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Abstract: This paper is concerned with the consensus of a system involving multiple underactuated
autonomous underwater vehicles (AUVs). Combined with a dynamic event-triggered mechanism
and a fixed-time stability theorem, the backstepping average consensus controllers are designed.
Firstly, the new consensus control objective on the system for multiple underactuated AUVs in a
body frame (BF) spherical coordinate system is proposed, and the tracking error kinematic equations
are established based on the kinematic characteristics of the underactuated AUV. The fixed-time
consensus controller is designed by the backstepping method, and the average consensus theorem is
proposed to improve the Lyapunov function. Furthermore, the dynamic event-triggered mechanism
is adopted to reduce the communication requirements and energy consumption. This is the first
solution to the problem of a consensus controller design for a system of multiple underactuated
AUVs. Finally, numerical simulation results demonstrate that the proposed method has superior
effectiveness over alternatives.

Keywords: system for multiple underactuated AUVs; dynamic event-triggered mechanism;
fixed-time stability; average consensus; body frame spherical coordinate system

1. Introduction

In recent years, increasing attention has been focused on systems for multi-AUVs due
to their widespread application. The more complex the task of a system for multi-AUVs,
the higher the cooperation requirement. Formation control is a fundamental research topic
in systems for multi-AUVs. In addition to the challenges of highly coupled nonlinear
hydrodynamics, complex ocean disturbances and limited hardware performance, the for-
mation controller of a system for multi-AUVs must also take the communication topology,
communication constraints and information utilization into consideration.

Many scholars have studied the formation control of multi-AUVs. In order to improve
the convergence speed of AUV formation control, finite-time and fixed-time stability theo-
ries are applied to design the formation controller. Ge Guo [1] presented a tracking control
strategy of AUV formation with model parameter uncertainties and external disturbances.
With a disturbance observer and fixed-time sliding control scheme, the follower vehicle can
track the leader vehicle with all states globally stabilized within a given settling time. A
novel control scheme was presented to accomplish the leader–follower formation control of
unmanned surface vehicles (USVs) under model uncertainties, roll motion and environmen-
tal disturbances [2]. A three-dimensional coordination control scheme was proposed by
combining the sliding mode control, backstepping technique and leader–follower strategy
to deal with coordination control of multiple AUVs [3].

Multi-agent system consensus refers to the task of a group of agents trying to achieve a
common state via local distributed control executed over a communication network, which
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is an effective method to design a multi-agent system formation controller. Compared
with the leader–follower method, consensus control can effectively utilize the information
transmitted between neighboring agents, instead of just the leader. Researchers have
published many studies on consensus control [4–10], such as the fixed-time leader–follower
consensus for a high-order time-varying multi-agent system [4], and on the consensus
of multi-agent systems with and without input saturation constraints [5]. For a multi-
AUV system, a leaderless fault-tolerant consensus strategy based on a heterogeneous
condensation/communication topology was proposed [11,12]. Consensus was applied to
a leader–follower recovery system, using the mothership as a leader [13]. A finite-time
velocity-free position consensus tracking control method was investigated for a multi-AUV
system taking into consideration the uncertainties of heterogeneous dynamics [14].

In practical applications, the underwater acoustic communication bandwidth between
AUVs is limited due to the performance of communication hardware equipment, which
leads to problems with communication constraints. Event-triggered control strategies can
use the effective information between neighboring nodes, reducing the requirements for
communication conditions and unnecessary energy consumption. An event-triggered
fixed-time leader–follower formation controller was designed for a USV [15]. A sliding
mode controller was designed in the presence of model uncertainties, roll motion and
environmental disturbances, ensuring a small formation error in finite-time [2]. Ge Guo [1]
investigated a fixed-time leader–follower formation control method for a group of AUVs
with event-triggered acoustic communications and designed a disturbance observer to
estimate the compound disturbance, which can be achieved within a finite amount of
time independent of the initial estimation error. A finite-time velocity-free rendezvous
control method is considered for a multi-AUV system with intermittent and undirected
communications [16].

Underactuated AUVs are widely used in practical applications. The main problem in
the design of an underactuated AUV controller is that the number of actuators is fewer than
the degrees of freedom, so that the control of the tracking error without an actuator depends
on the coupling. Numerous relevant results are obtained for these challenges. The line of
sight (LOS) guidance algorithm plays a pivotal role due to its simplicity and intuitiveness,
and has been widely applied to path-following for a single AUV or USV. A series of LOS
algorithms (proportional LOS, integral LOS and adaptive LOS) were proposed to reduce the
external environment disturbances [17]. Moreover, in the literature on LOS algorithms, an
output feedback controller based on linear stability theory and the backstepping technique
was proposed to track the desired 3-dimensional trajectory of an underactuated AUV in
the Earth reference frame [18]. For multiple underactuated AUVs, an adaptive formation
control of underactuated AUVs was presented [19], which detailed the additional control
inputs and proved the stability of the system by using the Lyapunov stability theory. A
3-dimensional coordinated formation controller was proposed for a system of multiple
underactuated AUVs [20], which combined the singular perturbation theory.

The kinematic characteristics of the underactuated AUV demonstrate that there are
few researches currently working on the consensus control of systems for multiple under-
actuated AUVs. Thrusters and rudders are usually used as the actuators of underactuated
AUVs. Most stabilization controller designs for underactuated AUVs are based on the angle
errors in a BF spherical coordinate system, such as the heading angle error and pitch angle
error. However, the control objective for consensus control is based on the position errors in
the Earth reference frame coordinate system. When designing the stabilization controller, it
is necessary to transform the position errors in the Earth reference frame coordinate system
to the angle errors in the BF spherical coordinate system. The transformation between
the different coordinate systems will cause coupling, therefore it is difficult to design the
consensus controller for a system of multiple underactuated AUVs.

Motivated by the previous results, this study proposed an average consensus controller
for multiple underactuated AUVs based on the BF spherical coordinate system. Firstly,
the control objective is proposed on account of the kinetic characteristics of a system of
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multiple underactuated AUVs. By designing the average consensus control objective,
the tracking error kinematic equations of an underactuated AUV are constructed. We
decouple the position errors in the Earth reference frame coordinate system into three
controllable degrees of freedom in the BF spherical coordinate system, namely the distance,
pitch angle and yaw angle errors are stabilized by the thrust, pitching torque and yaw
torque controllers, respectively. Then, the backstepping method and fixed-time stability
theory are used to design the average consensus controller. The dynamic event-triggered
mechanism is adopted in the controller to reduce resource consumption. To the best of
our knowledge, this is the first time that the problem of consensus control for a system of
multiple underactuated AUVs has been tackled. The principle contributions of this study
are as follows:

1. The new consensus control objective for a system of multiple underactuated AUVs
based on a BF spherical coordinate system is proposed, which is more adaptive
to the kinematic and kinetic characteristics of underactuated AUVs. The tracking
error kinematics equation is constructed in a BF spherical coordinate system to re-
duce the accumulated error that results from the transformation between different
coordinate systems.

2. The average consensus strategy is proposed to design a consensus controller for
a system of multiple underactuated AUVs. Under the new control objective, the
expression between the actuator control variable and the control objective can be
constructed, which simplifies the controller design. Moreover, the angle consensus for
a system of multiple underactuated AUVs has practical physical significance. Under
this control strategy, the states of AUVs can achieve a consensus faster than in the
leader–follower strategy.

3. The dynamic event-triggered mechanism is adopted to reduce the unnecessary trig-
gers resulting from the decrease of the system operation-triggered threshold, which
reduces the communication requirements and energy consumption in the consen-
sus controller.

2. Mathematical Model and Preliminaries

In this section, graph theory, fixed-time stability theory and useful lemmas are intro-
duced, kinematic and kinetic equations of the AUV model are constructed, the concept of
average consensus is proposed and a description of the problem is presented.

2.1. Graph Theory

An undirected graph G = (v, ε, A) with N nodes is considered, and ε ⊆ v× v is the
set of edges. If (vi, vj) ∈ ε, they are neighbors and get information from each other. The
adjacency matrix A = [aij] satisfies that aii = 0, aij = aji, i 6= j, and if (vj, vi) ∈ ε, then

aij = 1, otherwise aij = 0. The degree matrix D = diag{d1,..., dN}, di =
N
∑

j=1
aij. The

Laplacian matrix L = D− A =
[
lij
]
∈ RN×N .

Lemma 1 ([21]). For an undirected graph G, the Laplacian matrix is positive definite. The eigenval-
ues of the Laplacian matrix L are 01, λ2, . . . , λN , and 0 < λ2 < . . . < λN . If
X = [x1, x2, . . . , xN ]

T satisfies 1T
N X = 0, one can obtain that

λ2XTX ≤ XT LX ≤ λN XTX (1)

where XT LX = 1
2

N
∑

i=1

N
∑

j=1
aij(xi − xj)

2.



J. Mar. Sci. Eng. 2023, 11, 385 4 of 20

2.2. Fixed-Time Control Stability Theory

Suppose in the system exists a Lyapunov function V(x) > 0, and the derivative of
V(x) satisfies the following inequality:

V̇(x) ≤ −aV(x)α − bV(x)β + δ, 0 < α < 1, 1 < β, a, b > 0 (2)

The system is globally stable in fixed-time. There exists a finite constant Tmax, and the
settling time function T can be estimated by (3):

T ≤ Tmax =
1

a(1− α)
+

1
b(β− 1)

(3)

2.3. Useful Lemmas

Lemma 2 ([22]). Let c1, c2...cn ≥ 0, the following inequalities hold:

N

∑
i=1

cp
i ≥

(
N

∑
i=1

ci

)p

, 0 < p ≤ 1

N1−q

(
N

∑
i=1

ci

)q

≤
N

∑
i=1

cq
i ≤

(
N

∑
i=1

ci

)q

, 1 < q < ∞

(4)

Lemma 3 ([15]). For φ, ϑ ∈ R and any real numbers p > 0, q > 0, ζ > 0, the following
inequality holds

|φ|p|ϑ|q ≤ p
p + q

ζ|φ|p+q +
q

p + q
ζ
− p

q |ϑ|p+q (5)

Lemma 4. (Young’s inequality) For a, b > 0, p > 1, q > 1 and 1
p + 1

q = 1, the following
inequality holds:

ab ≤ ap

p
+

bq

q
(6)

2.4. The AUV Model

As shown in Figure 1, it is convenient to use the Earth reference frame and body frame
coordinate system to describe the motion of an AUV in 3-D space. Particularly, there are two
generalized coordinate vectors η, ϑ ∈ R6 that need to be explained. η = [x, y, z, ϕ, θ, ψ]T

denotes the kinematic state of the AUV in the Earth reference frame coordinate system, where
x, y, z represent the positions, and ϕ, θ, ψ represent the attitudes. ϑ = [u, v, w, p, q, r]T

denotes the kinetic state of the AUV in the body frame coordinate system, where u, v, w are
the linear velocities and p, q, r are the angular velocities.

The kinematic and kinetic equations of AUVs can be described as follows:

η̇ = J(η)ϑ

(MRB + MA)ϑ̇ + (CRB(ϑ) + CA(ϑ))ϑ + D(ϑ)ϑ + g(η) = τϑ + τd
(7)

J(η) = [
J1(η) 03×3

03×3 J2(η)
]

J1(η) =

cψcθ −sψcϕ + cψsθsϕ sψsϕ + cψcϕsθ
sψcθ cψcϕ + sψsθsϕ −cψsϕ + sψcϕsθ
−sθ cθsϕ cθcϕ


J2(η) =

1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ


(8)
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where J(η) denotes the rotation matrix. The inertia matrix and additional inertia matrix are
expressed as MRB and MA, respectively. CRB and CA represent the Coriolis centripetal force
matrix, and D(ϑ) denotes the damping matrix, where g(η) is the restoring force vector, i.e.,
the generalized buoyancy and gravitational torque.

XB

YB
ZB

O

u

vw

p

q

r

x

h

z

E

Figure 1. AUV coordinate system.

Remark 1. In practical applications of underactuated AUVs, the actuator inputs are
τϑ =

[
τu, 0, 0, 0, τq, τr

]
, where τu, τq and τr are the thrust, pitching torque and yaw torque, re-

spectively. The controllable state variables of the AUV are ϑc = [u, q, r]T . The design of the position
error stabilization controller is complicated because of the coupling between the controllable variables
and the control objective.

2.5. Average Consensus

Consensus controller design is a challenging problem in a system of multiple underac-
tuated AUVs. Based on the kinematic characteristics of the underactuated AUV, this paper
proposes the concept of average consensus protocol to simplify the design of the consensus
controller for a system of multiple underactuated AUVs.

Definition 1. The system of multiple underactuated AUVs is said to achieve average consensus if
for any given bounded initial states (where pi are the states of the AUV, i) there exists an average
consensus protocol, such that

lim
t→∝

N

∑
i=1

N

∑
j=1

aij(pi − p̄i)
2 = 0 (9)

where p̄i satisfies the following equation:

p̄i =

n
∑

j=1
aij pj

n
∑

j=1
aij

(10)

Average consensus protocol is an adaptive expression of consensus protocol for a
system of multiple underactuated AUVs. For AUV i, the average consensus protocol
generates a virtual reference trajectory by preprocessing the neighboring information.
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Therefore, the tracking error kinematic equations can be constructed, which simplify the
design of the controller. The average consensus protocol and consensus protocol satisfy the
following inequality:

Theorem 1. Suppose A =
{

aij
}

is a symmetric matrix, D = diag{d1, d2, ..., dN},
d1 = d2 = ... = dN = k ≤ N. If the eigenvalues of the Laplacian matrix L are λ1, λ2, . . . , λN ,
and λ1 < λ2 < . . . < λN , the following inequality between the average consensus and consensus
protocol holds:

N

∑
i=1

N

∑
j=1

aij(pi − pj)
2 ≤ λN

λ2 − k + 1

N

∑
i=1

N

∑
j=1

aij(pi − p̄i)
2 (11)

Proof of Theorem 1. Define V1 =
N
∑

i=1

N
∑

j=1
aij(pi − pj)

2 and V2 =
N
∑

i=1

N
∑

j=1
aij(pi − p̄i)

2. V1

satisfies the following Equation (12):

V1 =
N

∑
i=1

N

∑
j=1

aij(pi − pj)
2

= 2PT LP

(12)

V2 satisfies the following Equation (13):

V2 =
N

∑
i=1

N

∑
j=1

aij(pi − p̄i)
2

=
N

∑
i=1

N

∑
j=1

aij(pi −

n
∑

j=1
bij pj

n
∑

j=1
bij

)

2

= PT(D− A)P + PT(E− A)P

= 2PT LP− PT(D− E)P

(13)

where E is expressed as follows:

E = diag{c1, c2, . . . , cN}, ci =
N

∑
p=1

api

dp
(14)

A =
{

aij
}

is a symmetric matrix, and D = diag{d1, d2, ..., dN}, d1 = d2 = ... = dN =
k ≤ N, so the parameter ci can be transformed to the following equation:

ci =
n

∑
p=1

api

dp
=

n

∑
p=1

api

k
=

1
k

n

∑
p=1

aip =
k
k
= 1 (15)

the eigenvalues of the Laplacian matrix L are λ1, λ2, . . . , λN , and λ1 < λ2 < . . . < λN .
From (12) and (13), one can obtain (16):

V1 −V2 = PT(D−Λ)P (16)

where (D − Λ) is diagonal matrix. Suppose the eigenvalues of the Laplacian matrix
of V2 are λ1 − (k− 1), λ2 − (k− 1), . . . , λN − (k− 1), then the following inequality can
be obtained:

[λ2 − (k− 1)]PT P ≤ V2 ≤ δ (17)
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From Lemma 1 and (17), the following inequality holds:

V1 ≤ λN PT P ≤ λN
δ

λ2 − (k− 1)
=

λN
λ2 − k + 1

V2 (18)

This concludes the proof.

2.6. Problem Description

The consensus control of a system of multiple underactuated AUVs is a challenging
research topic. Compared with the full-actuated AUV, the number of actuators in the
underactuated AUV is less than the degrees of freedom, so the controllability of an under-
actuated AUV is affected. The consensus control of a system of multiple underactuated
AUVs cannot be directly and completely controlled based on the position error, as that of a
full-actuated system of AUVs, so the control objective based on position error convergence
is not completely suitable for an underactuated AUV. Based on the dynamic characteristics
of the system of underactuated AUVs, the control objective based on the distance and angle
errors is designed.

In this paper, a new consensus control objective for a system of multiple underactuated
AUVs based on a BF spherical coordinate system is proposed. Different from the traditional
consensus control objective, which uses the position error in a Earth reference frame
coordinate system, we use the distance diī, pitch angle γiī and yaw angle δiī in a BF
spherical coordinate system to describe the consensus control objective. As shown in
Figure 2, the consensus of a system of multiple underactuated AUVs can be transformed
into the average consensus based on Theorem 1. In order to achieve the average consensus
of a system of multiple underactuated AUVs, the control objective is designed as follows.

AUV j

XB

YB

ZB

Average  consensus 

reference trajectory

AUV i

AUV l

AUV k

ii
d

ii
g

ii
d

O

Figure 2. Trajectory tracking average consensus of AUVs.

Definition 2. (Control Objective) For each AUV i, the measured states in a BF spherical coordinate
system are p = [diī, γiī, δiī]

T . The system of multiple underactuated AUVs is said to achieve an
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average consensus if the tracking error satisfies lim
t→∝

p < σ, where σ is a positive constant. The

detailed expression of these errors in shown in (19).

diī = (xi − x̄i)
2 + (yi − ȳi)

2 + (zi − z̄i)
2

γiī = 0.5[1− sgn(x̄i − xi)]sgn(ȳi − yi)π+ arctan
ȳi − yi
x̄i − xi

− ψi

δiī = arctan
z̄i − zi√

(x̄i − xi)
2 + (ȳi − yi)

2
− θi

(19)

Remark 2. Tracking error refers to the difference between the measured signal and the predicted
signal. The measured signal used in this paper is p, and the expected signal is indicated as p = 0 in
the control objective, so the difference between the measured signal and the predicted signal is the
tracking error e = p− 0 = p = [diī, γiī, δiī]

T .

In this article, we will discuss a kind of system of multiple underactuated AUVs,
including N underactuated AUVs. For each AUV, the kinematic and kinetic characteristics
satisfied the equations composed in (7). Combined with the backstepping method and
dynamic event-triggered mechanism, we design a dynamic event-triggered average con-
sensus control law with fixed-time convergence for the system of multiple underactuated
AUVs based on a BF spherical coordinate system.

3. Multiple Underactuated AUVs System Fixed-Time Average Consensus Controller
Design Based on Dynamic Event Triggering Mechanism

This section mainly introduces the design method of a fixed-time average consensus
controller with a dynamic event-triggered mechanism. The kinematic equations of the
tracking error in a BF spherical coordinate system are constructed, and the Lyapunov func-
tion is designed based on the new control objective. The controller is designed according
to backstepping and fixed-time stability theory. Aiming at the integral explosion caused
by the derivation of auxiliary variables in the backstepping method, the fixed-time filter is
used for approximation. Additionally, the dynamic event-triggered mechanism is used to
solve the communication constraints and energy consumption problems.

3.1. Tracking Error Kinematic Equations in BF Spherical Coordinate System

It is necessary to obtain the equations pertaining to the tracking error kinematics for
designing the control objective stabilization controller. Firstly, the coordinates of average
consensus reference trajectory are obtained in the BF spherical coordinate system. Then,
according to the characteristics of the kinematics of an underactuated AUV, the tracking
error kinematics equations are established. The relative translation and rotation between
the AUV and the average consensus reference trajectory is considered in the deduction of
the kinematics equations, based on a BF spherical coordinate system. The tracking error
kinematics equations are described as (20) to (22).

ḋiī = −ui cos γiī cos δiī +

N
∑

j=1
aijuj cos γjī cos δjī

N
∑

j=1
aij

− vi sin γiī cos δiī

+

N
∑

j=1
aijvj sin γjī cos δjī

N
∑

j=1
aij

− wi sin δiī +

N
∑

j=1
aijwj sin δjī

N
∑

j=1
aij

(20)
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δ̇iī =
1

diī



ui cos γiī sin δiī −

N
∑

j=1
aijuj cos γjī sin δjī

N
∑

j=1
aij

+ vi sin γiī sin δiī

−

N
∑

j=1
aijvj sin γjī sin δjī

N
∑

j=1
aij

− wi cos δiī +

N
∑

j=1
aijwj cos δjī

N
∑

j=1
aij


− qi (21)

γ̇iī =
1

diī



ui sin γiī cos δiī −

N
∑

j=1
aijuj sin γjī cos δjī

N
∑

j=1
aij

− vi cos γiī cos δiī +

N
∑

j=1
aijvj cos γjī cos δjī

N
∑

j=1
aij


− ri (22)

where γjī and δjī satisfy (23):

γjī = 0.5[1− sgn(x̄i − xj)]sgn(ȳi − yj)π+ arctan
ȳi − yj

x̄i − xj
− ψi

δjī = arctan
z̄i − zj√

(x̄i − xj)
2 + (ȳi − yj)

2
− θi

(23)

Remark 3. The Earth reference frame coordinate system kinematics state variable is transformed
into the BF spherical coordinate system, and according to the physical model in the BF spherical
coordinate system, the tracking error kinematics expression in a BF spherical coordinate system
is established. The control objective p = [diī, γiī, δiī]

T is partially decoupled from the controllable
states ϑc = [u, q, r]T , which simplifies the design of the controller.

3.2. Fixed-Time Average Consensus Controller Design

The Lyapunov function is derived by the average consensus method to design the
controller. According to the average consensus theorem, the p̄i followed by that of each
AUV is obtained to achieve consensus. The stability of the fixed-time average consensus
control system is stated as below.

Theorem 2. The actuator control inputs τui (t), τqi (t) and τri (t) can be designed as follows:

τui = M

− aeui
α − beui

β + ui sin γiī cos δiīγ̇iī + ui cos γiī sin δiī δ̇iī

+
−a(Λi − Λ̄i)

α − b(Λi − Λ̄i)
β

τi
+ Liidiī


cos γiī cos δiī

+ Cvi + Dvi + gui

τqi = M

[
−aeqi

α − beqi
β +
−a(Φi − Φ̄i)

α − b(Φi − Φ̄i)
β

τi
+ Liiδiī

]
+ Cqi + Dqi + gqi

τri = M

[
−aeri

α − beri
β +
−a(Γi − Γ̄i)

α − b(Γi − Γ̄i)
β

τi
+ Liiγiī

]
+ Cri + Dri + gri

(24)
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where 0 < α < 1, β > 1 and αβ = 1. The system of multiple underactuated AUVs under the above
control scheme reaches a fixed-time average consensus.

Remark 4. In Equation (24), Λ̄i, Φ̄i and Γ̄i are the auxiliary variables; Λi, Φi and Γi are the
outputs of fixed-time filter; and eui, eqi and eri are the second-order tracking errors. All parameters
will be detailed in the following study.

Proof of Theorem 2. Based on the control objective, the Lyapunov functions V1, V2, V3 are
designed as follows:

V1 =
1
2

N

∑
i=1

N

∑
j=1

aijdiī
2

V2 =
1
2

N

∑
i=1

N

∑
j=1

aijγiī
2

V3 =
1
2

N

∑
i=1

N

∑
j=1

aijδiī
2

(25)

Remark 5. The design of the pitch and yaw controller is similar to that of the thrust controller. In
this study, the thrust controller is designed as a demonstrative example.

Derivation of the Lyapunov function:

V̇1 =
N

∑
i=1

N

∑
j=1

aijdiī



− ui cos γiī cos δiī +

N
∑

j=1
aijuj cos γjī cos δjī

N
∑

j=1
aij

− vi sin γiī cos δiī

+

N
∑

j=1
aijvj sin γjī cos δjī

N
∑

j=1
aij

− wi sin δiī +

N
∑

j=1
aijwj sin δjī

N
∑

j=1
aij


(26)

Λ̄i is designed as an auxiliary control variable based on the backstepping method. In
the derivation of the second-order backstepping controller, the derivation of the auxiliary
variables will lead to differential explosion. Therefore, this study uses the fixed-time filter
to approximate the auxiliary control variables to eliminate this problem.

Λ̄i =

N
∑

j=1
aijuj cos γjī cos δjī

N
∑

j=1
aij

− vi sin γiī cos δiī +

N
∑

j=1
aijvj sin γjī cos δjī

N
∑

j=1
aij

− wi sin δiī +

N
∑

j=1
aijwj sin δjī

N
∑

j=1
aij

+ adα
iī + bdβ

iī

(27)

Remark 6. To address the so called "explosion of complexity", the filter technique is employed to
avoid the analytical derivative of the auxiliary control variable.
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Define the fixed-time filter as follows:

fi = Λi − Λ̄i

τiΛ̇i = −a(Λi − Λ̄i)
α − b(Λi − Λ̄i)

β
(28)

The second order backstepping controller is designed as (29):

eui = ui cos γiī cos δiī −Λi

ėui = u̇i cos γiī cos δiī − ui sin γiī cos δiīγ̇iī − ui cos γiī sin δiī δ̇iī − Λ̇i
(29)

Recombine and construct the Lyapunov functions as follows:

V1 =
1
2

N

∑
i=1

N

∑
j=1

aijdiī
2 +

1
2

N

∑
i=1

fi
2 +

1
2

N

∑
i=1

e2
ui (30)

Derivation of the Lyapunov function:

V̇1 =
N

∑
i=1

N

∑
j=1

aijdiī ḋiī +
N

∑
i=1

fi(Λ̇i − ˙̄Λi) +
N

∑
i=1

eui ėui

=
N

∑
i=1

N

∑
j=1

aij

[
−a(d2

iī)
α+1

2 − b(d2
iī)

β+1
2

]
+

N

∑
i=1

fi(
−a(Λi − Λ̄i)

α − b(Λi − Λ̄i)
β

τi
− ˙̄Λi − Liidiī)

+
N

∑
i=1

eui(u̇i cos γiī cos δiī − ui sin γiī cos δiīγ̇iī − ui cos γiī sin δiī δ̇iī − Λ̇i − Liidiī)

(31)

According to (21), put the actuator inputs τui (t) into (7) to obtain (32):

V̇1 =
N

∑
i=1

Lii

[
−a(d2

iī)
α+1

2 − b(d2
iī)

β+1
2

]
+

N

∑
i=1

−a( f 2
i )

α+1
2 − b( f 2

i )
β+1

2

τi


+

N

∑
i=1

[
−a(e2

ui)
α+1

2 − b(e2
ui)

β+1
2

]
−

N

∑
i=1

(
fi

˙̄Λi + Liidiī fi

) (32)

According to Lemma 3, the term fi
˙̄Λi can be transformed as (33):

fi
˙̄Λi ≤

∣∣∣ fi
˙̄Λi

∣∣∣α+1

α + 1
ζ +

α

α + 1
ζ−

1
α (33)

By utilizing Lemma 4, we have the inequality (34):

diī f ≤ |diī|| f | ≤
|diī|

α+1

α + 1
+
| fi|β+1

β + 1
=

(d2
iī)

α+1
2

α + 1
+

( f 2
i )

β+1
2

β + 1
(34)

Substituting (33), (34) into (32), one can obtain (35):

V̇1 ≤
N

∑
i=1

Lii

[
−(a1i −

1
α + 1

)(d2
iī)

α+1
2 − b1i(d2

iī)
β+1

2

]

+
N

∑
i=1

(−( a2i
τi
−

(
˙̄Λ

2
i

) α+1
2

α + 1
ζ)( f 2

i )
α+1

2 − (
b2i
τi
− Lii

β + 1
)( f 2

i )
β+1

2


+

N

∑
i=1

[
−a3i(e2

ui)
α+1

2 − b3i(e2
ui)

β+1
2

]
+

α

α + 1
ζ−

1
α

(35)
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According to Lemma 2, the derivation of the Lyapunov function satisfies the inequality (36):

V̇1 ≤ κ1V
α+1

2 + κ2V
β+1

2 + δ (36)

The parameters κ1 and κ2 are as follows:

κ1 = min{Lii(a1i −
1

α + 1
),

a2i
τi
−

(
˙̄Λ

2
i

) α+1
2

α + 1
ζ, a3i}

κ2 = N1−β min{Liib1i,
b2i
τi
− Lii

β + 1
, b3i}

(37)

The proof of the fixed-time average consensus is completed.

3.3. Dynamic Event-Triggering Mechanism

To reduce the execution frequency of the actuators, a dynamic event-triggered mecha-
nism is introduced. The actuator control inputs are written as τpi(t), the controllable state
of the AUV is denoted as p, where p = u, q, r. The state spi(tk) can be designed as follows:

spi(tk) = κp1epi
α(tk) + κp2epi

β(tk) (38)

Design measurement error of AUV i is as follows:

Xpi(t) = spi(tk)−
(

κp1epi
α + κp2epi

β
)

(39)

Then, one can obtain (40)

spi(tk) = Xpi(t) + κp1epi
α + κp2epi

β (40)

We then construct the following triggering function:

ti
k+1 = inf{t > ti

k|∆(t) ≥ 0}

∆(t) = X2
pi(t)− µ2

i

(
κp1epi

α + κp2epi
β
)2
− σiεiηi(t)

η̇i(t) = −εiηi(t)− X2
pi(t) + µ2

i

(
κp1epi

α + κp2epi
β
)2

ηi(0) > 0

(41)

where 0 < µi < 1, 0 < σi < 1, and εi > 0.

Theorem 3. The actuator control inputs τui(t), τqi(t) and τri(t) can be designed as follows:

τui = M

− sui(tk) + ui sin γiī cos δiīγ̇iī + ui cos γiī sin δiī δ̇iī

+
−a(Λi − Λ̄i)

α − b(Λi − Λ̄i)
β

τi
+ Liidiī


cos γiī cos δiī

+ Cvi + Dvi + gui

τri = M(−sri(tk) +
−a(Γi − Γ̄i)

α − b(Γi − Γ̄i)
β

τi
+ Liīγiī) + Cri + Dri + gri

τqi = M(−sqi(tk) +
−a(Φi − Φ̄i)

α − b(Φi − Φ̄i)
β

τi
+ Liīδiī) + Cqi + Dqi + gqi

(42)

The system of multiple underactuated AUVs under the above control scheme reaches a fixed-
time consensus with ti

k+1 satisfying the triggering function (41). In addition, Zeno behavior can be
ruled out for each AUV under the proposed control protocol.
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Proof of Theorem 3. Similar to Theorem 2, the proof of dynamic event-triggered mech-
anism stability and exclusion of Zeno behavior on the thrust controller is introduced as
an example.

Equation (43) can be derived by (41):

sui(tk) = ρi

(
κu1eui

α + κu2eui
β
)

ρi ∈ (1− µi, 1 + µi)
(43)

The Lyapunov function can be constructed as V′1 = V1 +
N
∑

i=1
ηi. Derivation of the

Lyapunov function:

V̇′1 =
N

∑
i=1

Lii

[
−(a1i −

1
α + 1

)(d2
iī)

α+1
2 − b1i(d2

iī)
β+1

2

]

+
N

∑
i=1

(−( a2i
τi
−

(
˙̄Λ

2
i

) α+1
2

α + 1
ζ)( f 2

i )
α+1

2 − (
b2i
τi
− Lii

β + 1
)( f 2

i )
β+1

2


+

N

∑
i=1

eui[−sui(tk)] +
α

α + 1
ζ−

1
α +

N

∑
i=1

η̇i

(44)

According to (43), we can obtain

V̇′1 =
N

∑
i=1

Lii

[
−(a1i −

1
α + 1

)(d2
iī)

α+1
2 − b1i(d2

iī)
β+1

2

]

+
N

∑
i=1

(−( a2i
τi
−

(
˙̄Λ

2
i

) α+1
2

α + 1
ζ)( f 2

i )
α+1

2 − (
b2i
τi
− Lii

β + 1
)( f 2

i )
β+1

2


+

N

∑
i=1

ρi

[
κu1(e2

ui)
α+1

2 + κu2(e2
ui)

β+1
2

]
+

α

α + 1
ζ−

1
α +

N

∑
i=1
−(1− σi)εiηi

(45)

The proof of fixed-time consensus is completed.
Next, the exclusion proof of Zeno behavior for a controller update is given. Firstly,

this study proposes the following sufficient conditions. From the event-triggered function,
‖Xui(t)‖ ≤ µ

∥∥κu1eui
α + κu2eui

β
∥∥ can be guaranteed. It is obtained that

‖Xui(t)‖2 ≤ µ2
∥∥∥κu1eui

α + κu2eui
β
∥∥∥2

= µ2‖sui(tk) + Xui(t)‖2

‖Xui(t)‖ ≤
µ√

1 + µ2
‖sui(tk)‖

(46)

Then, the time derivative of ‖Xui(t)‖ over the interval [tk, tk+1) satisfies

d
dt
‖Xui(t)‖ ≤

∥∥∥(κu1αeui
α−1 + κu2βeui

β−1
)∥∥∥‖ėui‖ (47)

It is concluded that eui is non-increasing for the interval [0,+ ∝), implying that euiis
bounded. So that

∥∥(κu1αeui
α−1 + κu2βeui

β−1)∥∥ ≤ σ. From (7) and (29),

d
dt
‖Xui(t)‖ ≤ σ‖Xui(t)‖+ σ

∥∥∥κi31eui
α + κi32eui

β
∥∥∥

≤ σ‖Xui(t)‖+
σ

ρ
‖sui(tk)‖ ≤ σ‖Xui(t)‖+

σ

1− µ
‖sui(tk)‖

(48)
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Applying the comparison principle and considering Xui(tk) = 0, one obtains

‖Xui(t)‖ ≤
1

1− µ
‖sui(tk)‖

{
eσ(t−tk) − 1

}
(49)

According to the event-triggered mechanism (41) and the sufficient condition above,
the event cannot trigger before‖Xui(t)‖ ≤

µ√
1+µ2
‖sui(tk)‖. Thus

1
1− µ

‖sui(tk)‖
{

eσ(t−tk) − 1
}
≥ µ√

1 + µ2
‖sui(tk)‖ (50)

Through calculation, one obtains

tk+1 − tk ≥
1
σ

ln

(
µ(1− µ)√

1 + µ2
+ 1

)
(51)

Thus, the inter-event time intervals of the controller update are also strictly greater
than zero. The proof is completed.

4. Simulation Results

This section presents the simulation results of the fixed-time average consensus for
a system of multiple underactuated AUVs using a dynamic event-triggered mechanism.
Numerical simulation experiments verified the effectiveness of the new control objective in
the BF spherical coordinate system, the control effect of the fixed-time average consensus
controller and the effect of the dynamic event-triggered mechanism proposed in this paper.
Furthermore, the average consensus strategy and leader–follower strategy are compared
on the matter of the formation effect.

The parameter settings of the AUV model are provided in Table 1. The communication
topology shown in Figure 3 demonstrates that the topology is connected and comprises
five AUVs. The communication topology has a spanning tree, and AUV 2, AUV 3 and AUV
4 can obtain the reference trajectory directly.

AUV 1

AUV 2

AUV 3

AUV 4

AUV 5

Reference  trajectory

Figure 3. Communication graph.
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Table 1. AUV parameter settings.

Variables Values

m 2146.3 kg
Xu̇ −0.00158

Xu|u| −0.00686
Yv −0.06973
Yv̇ −0.08154

Yv|v̇| −0.1844
Nr −0.0261
Nṙ −0.00168

Nr|r| −0.000092
Ix 542
Iy 7580
Iz 7620

Simulation results are depicted as follows. The parameter settings for the initial
position are presented in Table 2. Five AUVs started at the initial position and are able
to track the reference trajectory and build the desired consensus based on the proposed
algorithm. The reference trajectory is expressed as follows:

x(t) = 50− 50 cos(0.004πt)
y(t) = 50 + 50 sin(0.004πt)
z(t) = 10 + 0.05t

(52)

3-dimensional helix tracking consensus results are shown in Figure 4. Five AUVs
beginning at random positions are able to track the reference trajectories and build the
desired consensus based on the proposed algorithm. The above figure demonstrates that
the yaw angle controller and pitch angle controller can operate efficiently.

Table 2. Parameter settings for the initial position.

Initial Position x(m) y(m) z(m)

AUV1 −30 30 5
AUV2 30 30 6
AUV3 0 15 7
AUV4 30 0 8
AUV5 −30 0 9

Figure 4. 3-dimensional helix trajectory tracking results for the average consensus of 5 AUVs.
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The kinematics state of five AUVs is shown in Figure 5. The kinematics state and
kinetics state converged within 200 s, and five AUVs arrived at the reference trajectory
within 200 s. The experimental results demonstrate that the proposed algorithm can achieve
good consensus performance, and the fixed-time average consensus strategy proposed in
this study can effectively achieve the consensus control of multi-AUV systems.
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Figure 5. Kinematics states of five AUVs.

The slightly different states of the AUVs is caused by the communication connection
state between them. All the AUVs could achieve consensus by following the state of the
neighboring AUVs by communicating with the reference trajectory. Moreover, because the
reference trajectories are helix, the existence of steady-state errors can generate actuator
inputs to keep the average consensus.

Distance error, pitch angle error and yaw angle error of each AUV under different
initial conditions are illustrated in Figure 6. Each controller has its own convergence time.
The pitch angle and yaw angle errors converge to zero within 20 s. The position error
converges in 200 s.

The calculation of the tracking error is the sum of the distance between AUV i and
the neighboring AUV j. Because the communication topology of an AUV system is not
completely connected with the reference trajectory, if AUV i does not obtain the reference
trajectory, its response speed will be slightly slower than the AUV that obtains the reference
trajectory when the reference trajectory is transformed. Therefore, the delay will cause
some tracking error.

The experiment demonstrates that the control objective proposed in this study can
satisfy the control requirement for multi-AUV average consensus. The control objective
based on distance and angle errors can track the reference trajectory. The yaw angle,
pitch angle and thrust actuators can respectively stabilize the control objective, thus the
control objective proposed in this study can effectively simplify the controller design
process, and the actuators under different degrees of freedom can be controlled separately,
which provides a new scheme for the consensus controller design for a system of multiple
underactuated AUVs.
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Figure 6. Distance error, pitch angle error and yaw angle error of the five AUVs.

In Table 3, we show the number of triggers under different conditions, and the trig-
gered instants of control signals are shown in Figure 7. The continuous execution of
actuators is avoided, thus the communication and energy consumption requirements
are reduced.
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Figure 7. Triggering instants of control signals. (a) Event-triggered time in τu controllers. (b) Event-
triggered time in τq controllers. (c) Event-triggered time in τr controllers.
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Table 3. Number of triggers under different conditions.

Initial Position Event1 Event2 Event3 Time Sample

AUV1 4 374 40 400
AUV2 24 374 133 400
AUV3 14 374 100 400
AUV4 5 374 29 400
AUV5 5 374 68 400

The root-mean-square error (RMSE) of the spatial position of the five AUVs using
the average consensus formation strategy and leader–follower strategy are shown in
Figure 8. The average consensus formation strategy is clearly superior to the leader–
follower formation strategy in the convergence process. The reason is that compared
with the leader–follower method, the average consensus control method proposed in this
study has advantages in the speed of state consensus convergence. Because the actuator
input obtained by the consensus control law not only depends on the desired reference
trajectory, but is also related to the current state of neighboring AUVs, the AUV state
between neighboring AUVs can reach consensus faster. The steady-state error of the
average consensus method is slightly larger than that of the leader–follower method, due
to receiving the information between neighboring AUVs.

0 500 1000 1500

time(s)

0

5

10

15

20

25

30

35

R
M

S
E

(m
)

average consensus

leader-following

Figure 8. RMSE of the spatial position of the five AUVs.

5. Conclusions

This study is dedicated to solving the consensus for a system of multiple underactuated
AUVs. The new control objective is suitable for the dynamic model of an underactuated
AUV as it decouples the states of the underactuated AUV. The fixed-time average consensus
controller can ensure the stable convergence of the system. The dynamic event-triggering
mechanism can effectively reduce the communication pressures and energy consumption
of the system. Detailed theoretical derivation and numerical simulation experiments
demonstrate that the proposed method has superior control performance over alternatives.
These reflect the great advantages of the proposed method in this research on the consensus
control theory of a system of multiple underactuated AUVs. Our future research will
devote to solving topology switching, affine formation and time-varying formation control,
and explore how to strengthen the adaptive ability of a system of multiple underactuated
AUVs. In addition, a new event-triggered mechanism will be designed to improve the
convergence speed of the system. This algorithm will be applied into an actual engineering
project of systems of multiple underactuated AUVs as soon as possible.
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