratio V′, and the least sensitive was the drift angle β in
the average of the three turning manoeuvres. The output parameters r′ and V′ were most
sensitive to perturbations of N′r and, with increasing rudder angles, N′δ. The output
parameter β was most sensitive to perturbations of Y′r and Y′v; with increasing rudder
angles, high sensitivity to Y′δ also appeared.

The sensitivity results of the zigzag manoeuvre showed that the output parameters
ψ, r′ and β had the highest sensitivity to perturbation in N′δ, closely followed by N′r. The
highest sensitivities were those of the output parameters ψ and r′. The drift angle β was
the least sensitive output parameter, with about 23% of the sensitivity of ψ.
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Table 11. Most influential perturbation variants in all manoeuvres: NLS perturbation.

Turning

Rudder order Most influential variants

Output parameters Yaw rate
r′

Drift angle
β

Velocity ratio
V′

10◦ 9, 10 5, 6 3, 4

20◦ 9, 10
11, 12 5, 6 3, 4

30◦ 11, 12
9, 10

5, 6
7, 8 3, 4

Zigzag

Rudder order Most influential variants

Output parameters Yaw rate
r′

Heading
ψ

Drift angle
β

10◦ 3, 4 3, 4 3, 4

20◦ 3, 4 3, 4 3, 4

Spiral

Rudder order Most influential variants

Output parameters Yaw rate
r′

Drift angle
β

Velocity ratio
V(t)/V0

11, 12
9, 10

5, 6
7, 8 3, 4

Table 12. Synthesis of performance parameters’ L2 results for the different manoeuvres: nonlinear
single-variable coefficient (NLS) perturbation.

Average L2

Turn Zigzag Spiral

Yaw rate
r′ 0.027 0.025 0.0034

Drift angle
β

0.0013 0.0075 0.0013

Velocity ratio
V′ 0.027 – 0.0328

Heading
ψ

– 0.029 –

The output parameter most sensitive to the spiral manoeuvre was the yaw rate, r′ .
This variable was most sensitive to N′r, but N′δ also exerted a significant degree of influence.
V′ was sensitive to the same coefficients as r′ but had much less sensitivity (about 34% of
the sensitivity of r′). β was the least sensitive output variable (about 17% of the sensitivity
of r′).

In papers dedicated to this subject, the authors make use of two performance parame-
ter types: the kinematic variables used here, or the classical IMO manoeuvring performance
criteria variables. To show how the sensitivity of each group of the performance parameters
behaves, a comparison study was made here of these sensitivity results with those calcu-
lated using classic performance criteria, such as the tactical diameter (TD), advance (AD)
and peak overshoots (α01, α02) as prescribed by the IMO Standards for Ship Manoeuvrabil-
ity [32] and reported by Ishiguro et al. [21]. As in [21], the sensitivity index Sk represents
the ratio of change in the estimated results when each parameter is changed by 50%. It
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becomes 1.0 when the estimated relevant index increases 50% upon the 50% increase of
a given parameter. Absolute values of variation were chosen, and graphical results are
presented in Figure 6.

Table 13. Most influential perturbation variants in all manoeuvres: NLM perturbation.

Turning

Rudder order Most influential variants

Output parameters Yaw rate
r′

Drift angle
β

Velocity ratio
V′

10◦ 9, 10 3, 4
9, 10

2, 1
9, 10

20◦ 9, 10 3, 4
9, 10

2, 1
9, 10

30◦ 9, 10 3, 4 2, 1
9, 10

Zigzag

Rudder order Most influential variants

Output parameters Yaw rate
r′

Heading
ψ

Drift angle
β

10◦
4, 3
9, 10
2, 1

4, 3
9, 10
2, 1

3, 4
9, 10
2, 1

20◦
10, 9
3, 4
1, 2

10, 9
3, 4
1, 2

10, 9
3, 4
1, 2

Spiral

Rudder order Most influential variants

Output parameters Yaw rate
r′

Drift angle
β

Velocity ratio
V(t)/V0

9, 10 3, 4 2, 1
9, 10

Table 14. Synthesis of performance parameters’ L2 results for the different manoeuvres: nonlinear
multiple variable coefficient (NLM) perturbation.

Average L2

Turn Zigzag Spiral

Yaw rate
r′ 0.028 0.059 0.029

Drift angle
β

0.0078 0.02 0.008

Velocity ratio
V′ 0.0015 – 0.016

Heading
ψ

– 0.069 –
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Figure 6. Examples of sensitivity of TD, AD, α01, α02 and variants in 20◦ turning manoeuvre, Z20
manoeuvre and spiral manoeuvre—perturbation of linear coefficients (LC) with perturbation variants
of Table 5 in the abscissa.

The results show that for the turning manoeuvre, the most influential coefficients
were the same as those obtained using the kinematic variables r′ and V′: N′r, N′δ and N′v.
These results are in line with those obtained by Ishiguro et al. [21] for N′r and N′β, since
N′δ was not part of their model. N′r also appears as one of the most influential LCs (closely
after N′β) in the work by Kose and Misiag [19,20] that used the peak overshoots, tactical
diameter, advance and transfer as performance variables.

For the zigzag manoeuvre, both overshoots were most sensitive to N′r. Sensitivity to
N′v and N′δ also existed, but was less evident than when using the kinematic variables.
Sensitivity to Y′v did not appear to show any relevance. Interestingly the sensitivity results
when using kinematic variables were closer to those reported by Ishiguro et al. [21], while
the sensitivity results from the use of overshoots differed from those in [21] in terms of
sensitivity to Y′v.

N′v and Y′v do not appear as clearly as the most influential linear coefficients in the
referenced works. It is believed this is because this research was conducted on a naval
combatant hull mathematical model, with a different underwater hull shape. As shown,
the sensitivity analysis using some of the same performance parameters as were used by
Ishiguro et al. [21] and Kose and Misiag [19,20] confirmed the results of the sensitivity
analysis performed in this work, which used the kinematic variables as the performance
parameters. In addition, in the present model, the linear coefficient N′δ was shown to be
influential, although it was not part of the MMG models used by the referenced authors.

The sensitivity increased with increasing rudder angle but with different behaviours
from each output parameter, as can be observed in Figure 7. This effect was indirectly
visible in previous works regarding Z-manoeuvres, but not in works regarding the turning
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manoeuvre, because usually only one 35◦ turning manoeuvre is studied, e.g., Kose and
Misiag, [19], Ishiguro et al., [21] and Rhee and Kim [22].
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Figure 7. Trend of the L2 output parameters vs. rudder angle; (a) r′, β, V′ due to most influential LC
on turning; (b) ψ′, r′, β due to most influential LC on zigzag manoeuvre.

3.3. Sensitivity Analysis of the Manoeuvres for Perturbation of the Nonlinear Single-Variable
Coefficients

Figure 8 presents the reference run (variant #0) and the variants causing the maxi-
mum output parameter variation in some of the simulated manoeuvres when a partial
perturbation of the nonlinear single variable coefficients was performed.
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Figure 8. Examples of output parameters results for partial perturbation—NLS coefficients.
(a) 20 turning, (b) Z20, (c) spiral manoeuvre.

Figure 9 presents the L2-metric graphs of the sensitivity analysis for the most influ-
enced output parameters vs. variant for NLS perturbation.
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(b) Z20 manoeuvre, (c) spiral manoeuvre—perturbation of nonlinear single-variable coefficients
(NLS), with perturbation variants of Table 6 in the abscissa.

Table 11 presents the most relevant perturbation variants in the studied manoeuvres
for NLS perturbation.

Table 12 presents a synthesis of performance parameters’ L2 results for the different
manoeuvres resulting from NLS perturbation.

Depending on the manoeuvre, the output parameters most sensitive to NLS pertur-
bation were: the velocity ratio, V′ (turning and spiral), and ψ and r′ (zigzag), which were
essentially sensitive to X′δδ. Comparing the levels of sensitivity of nonlinear single-variable
coefficients with those of linear coefficients, the first was on average about 2% of the latter.
Therefore, the mathematical model was less sensitive to the nonlinear single-variable pa-
rameters, which in this model were of the second and third order, the latter with a diffuse
physical meaning, while the former was the hull and rudder nonlinear drag: X′uu and X′δδ,
respectively.

The most sensitive output parameter observed for the perturbation of the nonlinear
single-variable coefficients (NLSs) was V′ in spiral and turning manoeuvres and ψ and r′
in Z manoeuvres. The most relevant NLS coefficient, X′δδ, was the rudder nonlinear drag
for all manoeuvres.

Wang et al. [24] present a sensitivity analysis using the direct method and Wang et al. [18]
present a sensitivity analysis using the indirect method, both using the same 4DOF mathe-
matical model of a container ship, with 18 hydrodynamic coefficients in the surge equation
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and 28 in each of the sway equation and yaw equation. Bearing in mind the different
hull types in this study and those referenced, and also the different metrics, it is interest-
ing to note that the results obtained by Wang et al. [18] for the surge motion using the
indirect method also showed a high sensitivity of the model to X′δδ. X′uu appeared as
the fourth most influential coefficient in surge motion, while in the present paper it was
almost negligible.

The results were very different when using the direct method, wherein X′uu was the
third most influential coefficient and X′δδ was almost negligible. These results may indicate
that further studies could be done on the nature and adequacy of the direct method vs.
the indirect method, and the indirect method may work well and be more informative if
using kinematic variables as output parameters instead of IMO criteria/classical output
parameters of the turning and Z-manoeuvres.

From what has been discussed so far, it is clear that the sensitivity analysis using
kinematic variables and various rudder orders (in turning and Z manoeuvres) introduces
complexity to the analysis, but shows some kinematic variables at a consistently higher
level of sensitivity, as was the case for r′ in all manoeuvres and heading ψ in Z-manoeuvres,
and shows that the influence of the model coefficients, or, in other words, the sensitivity to
the kinematic variables, evolves with the rudder angle.

3.4. Sensitivity Analysis of the Manoeuvres for Perturbation of the Nonlinear
Multivariable Coefficients

Figure 10 presents the reference run (variant #0) and the bounds of the ship behaviour
in some of the simulated manoeuvres when partial perturbation of the nonlinear multivari-
able coefficients was performed.
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Table 13 presents the most relevant perturbation variants in the studied manoeuvres
for NLS perturbation.

Figure 11 presents the L2-metric graphs of the sensitivity analyses for the most influ-
enced output parameters vs. variants for NLM perturbation.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 23 of 33 
 

 

Zigzag 

Rudder order Most influential variants 

Output parame-

ters 
Yaw rate 

𝒓’ 
Heading 

𝝍 
Drift angle 

𝜷 

10° 

4, 3 

9, 10 

2, 1 

4, 3 

9, 10 

2, 1 

3, 4 

9, 10 

2, 1 

20° 

10, 9 

3, 4 

1, 2 

10, 9 

3, 4 

1, 2 

10, 9 

3, 4 

1, 2 

Spiral 

Rudder order Most influential variants 

Output parame-

ters 
Yaw rate 

𝒓’ 
Drift angle 

𝜷 
Velocity ratio 

𝑽(𝒕) 𝑽𝟎⁄  

 9, 10 3, 4 
2, 1 

9, 10 

 

  

(a) (b) 

 

(c) 

Figure 11. Examples of the most sensitive kinematic variables and variants: (a) 20° turning manoeu-

vre, (b) Z20 manoeuvre,(c) spiral manoeuvre—perturbation of nonlinear multivariable coefficients 

(NLMs), with perturbation variants of Table 7 in the abscissa. 

  

Figure 11. Examples of the most sensitive kinematic variables and variants: (a) 20◦ turning manoeu-
vre, (b) Z20 manoeuvre, (c) spiral manoeuvre—perturbation of nonlinear multivariable coefficients
(NLMs), with perturbation variants of Table 7 in the abscissa.

Table 14 presents a synthesis of performance parameters’ L2 results for the different
manoeuvres resulting from NLM perturbation.

For the turning manoeuvre, the levels of sensitivity of the NLM coefficients were
on average about 24% of those arising from linear coefficients (LC). Above this level of
sensitivity were the coefficients X′vr, N′vvr and Y′vvr. Comparing the levels of sensitivity of
these NLM coefficients to those of nonlinear single-variable coefficients (NLS), they were
on average about 500% of the latter.

In the zigzag manoeuvre, the sensitivity of all output parameters was the highest for
N′vvr and Y′vvr. For Z10, the sensitivity was highest for Y′vvr and for Z20, the sensitivity
was highest for N′vvr. The output parameters also showed non-negligible sensitivity to
X′vr, although the relative influence diminished as the rudder angle increased. Comparing
these levels of sensitivity to those relative to linear coefficients, they were on average
about 11% of the latter. Above this level of sensitivity were the coefficients N′vvr and Y′vvr.
Comparing the levels of sensitivity of these coefficients to those of NLS coefficients, they
were on average about 200% of the latter.
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As in the other manoeuvres, in the spiral manoeuvre, the sensitivity to the NLM
coefficients was more significant than that observed for the NLS coefficients and less
significant than that observed for the linear coefficients.

Therefore, on average, the mathematical model was much more sensitive to the NLM
coefficients than to the NLS coefficients for all manoeuvres.

Figure 12 presents the sensitivity of the model using IMO manoeuvring performance
variables as explained in Subsection 3.2.
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Figure 12. Examples of the sensitivity of TD, AD, α01, α02 and variants in the 20◦ turning manoeuvre,
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with perturbation variants of Table 7 in the abscissa.

Using the classical output parameters (Figure 12), it is clear that for both the turning
manoeuvre and the Z-manoeuvre, there was one influential coefficient, N′vvr, which is in
line with the results obtained using the kinematic variables, but somewhat less informa-
tive, since all the remaining coefficients were residual while the sensitivity results using
kinematic variables evinced other relevant NLM coefficient sensitivity indices, as shown
in Figure 11 and Table 13. It is also apparent that there is an agreement between the two
methods in terms the highest sensitivity of the model being to linear coefficients by different
orders of magnitude relative to nonlinear multivariable coefficients.

All in all, the most sensitive output parameter was the yaw rate r′ for turning and spiral
manoeuvres, and ψ (closely followed by r′) for the zigzag manoeuvre. The most influential
NLM coefficients in terms of the high sensitivities of these kinematic parameters were N′vvr
and Y′vvr, and X′vr was shown to be relevant in influencing V′. These results are not directly
comparable to those obtained by Ishiguro et al. [21] since different model coefficients were
used. However, one of the two NLM coefficients with the highest sensitivity reported
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in [21] was N′ββr, an analogue to N′vvr, which is also the only one of these NLMs shown to
be relevant by Wang et al. [18,24]. The fact that Y′vvr and X′vr do not appear in the reduced
model with the highest sensitivity values in the Wang et al. papers [18,24], although they
were part of the initial group of coefficients under analysis, may be related to the different
hull shapes under consideration.

Regarding the sensitivity analysis vs. rudder angle, in general, the sensitivity increased
with increasing rudder angle, as seen in Figure 7 and addressed from a different perspective
in Figure 13, which compares the relative values of sensitivity of the performance kinematic
parameters with the highest sensitivity index values in the turning and Z-manoeuvres for
LC (Nr, Nδ), NLS (Xδδ), and NLM (Nvvr) perturbations.
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4. Discussion
4.1. Sensitivity Study and Analysis

From the perspective of the relevance and adequacy of the chosen kinematic variables
as performance parameters for the turning manoeuvre, the most relevant performance
parameters were the yaw rate r′ and velocity ratio V′. The same relevance in opposite
order was observed for the spiral manoeuvre. For the Z-manoeuvre, the highest sensitivity
was observed for ψ and r′. However, the three kinematic variables ψ, r′ and β seem to
be relevant output parameters in the sensitivity analysis of the zigzag manoeuvre, and
globally this manoeuvre generated the highest values of the L2 sensitivity index (see
Figures 7b and 13b, Tables 10 and 14).

The effects on drift angle β′ were globally lower for all manoeuvres but not negligible
(see Tables 15–17). Therefore, all these kinematic variables seem adequate for the present
sensitivity analysis. However, in terms of efficiency of the sensitivity analysis (fewer
manoeuvres for the same level of accuracy), it seems that the spiral manoeuvre, using
as performance parameters the kinematic variables r′, β and V′, may be enough for an
adequate sensitivity analysis. This is a new approach relative to the choice of performance
parameters and manoeuvre type used for sensitivity analysis, and appears to be valid at
least for typical naval combatants of the corvette or frigate hull types.
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Table 15. Most influential coefficients in turning manoeuvre by kinematic variable.

Coefficient Type

Linear Nonlinear Multivariable Nonlinear Single Variable

r′ N′r N′δ N′v N′vvr Y′vvr N′vvv N′δδδ

Lavg
2 0.08 0.077 0.053 0.025 0.0043 0.0024 0.0022

Lratio
2 , percent 100 97 67 31 5 3 3

V′ N′r N′δ N′v X′vr N′vvr X′δδ

Lavg
2 0.023 0.023 0.016 0.014 0.0075 0.026

Lratio
2 , percent 29 29 21 18 9 33

β Y′r Y′v Y′δ Y′vvr N′vvr Y′vvv Y′δδδ

Lavg
2 0.022 0.020 0.015 0.0069 0.0017 0.0012 0.0004

Lratio
2 , percent 27 25 19 9 2 2 1

Table 16. Most influential coefficients in zigzag manoeuvre by kinematic variable.

Coefficient Type

Linear Nonlinear Multivariable Nonlinear Single Variable

ψ N′δ N′r Y′v N′vvr Y′vvr X′δδ Y′vvv

Lavg
2 0.38 0.27 0.13 0.03 0.017 0.029 0.0027

Lratio
2 100 73 34 8 5 8 1

r′ N′δ N′r Y′v N′vvr Y′vvr X′δδ Y′vvv

Lavg
2 0.25 0.19 0.09 0.027 0.015 0.025 0.0023

Lratio
2 66 50 24 7 4 7 1

β N′δ N′r Y′v N′vvr Y′vvr X′δδ Y′vvv

L2 value 0.081 0.054 0.038 0.0077 0.0058 0.0068 0.00079

Lratio
2 22 14 10 2 2 2 0.2

Table 17. Most influential coefficients in spiral manoeuvre by kinematic variable.

Coefficient Type

Linear Nonlinear Multivariable Nonlinear Single Variable

r′ N′r N′δ N′v N′vvr Y′vvr N′δvv N′δδδ N′vvv

Lavg
2 0.13 0.085 0.051 0.029 0.0064 0.0029 0.0034 0.0029

Lratio
2 100 64 38 22 5 2 3 2

V′ N′r N′δ N′v X′vr N′vvr Y′vvr X′δδ

Lavg
2 0.044 0.027 0.017 0.016 0.0092 0.0032 0.033

Lratio
2 33 20 13 12 7 2 25

β Y′v Y′r Y′δ Y′vvr N′vvr Y′δvv Y′vvv Y′δδδ

Lavg
2 0.026 0.02 0.017 0.0083 0.0017 0.0007 0.0014 0.0007

Lratio
2 19 15 13 6 1 0.5 1 0.5
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The average L2 sensitivity index is given by

Lratio
2 =

Lavg
2

Lmax
2

(18)

Observing the sensitivity from the perspective of the output parameters’ sensitivity to
all (LC, NLS and NLM) coefficients, Table 15 presents the average L2 sensitivity indices
(Equation (16)) from the 10/20/30 turning manoeuvres for each partial perturbation, and
the relative sensitivity (L2 ratio) to the most influential coefficient.

The most influential coefficients were the linear ones, followed by the nonlinear multi-
variable coefficients and the least influential were the nonlinear single-variable coefficients.
The NLS coefficients were almost irrelevant, except for the coefficient X′δδ for the output
variable velocity ratio V′. Assuming that a coefficient is relevant if its relative influence
is above or equal to a threshold of Lratio

2 = 5, then the relevant coefficients for the turning
manoeuvre were N′r, N′δ, N′v, Y′v, Y′r, Y′δ, X′δδ N′vvr, Y′vvr and X′vr. From these results,
it seems that the turning manoeuvre could be simulated accurately enough, with certain
simplifications, using Equation (7) simplified as follows:

X′q = X′uuu′2 + X′vrv′r′ + X′δδδ2
R ,

Y′q = Y′vv′ + Y′rr′ + Y′vvrv′2r′ + Y′δδR,
N′q = N′vv′ + N′rr + N′vvrv′2r′ + N′δδR.

(19)

Remarkably, Sobolev [33] arrived at a very similar model (except that he used |v′|r′
instead of v′2r′) using different considerations. Of course, the model represented by
Equation (21) cannot be uniformly valid for all cases of the manoeuvring motion, as, for
example, at a zero yaw rate all nonlinearities vanish and steady motion in wind cannot be
described accurately. From this viewpoint, an even simpler Pershitz model [3] with only a
single nonlinear regressor of the type v′|v′| has some advantages. However, the model (19)
is suitable for predicting all manoeuvres in the absence of wind when the sway motion is
always accompanied by yaw.

Table 16 presents the average L2 sensitivity indices for all coefficients and the relative
sensitivity L2 ratio for the Z10 and Z20 manoeuvres. For these manoeuvres, the maximum
sensitivity value, Lmax

2 , came from N′δ.
Although Y′δ is not presented in Table 16, it had an Lratio

2 value between 7% for ψ and
4% for β. In agreement to what was shown by the type of coefficient, the most influential
coefficients were the linear ones. The nonlinear multivariable coefficients were much less
influential. The NLS coefficients were the least influential (except the coefficient X′δδ).

Assuming that a coefficient is relevant if its relative influence is above or equal to a
threshold of Lratio

2 = 5, the relevant coefficients for the zigzag manoeuvre were N′δ, N′r, N′v,
Y′v, Y′r, Y′δ, X′δδ, N′vvr and Y′vvr. From these results, it seems that it would be possible to
simulate, with certain simplifications as shown for Equation (19), the zigzag manoeuvre
using Equation (7) simplified as follows:

X′q = X′uuu′2 + X′δδδ2
R ,

Y′q = Y′vv′ + Y′rr′+ Y′vvrv′2r′ + Y′δδR ,
N′q = N′vv′ + N′rr + N′vvrv′2r′ + N′δδR .

(20)

Table 17 presents the same data as Tables 15 and 16 for the spiral manoeuvre (no
averaged values are needed as only one manoeuvre was performed). The most influential
coefficient was N′r, as was the case for the turning manoeuvre.

Using this table and the same rationale for the turning and Z-manoeuvres leads to the
same relative influences of LC, NLS and NLM coefficients on the performance parameters.
As before, assuming that a coefficient is relevant if its relative influence is above or equal to
a threshold of Lratio

2 = 5, the relevant coefficients for the spiral manoeuvre are N′r, N′δ, N′v,
Y′v, Y′r, Y′δ, X′δδ, N′vvr, X′vr and Y′vvr, which would lead to the spiral manoeuvre being
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simulated with Equation (7) simplified to the same equation as Equation (21). Table 18
shows a synthesis of the most relevant model coefficients by type of manoeuvre.

Table 18. Mathematical model coefficients that induced the highest sensitivity in the output parameters.

Coefficient 10/20/30 Turning 10/20 Z-Manoeuvre Spiral

X′δδ X X X

X′vr X X

Y′v X X X

Y′r X X X

Y′δ X X X

Y′vvr X X

N′v X X X

N′r X X X

N′δ X X X

N′vvr X X

Figure 14 presents a synthesis of the sensitivity of the original mathematical model to
the 19 parameters for the three types of manoeuvre. The turning and zigzag L2 values were
averaged as presented in Equations (16) and (17). From this figure, it is possible to visualise
the reasoning presented in Tables 15–17 and the reduced model Equations (19) and (20).
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4.2. Original and Simplified Models

After arriving at the reduced model resulting from the sensitivity analysis, simulations
were run on the six manoeuvres studied for validation of the reduced model as an adequate
approximation in the cases of reduced numbers of parameters for system identification, or
for the parameters to pay attention to in the design stage of a ship. Other authors used one
simulated manoeuvre to validate the simplified/reduced mathematical model [24].

Considering the turning manoeuvre (Figure 15), and comparing the results to available
trial data (which were in the form of yaw rate vs. time, tactical diameter, advance and
transfer), the simplified model was within an uncertainty of 1.4–16% relative to trial data r′

values, while the complete model was within an uncertainty of 8.7–13%. The distance be-
tween models increased with the rudder angle, in agreement with the authors arguing that
higher-order parameters are important in proper modelling of tight manoeuvres [17,18].
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Figure 15. 10 (a)/20 (b)/30 (c) turning manoeuvre comparing the original model and the reduced
model.For the 10/10 and 20/20 zigzag manoeuvres, it was only possible to compare simulated
results from the original and simplified models (Figure 16) since no trial data were available. In the
10/10 zigzag, the peak overshoots of the simplified model varied 0.4–4.85% relative to the original
model. Those uncertainties increased to 2.62–5.3% in the 20/20 zigzag manoeuvre. The distance
between models increased slightly with the rudder angle but, as can be seen from Figure 16, the agree-
ment was satisfactory, which showed the validity of the sensitivity analysis and the simplified model.
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The spiral manoeuvre (Figure 17) was analysed in the same way as the zigzag ma-
noeuvre, by comparing simulated manoeuvres generated by the original and the reduced
models. The uncertainties originated by the reduced model were in the 0− 5.3% range for
V′ and the 0− 9.7% range for r′, both at a maximum rudder angle of 35◦.
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Therefore, from this validation, it can be said that except for bridge simulators, the
reduced model can be suitable for being used in system identification processes, or for
approximating models of conventional naval ship hulls in the initial stages of ship design.

5. Conclusions

In this work, a sensitivity analysis was performed on a 3DOF half-modular mathemat-
ical model with 19 coefficients, using the indirect method and the Euclidean metric. The
latter represents some novelty among such sensitivity studies.

After the total perturbation of the external forces, partial perturbations of the model
parameters were explored. The partial perturbations were applied first to the linear coef-
ficients of the model, then to the nonlinear single-variable coefficients and, finally, to the
nonlinear multivariable coefficients.

This method of partial perturbations permitted a deeper understanding of the proper-
ties of the mathematical model.
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Application of the partial perturbations to the linear coefficients showed that their
values were in agreement with those achieved by different means, i.e., using different math-
ematical models and other combinations of manoeuvres and—in some cases—different
performance indices.

The practice of application of polynomial regression models demonstrated that some
of these models were overcomplicated and contained excessive terms. The sensitivity study
presented in this paper permitted considerable simplification of regression models for
the sway force and yaw moments, which may be useful for defining a strategy of system
identification from full-scale trial data or for manoeuvring performance prediction in the
initial stages of ship design. The performed analysis also allowed the authors to establish
certain recommendations regarding the application of reduced mathematical models for
different purposes.

The comparison of simulation results obtained by the original and the simplified
models showed the effectiveness of the sensitivity analysis for the model reduction task.

Future work could use these sensitivity analysis results to develop a consistent re-
search strategy for system identification using data from full-scale trial tests, establishing a
reasonable compromise between model completeness, computation time and parameter
identifiability. In particular, the least influential parameters can be fixed using a priori
information about their values, or even removed completely.

It must be emphasised that the manoeuvring mathematical model used in the present
article corresponded to a ship with a high degree of inherent directional stability and
moderate turning ability. Thus, while the results of the sensitivity analysis are applicable
with considerable certainty to similar ship configurations, they should not be applied to
vessels with highly different dynamic qualities, especially if these are characterised by
some degree of directional instability. Such cases require special investigation.
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