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Abstract: Based on the field survey data of the Guangxi offshore voyage in May 2021, the distribution
characteristics of the wind field during the spring monsoon transition period, the temporal and spatial
changes in the diluted water path, and the corresponding ecological responses were analyzed. The
results show the following: the core region of diluted water is located along the coast of Guangxi, and
the diluted water expands to the east and west at the same time, where the thickness of the diluted
water reaches 20 m. Under the combined action of the easterly wind and westward current, the
westward expansion trend was stronger than the eastward expansion trend. The surface distribution
of suspended solids, chlorophyll a, dissolved oxygen, and active silicon is similar to the dispersion
range of the diluted water, and the high-value areas all appear near the estuary, which is basically
consistent with the salinity distribution in the core region of the diluted water. Under the mixing
caused by the wind and tide in the estuary area, the difference in dissolved oxygen between the
surface and bottom layer is small, while in the nearshore area, the stratification of seawater hinders
the dissolved oxygen’s downward transmission, resulting in a large difference in dissolved oxygen
between the bottom and the surface.

Keywords: Guangxi offshore; diluted water; ecological response

Key Contribution: The research results reveal the dispersion path, morphology, and influencing
factors of the spring diluted water in Guangxi and its influence on the ecological environment,
including on near suspended matter, chlorophyll a, dissolved oxygen etc.

1. Introduction

The Guangxi Beibu Gulf is located at the top of Beibu Gulf, bordering Guangxi Zhuang
Autonomous Region to the north, the Leizhou Peninsula in Guangdong Province to the
east, and Vietnam to the west. The maximum water depth is about 50 m. It is located
between 107◦28′–109◦51′ E and 20◦54′–22◦28′ N. The rivers that flow into Beibu Gulf from
Guangxi are arranged in a line from east to west, Nanliu River, Dafeng River, Qinjiang
River, Maoling River, Fangcheng River, and Beilun River.

When runoff from Guangxi enters the sea, it forms diluted water. Because runoff
density is lower than seawater, it floats on the seawater and forms a plume, plume cir-
culation, and a plume front. Its structure leads to the stratification of the water body,
which strengthens the vertical shear, leads to the instability of the water body, and accel-
erates the vertical mixing process of the water body. The plume front is the area with the
largest salinity horizontal gradient [1]. As a dynamic barrier, the front zone prevents the
transport of momentum, dissolved substances, and sediments to the open sea; thus, the
concentration of dissolved substances and other substances in the front zone of the sea is
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significantly higher than that in the sea on both sides of the front zone [2]. The runoff from
Guangxi into the sea and the sediment, nutrients, pollutants, etc., carried by it have a huge
impact on the circulation structure [3], water mass structure [4–6], upwelling [7,8], river
plume [5], sediment deposition [9,10], ocean productivity [11–15], etc. The large number
of nutrients and organic matter brought about by the diluted water from Guangxi can
change the community structure of planktonic algae [16] and zooplankton [17] in estuarine
waters, resulting in higher primary productivity, which is beneficial for the biogeochem-
ical elements of the estuary and can have an important impact [18,19]. The high-value
zone of chlorophyll a in summer is mainly distributed in the estuary area and carries the
high-nutrient diluted water to the offshore area [20]. The increase in nutrients induces the
growth of phytoplankton at a concentration that is significantly higher than in the winter.
The nutrient concentration characteristics and sea-flow fluxes of the main rivers flowing
into the sea in February (dry season) and August (wet season) [21] vary. The difference in
salt concentration was more obvious, and the nutrient concentration of the Dafeng River
and Nanliu River was higher in the wet season than in the dry season. After analyzing
the nutrient data from the Beibu Gulf waters of Guangxi from the past 25 years, it was
determined that the diluted water from the land-source runoff in Guangxi was the main
carrier of pollution in this sea area, and the pollutant mass concentration in the coastal
waters varied with the annual runoff into the sea [22]. The dispersion of pollutants is
closely related to the hydrological characteristics of the coastal waters [23] and is also
affected by the mixing process of the open ocean currents [24,25]. In the area shallower
than the 10 m isobath near the coast, the concentration of NO3-N is mainly affected by the
terrestrial pollution caused by surface runoff [16]. There is a high eutrophication state in
the Lianzhou Bay, Qinzhou Bay, the Lianzhou Bay Estuary, and the Dafeng River Estuary,
and the accelerated industrialization of coastal areas has changed the marine food chain
and increased the risk of red tides [26,27].

During the spring monsoon transition period, the northeast monsoon that prevails in
winter gradually transform into the southwest monsoon that prevails in summer with the
continuous increase in the runoff into the sea from Guangxi. Under the combined effect of
runoff and the monsoon, the dispersion path and shape of the diluted water in Guangxi
are constantly changing. To understand the response of different environmental factors
to the change in the diluted water path during the monsoon transition period, as well as
the interaction between various environmental variables and their temporal and spatial
changes, the on-site observation data from the voyage in May 2021 are sorted in this study,
and the characteristics of the expansion model of diluted water in Guangxi during this
period were analyzed, as was the transport of suspended solids, chlorophyll a, dissolved
oxygen, and active silicon.

2. Materials and Methods

The data of nearshore and coastal areas were obtained from the special spring voyage
of the “Beibu Gulf Natural Resources Survey and Assessment” in May 2021, in which
87 stations along the coast (L01–L87 stations) were investigated from 26 April to 15 May,
and 40 stations (B01–B40 stations) were investigated from 22 May to 26 May. The water
depth of each station ranged from 1 m to 39 m, and the average water depth was 12 m.
Data included temperature, salinity, chlorophyll a, dissolved oxygen, and suspended solids,
as well as other hydrological, ecological, and environmental factors. This special survey
covered the sea area from coastal to nearshore areas (Figure 1), conducting multidisciplinary
comprehensive observations of ocean currents, salinity, temperature, suspended matter,
dissolved oxygen, chlorophyll a, and active silica. The observation level of the ocean
current, salinity, and temperature were from the sea surface to the sea bottom, and the
sampling interval was 1 m. Navigational wind field data were collected on board during
the survey. The tidal level data of Beihai, Qinzhou, and Fangchenggang during the survey
were collected. During the period from 26 April to 26 May, the profile current observation
was carried out through the seabed base deployed on the north side of Weizhou Island,
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where the sampling interval was 1 m. These high-resolution data are helpful for revealing
the response of suspended matter, dissolved oxygen, chlorophyll a, and other substances.
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Figure 1. Distribution map of survey stations. The black dotted line is the water depth, the cyan
triangle is tide level station, and T1, T2, and T3 is the Beihai Station, Qinzhou Station, and Fangcheng-
gang Station, respectively; The magenta square is the seabed base station; The purple circle is
survey station.

3. Results
3.1. The Characteristics of Diluted Water

Previous studies defined the salinity range of diluted water as 4 psu–32 psu, of which
4 psu–27 psu was the salinity of the core region of the diluted water [1]. Following this
principle, this paper also uses a salinity of less than 32 psu for diluted water. From the
surface layer salinity distribution (Figure 2a) in the survey area, it can be seen that the
diluted water in Guangxi expands to the west and east simultaneously, where the expansion
toward the west is stronger than that toward the east. The core region of diluted water
in Guangxi, with a salinity of 4 psu–27 psu during the spring monsoon transition, was
concentrated in the coastal area, and a salinity front was formed. After entering the sea
area from the estuary, through geostrophic adjustment, the baroclinic gradient and Coriolis
force [28] were balanced, driving the diluted water to expand westward. After the runoff
from Guangxi flowed into the Beibu Gulf, a very strong surface density gradient (across the
isobath direction, roughly perpendicular to the shoreline) was formed along the coast of
Guangxi, creating almost equal water levels on the west and east sides of the Guangxi coast;
however, it is not enough to reverse the westward expansion trend (Table 1), and under
the combined action of the easterly wind and the westward coastal current, a westward-
expanding pinnate front was formed on the lines of Fangcheng Bay, Qinzhou Bay, and
Lianzhou Bay. In Lianzhou Bay, the density gradient of the freshwater after mixing with
the tide was small, but under the action of the southward flow driven by the northerly
wind, the freshwater interacted with the outer seawater to form a 28 psu–30 psu plume
front, whose southernmost end could reach the sea area near 21◦ N. This salinity front
corresponds to a temperature front ranging from 27 ◦C to 29 ◦C (Figure 2b). There were
no rivers flowing into the area from Beihai to the coast of Tieshangang, and the area
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was affected by the easterly wind and the northwest current. However, in the area of
Tieshangang and Weizhou Island, the eastward expansion of diluted water in Guangxi
was still present, and its southeast side was occupied by high-salt water with a salinity
greater than 32 psu. The high-salt water mass might come from the coastal flow across the
Qiongzhou Strait in western Guangdong (Figure 3) [29].
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Table 1. Mean sea level at Beihai, Qinzhou, and Fangchenggang stations (unit: cm, reference datum: 85).

Station Longitude (E) Latitude (N) Mean Tide Level (cm)

Beihai 109◦03′ 21◦28′ 69

Qinzhou 108◦37′ 21◦41′ 70

Fangchenggang 108◦20′ 21◦36′ 71
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Figure 3. Distribution of currents (black arrows) and wind fields (red dashed arrows) during the
sampling period in May 2021.

From the vertical sections (Figure 4), we selected the westernmost section (L1) of the
survey area and the North Sea section (L4) to observe the distribution characteristics of
diluted water. The two sections are similar to that seen with the vertical coastline trend, but
because the northernmost ends of the two sections are located in coastal waters, they do not
include the edge of the maximum salinity front near the estuary. According to the vertical
distribution of salinity in the L1 section, the depth of the diluted water can reach 20 m.
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Under the joint effect of northerly wind Ekman transport and Coriolis forcing, the diluted
water in Guangxi extends westward, becoming salty and thinning out due to mixing with
continental shelf water. At its south edge, due to very weak mixing, the thickness of the
diluted water is just 8 m, and the stratification is strongest. Therefore, the thermocline
uplifts southward (Figure 4a), and the temperature difference in the surface layer increases
continuously, ranging from 0.5 ◦C in the northern section to 4 ◦C in the southern part.
Under the joint action of temperature and salinity, the surface seawater density decreases
continuously, and seawater stratification also increases continuously.
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According to the cross-section distribution of L4 salinity (Figure 4d), it can be seen that
the thermocline layer of the diluted water was 8 m in the northern sea area, and its thickness
rapidly increased to 14 m after it spread southward for about 40 km. The dispersion range
of the diluted water still overflows the section, where the salinity is about 30.9 psu. The
Ekman effect of the easterly wind on this section drove the accumulation of diluted water
to the shore, which, coupled with the rotation of the current from south to north and its
northward flow direction, caused its surface isohaline to bend shoreward at the northern
station of the section. In the vertical direction, the subsurface isohaline changes from being
horizontal in the open sea to being vertical near the shore, resulting in vertical mixing being
intensified in the nearshore area and the disappearance of the thermocline. The surface and
subsurface of the entire section were covered with warm water with a temperature greater
than 30 ◦C, and significant seawater stratification occurred.

3.2. The Characteristics of Environmental Factors

During the survey, the surface distributions of suspended solids, chlorophyll a, dis-
solved oxygen, and active silicon (Figure 5) were all similar to the dispersion range of the
diluted water. The maximum concentration area of suspended matter was located in the
waters of Lianzhou Bay and Dafengjiang Estuary, and its maximum horizontal gradient
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corresponds to the salinity front with a salinity of 5 psu–28 psu, which indicates that there
was a maximum turbidity zone, and the concentration of the suspended matter decreased
obviously after sedimentation and dilution of the maximum turbidity zone. The high-
concentration locations correspond to the low-salinity locations. The inner sea study area
shows high salinity values (31.5 psu) and a low suspended matter concentration of 5 mg/L.
The maximum values of chlorophyll a, dissolved oxygen, and active silicon appear near
the estuary, which is basically consistent with the salinity distribution in the core region of
diluted water and the spatial distribution of suspended matter at the surface. However,
the concentrations of chlorophyll a, dissolved oxygen, and active silicon in areas outside
the core region of the diluted water were relatively low. Chlorophyll releases oxygen
through photosynthesis. Since the organic matter carried by the diluted water needs to
consume oxygen, the distribution of chlorophyll a and dissolved oxygen did not completely
correspond. The dissolved oxygen in the surface layer in the study area showed a trend of
increasing from the southwest to the northeast. The concentration of dissolved oxygen in
the nearshore surface layer of Lianzhou Bay and Tieshangang area was relatively high, and
its distribution pattern was similar to that of the 29 isohalines of diluted water in the study
area. The maximum value of active silicon was concentrated near the estuary, indicating
that the terrestrial nutrients carried by the runoff from Guangxi to the sea were the main
sources of nutrients in the estuary and its adjacent waters.
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4. Discussion
4.1. Dynamic Factors Affecting Dispersion of Diluted Water

Studies on the characteristics and mechanism of diluted water in the Pearl River
Estuary [27,30–34] and the Yangtze River Estuary [35–41] show that wind fields and runoff
can significantly affect the form and scope of diluted water. The amount of runoff can
significantly affect the dispersion area of diluted water [42–46], whereas the rivers flowing
into the Beibu Gulf from the coast of Guangxi are all small and medium-sized rivers with
a small runoff [47]; thus, the contribution of runoff and the expansion scope, path, and
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intensity of freshwater is not as obvious as that in the Pearl River Estuary and the Yangtze
River Estuary.

4.1.1. Influence of the Wind on the Diluted Water in Guangxi

The easterly and southeasterly winds drive the diluted water in Guangxi to the west
coast. Under the blowing of the strong southwest wind, a strong northward coastal current
is generated on the west coast of the Beibu Gulf, reaching the west of Qinzhou Bay in
Guangxi. Under weak southwesterly winds, the surface layer of low-salinity water mainly
flows southward along the west coast of the Beibu Gulf [47], and when the southerly
wind affects the sea surface, it causes the diluted water to expand in the east and west
directions. During summer, under the action of the southwesterly wind, the estuarine
plume that forms in July spreads offshore to the central sea area in the northern part of the
Beibu Gulf, and the low-salt water affects the western coast of Hainan Island, forming a
tongue shape [3]. During the survey, the east coast (L4–L6 section) was mainly dominated
by easterly and southeasterly winds, which hindered the eastward dispersion of diluted
water. In Lianzhou Bay (L2–L3 section), the diluted water expanded to the sea due to the
northerly wind. On the west coast (L1 section), under the action of the northerly wind, the
diluted water expanded to the sea and to the west coast, thereby increasing the dispersion
area of the diluted water. Therefore, the wind direction changed synchronously with the
dispersion path of the diluted water. It can be concluded that the wind field is one of the
decisive factors that control the dispersion path of the diluted water. During the survey, the
average wind speed was 4.7 m/s, and the wind mixing effect was not enough to destroy
the strong thermocline formed between the upper low-salt diluted water and the bottom
high-salt water (Figure 6), resulting in the upper mixed layer gradually thinning out from
the shore to the outer sea.
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4.1.2. Influence of the Ocean Current on the Diluted Water in Guangxi

The Gulf of Tonkin is within the East Asian monsoon regime, with northeasterly
(blowing from the northeast) wind from September to April and southwesterly wind
during summer. The formation of the circulation in the Beibu Gulf is largely dominated
by the south sea water, wind [48], diluted water [3], and tidal current [49] of the northern
coastal rivers, which presents a complex situation and has changeable characteristics. The
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circulation in the northeast of the Beibu Gulf is affected by the local wind field and the
Qiongzhou Strait current [3,50], and the coastal current moves mainly westward all year
round [51]. According to the current vertical profile of May 2021, the monthly average
residual current moves westward above a depth of 4 m and moves eastward below this
depth. At 1 m, it travels at about 23 cm/s, and the flow direction is 301◦. The average
vertical monthly residual current is about 2.1 cm/s, and the flow direction is 247◦, which
implies that the residual flow moves westward (Figure 7). Therefore, the tidal current could
restrict the diluted water from spreading eastward. The study area is dominated by the
regular semidiurnal tide (Figure 8), and the ocean current decreases with depth.
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The current distribution in the study area is relatively complex (Figure 3). The western
Guangdong current flows through the Qiongzhou Strait into the Beibu Gulf [50], forming
a cyclonic circulation in the south of the studied sea area. In addition, part of the current
enters outside Tieshangang (L6–L5) and forms a westward flow in the coastal area under
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the influence of the easterly wind, which hinders the eastward expansion of the diluted
water. Similarly, under the influence of easterly winds, the westward flow formed in the
North Sea (L4) is not conducive to the eastward dispersion of the diluted water. The two
sections (L3–L2) of Lianzhou Bay form southward and southwestward flow trends under
the influence of northerly winds, and the freshwater diffuses westward and southward. On
the west side of the survey area, the westward flow along the coast expanded westward
due to the action of the easterly wind and Coriolis force. It can be seen that ocean current is
also one of the decisive factors that control the dispersion path of freshwater.

4.2. Response of Environmental Factors to Diluted Water

The Beibu Gulf is a semi-closed bay and is greatly influenced by land sources. Guangxi
runoff carries a large amount of sediment, particulate organic matter, and rich nutrients
into the estuary [52], forming estuarine water with the estuary. Salt is extremely abundant,
the concentration of suspended solids is high, phytoplankton growth is limited by light,
and the concentration of chlorophyll a is low. The runoff of rivers flowing into the Beibu
Gulf from Guangxi affects the salinity of the water body through diluted water, affects the
photosynthesis of phytoplankton through the change in the stratification of the water body,
the gravity circulation, and the position of the maximum turbidity zone, and also leads to
changes in the flux of nutrients into the sea. Specifically speaking, runoff intensity controls
the distribution of salinity outside the estuary, which, in turn, controls the distribution
range and biomass of phytoplankton. On the one hand, runoff drives the transfer of
phytoplankton biomass to the sea outside the estuary. On the other hand, the runoff
brings an overload of suspended matter to the estuary sea area, which significantly reduces
the thickness and depth of the euphotic layer, severely limiting the photosynthesis of
phytoplankton. Outside the estuary, salinity and suspended matter change drastically,
forming a front characterized by salinity and suspended matter. At the edge of the front,
the light is suitable, and the abundant terrigenous nutrients carried by the runoff promote
the rapid growth and reproduction of phytoplankton, forming phytoplankton blooms; thus,
the concentration of chlorophyll a and dissolved oxygen is very high. This phenomenon
also occurs in the Pearl River Estuary [53]. Therefore, the diluted water produced by runoff
not only affects the distribution of physical fields such as salinity and the flow field in the
sea area near the estuary but also brings about a number of rich nutrients, which leads to a
generally high level of primary productivity in the sea area near the estuary. Additionally,
it may have important impacts on the entire food web and ecosystem.

When the Guangxi coast entered the spring monsoon, it had just experienced a winter
with strong water mixing. As the net heat flux into the seawater gradually increased,
the upper seawater was continuously heated, but the temperature of the lower seawater
remained at a low level, and the temperature difference between the surface and bottom
of the seawater body reached more than 4 ◦C, which is conducive to enhancing the strat-
ification of seawater. In addition, in the sea area affected by diluted water, the change
in seawater density was controlled by the change in salinity. With the increase in runoff,
the salinity of the diluted water decreased, and the density of the surface seawater was
significantly lower than that of the middle and lower layers of seawater, forming strong
water stratification and hindering the upper layer. An abundance weakens the seawater
stratification. Therefore, the dissolved oxygen difference between the surface and bottom
layers of the Guangxi Inlet Estuary and its adjacent waters is small. However, in the
nearshore region where the thermocline appears, the difference in the dissolved oxygen
between the surface and bottom layer is larger (Figure 9), which indicates that the vertical
mixing intensity determines the vertical dispersion flux of the dissolved oxygen [54].
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5. Conclusions

During the spring monsoon transition period, a 4 psu–27 psu core region of diluted
water was formed in the coastal area of Guangxi and expanded southward to 21◦ N, where
the depth of the diluted water could reach 20 m. The distribution of suspended solids,
chlorophyll a, dissolved oxygen, and active silicon was similar to the dispersion range
of the diluted water. The wind field and the ocean current are the primary factors that
influence the dispersion pattern of the diluted water. Under the mixing caused by the wind
and tide in the estuary area, the difference in the dissolved oxygen between the surface and
bottom layer is small, whereas, in the nearshore area, the stratification of seawater hinders
the downward transfer of dissolved oxygen, resulting in a large difference in dissolved
oxygen between the surface and the bottom layer. Studies on the mechanism of diluted
water in Guangxi, which is associated with river discharge, winds, shelf circulations, and
tidal mixing, need to be carried out in the future.
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