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Abstract: Underwater acoustic target recognition (UATR) technology has been implemented widely in
the fields of marine biodiversity detection, marine search and rescue, and seabed mapping, providing
an essential basis for human marine economic and military activities. With the rapid development of
machine-learning-based technology in the acoustics field, these methods receive wide attention and
display a potential impact on UATR problems. This paper reviews current UATR methods based on
machine learning. We focus mostly, but not solely, on the recognition of target-radiated noise from
passive sonar. First, we provide an overview of the underwater acoustic acquisition and recognition
process and briefly introduce the classical acoustic signal feature extraction methods. In this paper,
recognition methods for UATR are classified based on the machine learning algorithms used as UATR
technologies using statistical learning methods, UATR methods based on deep learning models, and
transfer learning and data augmentation technologies for UATR. Finally, the challenges of UATR
based on the machine learning method are summarized and directions for UATR development in the
future are put forward.

Keywords: machine learning; UATR; underwater acoustic dataset; classification and recognition

1. Introduction

Acoustic waves are the only energy form known to humans that can travel long
distances in water and they are generally considered to be the best information carrier
for sensing and recognizing underwater targets [1]. Exploring accurate UATR methods
can better promote the development of related fields, such as seabed mapping [2], marine
biodiversity detection [3,4], vessel target recognition [5], etc. The recognition and detection
process based on underwater acoustic target signals is shown in Figure 1, mainly including
target signal acquisition by a sonar system, array processing, data preprocessing, feature
extraction, and target recognition [6]. This paper mainly reviews the target recognition
methods based on sonar signals. Due to the complexity of the marine environment, the
acoustic signals obtained by the spatiotemporal sampling of the sensor array in the ocean are
not only the target signals but also the environmental noises and other target interference
signals. Usually, the beam signals in the target direction are obtained by the spatial
filtering characteristics of array processing, and then are combined with other preprocessing
works to reduce the impact of noises. In the early stage, underwater acoustic targets are
recognized by human ears. This method does not involve the feature extraction process
shown in Figure 1. Generally, acquired original signals or the signals after preprocessing are
recognized directly by human ears. The disadvantages of this recognition method are also
apparent. When the amount of data increases, the time and energy required will increase
proportionally, and it can hardly meet the requirements of real-time recognition. The
most important thing is that the frequency distribution range of the underwater acoustic
signals is broad. Listening to these sounds, which human ears cannot adapt to, for a long
time is inevitably harmful to human health. In addition, researchers also used various
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frequency domain and time-frequency analysis methods to identify targets based on the
spectral features of underwater acoustic signals. Among them, power spectrum analysis,
low-frequency analysis and recording (LOFAR), and detection of envelope modulation on
noise (DEMON) are commonly used to extract underwater acoustic signal features [7,8].
Mel frequency cepstral coefficient (MFCC) and gammatone frequency cepstral coefficient
(GFCC) are also commonly used features for underwater acoustic signal processing [9].
With the rise of machine learning methods, researchers in the underwater acoustic field
have turned their attention to building automatic underwater acoustic target recognition
methods using machine learning models [10]. Some studies combine the underwater
acoustic signal feature extraction method with the machine learning model and use the
signal frequency domain features as the input of the machine learning model for target
recognition [11]. This paper introduces the classical underwater acoustic signal feature
extraction methods in Section 2. Deep learning models have a strong learning ability and
can extract the potential knowledge representation of signals. Therefore, some studies
directly input the raw signals into the deep learning model for target recognition [12].
This paper reviews several studies on UATR using machine learning methods and divides
them into three categories according to the different models used. The first category is
the recognition methods based on the statistical learning model. These methods construct
statistical probability models using labels and features of samples and classify test samples.
The second category is recognition methods using deep learning models. These methods
use the powerful learning ability of deep neural networks to extract features from input
samples and perform recognition. The third one is transfer learning methods and data
augmentation technologies, which are used to solve the problem of the lack of labeled
underwater acoustic signal samples. This is a severe problem faced by UART.
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At present, machine learning methods have shown better performance than traditional
methods in the field of underwater acoustics, including underwater acoustic target recogni-
tion [5], underwater acoustic source localization [13], single-channel source separation [14],
and so on. However, they are data-driven methods, and underwater acoustic data acquisi-
tion faces enormous challenges. At the same time, traditional signal processing methods are
more interpretable than many machine learning algorithms. Additionally, interpretability
is necessary for some systems and application scenarios. In addition, machine learning
models with good recognition performance on specific scenes and data may not apply
to other datasets. Because the model only learns the potential feature representation of
training data, it cannot be a universal method. However, even though machine learning
methods still have many limitations, we can still see the development potential of such
models in underwater acoustics fields [15–17].

This paper reviews the recent studies of UATR based on machine learning and analyzes
the technical characteristics, performance, and challenges of these studies, which will
provide a reference for researchers in the field of UATR technology. The next section
describes the widely used feature extraction methods for UATR. Section 3 discusses the
UATR technology based on machine learning models and related research works in detail.
Section 4 analyzes the challenges encountered by the UATR methods based on machine
learning. Section 5 gives the conclusion and discussion of this paper.

2. Data Preprocessing and Feature Extraction Methods

Acoustic signals are time sequence signals, but their frequency domain usually con-
tains more information. Therefore, it is necessary to preprocess and extract features
of the raw data to reduce data dimensions and suppress noise before inputting into
recognition models.

Ship-radiated noise is one of the main research objects in the UATR field. It has the
characteristics of being short-term stationary, and the frequency spectrum obtained by
Fourier transform is relatively stable, which is more conducive to the extraction of target
recognition features. LOFAR spectrums are generally used to characterize ship-radiated
noise [8]. A LOFAR spectrum is a two-dimensional image of frequency and time obtained
by a short time Fourier transformer (STFT). Narrowband components in ship-radiated
noise can be found by extracting line spectral trajectories from the LOFAR spectrum [18].
Researchers can intuitively obtain the time-frequency distribution information of target
signal energy through the LOFAR spectrum. This time–frequency spectrum analysis
method is conducive to the detection and recognition of dynamic targets [19].

The periodic rotation of the propeller in the nonuniform flow field gives the ship-
radiated noise a unique rhythm. Researchers often use the DEMON spectral analysis
method to estimate the shaft frequency and blade number of the target propeller [20]. DE-
MON analysis is a wideband de-modulation technique, which can separate the modulation
envelope caused by propeller cavitation from the ship-radiated noise signal, and estimate
shaft number, shaft frequency, and blade number through spectrum analysis and line
spectrum detection. These parameters related to target propellers are useful features for
underwater target detection and recognition [21]. However, the DEMON analysis method
has poor performance under low SNR. Some researchers simultaneously use LOFAR and
DEOMON methods to extract ship-radiated noise signal features [22,23].

Studies showed that the human ear’s perception of sound frequencies is not linear. To
make the extracted sound features more consistent with the sound perception mechanism
of human ears, researchers have proposed the extraction method of MFCC features. It
uses the Mel filter bank to filter signals and then takes logarithm and inverse Fourier
transform to obtain MFCC. This feature extraction method has become the basis of speech
processing [24–26]. In 2007, Lim T et al. applied MFCC to UATR, and their research
showed that this method has a good potential for application in UATR [27]. Tong et al.



J. Mar. Sci. Eng. 2023, 11, 384 4 of 17

proposed an effective UATR method. They first extracted three types of underwater
targets MFCC features. Then, they classified and identified them using the K-Nearest
Neighbor algorithm [28]. Similarly, GFCC is also an acoustic signal feature based on au-
ditory perception, which is implemented based on Gammatone filter bank. Some studies
have shown that GFCC features can better describe the targets than MFCC features under
low SNR or interference conditions. Additionally, their classification results have better
recognition accuracy and robustness [29–31]. In the field of UATR, many studies have
shown the effectiveness and practicability of these two feature extraction methods [32–34].

In fact, the ship-radiated noise also contains components that change rapidly with time.
Empirical mode decomposition (EMD) [35] can decompose non-stationary complex signals
into various signal components called intrinsic mode function (IMF). Huang proposed
the Hilbert–Huang transform (HHT) method [35] to divided the signals into the sum of
several IMFs. In contrast to the frequency definition of traditional time-frequency analysis
methods, HHT uses phase derivatives to obtain frequencies and accurately describes
the instantaneous frequency components of signals [36]. HHT can characterize local
instantaneous characteristics, so it has good adaptability to non-stationary signals. In
2014, Zeng and Wang et al. applied HHT to underwater acoustic target recognition and
achieved better recognition results than MFCC [37]. In 2010, Bao et al. proposed a ship
classification approach based on EMD, which approved the effectiveness of recognition by
analyzing nonlinear features of radiated sound [38]. Other feature extraction methods in
UATR include formant analysis, wavelet transform, linear predictive cepstral coefficient
(LPCC), etc. [39–41].

The preprocessing of raw data and feature extraction are very important to im-
prove the accuracy of UATR. Therefore, it is necessary to make sufficient preparation
for the preprocessing and feature extraction of the raw data, extract the features of the
target, and reduce the redundant information, so that the recognition model can have a
good performance.

3. UATR Methods Based on Machine Learning

This section reviews machine-learning-based UATR techniques, which use a machine
learning model [42,43] to conduct the mapping between underwater acoustic signals
and their labels [44,45]. UATR methods based on machine learning are divided into
three main categories: (1) methods based on statistical learning models, such as support
vector machine (SVM), gaussian mixed model (GMM), hidden Markov model (HMM), etc.;
(2) methods based on deep learning algorithms, such as convolution neural network (CNN),
recurrent neural network (RNN), attention mechanism, etc.; (3) methods based on transfer
learning and data augmentation strategies, which are proposed to solve the problem of
insufficient data caused by the difficulty of data acquisition, storing, and labeling in the
UATR field. In this section, the relevant studies on UATR based on machine learning
methods are summarized in the form of the table listed, and the feature extraction methods,
datasets used, recognition effects, and main contributions of these recognition methods are
briefly explained.

3.1. UATR Methods Based on Statistical Learning

Statistical learning methods are based on traditional statistical methods to establish
probability and statistical models for analysis and prediction. They are relatively simple
and have easy-to-understand parameters. Statistical learning models can achieve good
results on small datasets and are less prone to overfitting. Therefore, in the UATR domain,
many studies are based on statistical learning models [46,47]. Table 1 summarizes studies
that apply statistical learning models for UATR, and briefly describes the model used,
feature extraction methods, datasets, recognition performance, and the main contributions.
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Table 1. An overview of UATR methods using statistical learning.

Method Feature Dataset Performance Main Contributions

Single-class SVM [48]
Moura et al., 2015 LOFAR Spectrum * Ship-Radiated

Noise 77.9% SP

Applying single-class
SVM to passive sonar
system detection to

solve the classification
problem of sparse
negative samples.

SVM+BAT [49]
Sherin et al., 2015 MFCC

* Sound Signals of
Ships and Marine

Animals
75% Acc

The BAT algorithm is
used to optimize kernel
parameters and achieves

higher classification
accuracy.

WSFSelect-SVME [50]
Yang et al., 2016

Wavelet analysis
features; waveform
structure features;
MFCC; auditory

spectrum features.

UCI sonar dataset 1;
* Real-world

underwater acoustic
target dataset

81% CR1
99% CR2

Proposing a novel
AdaBoost SVM model

based on weighted
sample and feature
selection method to

improve the accuracy of
UATR and reduce extra

computational and
storage costs.

GMM+MUSIC [51]
Peso et al., 2014

Cepstral Coefficients,
Features

Sound Signals of
Cetacean Species 2

90.3% DR
18.1% ER

The unpredictability
measure and MUSIC

algorithm [52] are used
to extract features for

improving the
recognition performance

of GMM.

HMM [53]
Kim et al., 2011

Features extracted by
matching pursuit

algorithm [54]

* Synthesized Active
sonar Signals 91% Acc

Using synthesized sonar
signals as input to avoid

the problem of data
acquisition, and

applying a multi-aspect
target classification
scheme based on a

hidden Markov model
for classification.

HMM [55]
Mohammed et al., 2018 GTCC

* Ship and Marine
Species Acoustic

Signals
93% SR

Investigating the
performance of the
GTCC-based HMM

classifier with self-noise
conditions and under

Rayleigh fading
environment.

* Dataset is proprietary. Acc: Accuracy. FR: False classification rate. SP: An index that comprehensively considers
the recognition efficiency of known classes and test samples. DR: Detection Rate. ER: Error Rate. SR: Success Rate.
CR1: Correct classification rate on sonar system. CR2: Correct classification on real-word dataset.

One of the statistical learning methods widely used in UATR is SVM [48,49]. Its core
idea is to find the decision surface between different classes of data, make the two classes of
samples fall on both sides of the decision surface, and make the samples far enough away
from the decision surface [50]. The original SVM is based on the plane decision, which
requires the samples to be linearly separable, but this condition usually cannot be satisfied
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in practical cases. The solution of SVM is to map the samples to a new space, usually a
higher dimensional space, using a kernel function, and then find a linear decision surface
in the new space for classification [49]. Statistical learning theory shows that SVM has two
advantages. First, it is a convex optimization problem, so the solution obtained must be a
global optimum rather than a local optimum. Second, this algorithm is suitable for both
linear and nonlinear problems. The computational complexity of SVM only depends on
the dimension of support vectors rather than the size of datasets, which avoids the curse
of dimensionality in a sense. Hence, it is suitable for datasets with a high-dimensional
sample space.

Ref. [48] uses single-class SVM [56] for target detection in passive sonar systems. The
single-class SVM is used to solve the problem that there is only one kind of training data.
Additionally, the target data are expected to have the same characteristics as the training
data. The reason single-class SVM is proposed is that in some specific scenarios, it is hard to
obtain negative samples or to define the range of negative samples accurately. At this time,
the model needs to recognize the type of unknown samples according to the characteristics
of one class of known samples. De Moura and de Seixas [48] use the ship dataset acquired
from a real marine environment to train the single-class SVM model, and the SP index [57]
is 73.18%. The classification performance of SVM largely depends on the kernel function.
Ref. [49] uses the BAT algorithm [58] to optimize the kernel parameters of SVM. Compared
with other parameter optimization algorithms, such as genetic algorithms (GA) and particle
swarm optimization (PSO), the BAT algorithm has the advantage that it can conduct
global and local searches simultaneously to avoid falling into local optimum. The results
reported show that the accuracy of the classifier using the BAT optimization algorithm
is six percentage points higher than that using PSO algorithm [49]. An ensemble of SVM
can improve the recognition accuracy of a UATR system. Yang et al. [50] proposes a novel
SVM ensemble algorithm combined with sample selection and feature selection methods
(WSFSelect-SVME). The proposed model solved the two limitations of traditional ensemble
SVM methods. (1) The training data with poor quality will result in errors between actual
and theoretical results. (2) Ensemble recognition systems usually have higher complexity
and computational costs. The experimental results on the UCI sonar dataset and real-world
underwater acoustic target dataset show that the WSFSelect-SVME model obtains better
recognition performance and robustness than Adaboost SVM ensemble algorithm.

A set of studies applied the SVM model to UATR and achieved record-breaking results.
The process of solving the support vectors involves the calculation of the N-order matrix (N
is the number of samples). It requires a lot of memory and computing time when N is large.
At the same time, the conventional SVM algorithm only supports binary classification.
When dealing with multi-classification problems, the problem needs to be transformed into
multiple binary classification problems, which reduces the classification efficiency.

The GMM is an extension of a single Gaussian probability density function, which is
composed of multiple Gaussian distributions. GMM can approximate the density distri-
bution of arbitrary shapes and can be used for multi-class target recognition. According
to the different parameters of Gaussian probability density function (PDF), each Gaussian
model can be regarded as a class. The GMM model first calculates the probability value
of input samples. Additionally, whether the sample belongs to a Gaussian distribution
can be judged according to the set threshold [59]. Research shows that GMM is suitable
for modeling complex samples [60]. Parada and Cardénal-Lopez [51] proposed a method
based on the GMM model to identify the two main sounds emitted by dolphins, whistle
and pulse, as well as background noise. By introducing the uncertainty measure and
MUSIC algorithm [52] for feature extraction, the detection rate of GMM is increased from
87.5% to 90.3%, and the classification error rate is reduced from 23.6% to 18.1%.

The GMM model can only approximate the Gaussian distribution of the calculated
data and cannot extract the deep abstract features of the acoustic signal. Although GMM
fits existing samples well, the fitting to unknown samples is unstable. Most importantly,
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the recognition results of GMM in multidimensional features are not ideal [61]. Therefore,
GMM is generally combined with other models to build a reliable UATR system.

Compared to GMMs, the advantage of HMMs is that they usually have a better pre-
diction performance, instead of only focusing on fitting observed values [62]. During target
recognition, HMM obtains the state transition probability matrix and observation probabil-
ity matrix through training and makes decisions according to the maximum probability in
the process of state transition [63]. In Kim et al. [53], a multi-direction target classification
method based on HMM is proposed and applied to the classification of synthesized active
sonar signals. Mohammed et al. [55] researched the efficiency and reliability of underwater
acoustic target methods and proposed an HMM model based on Gammatone cepstral
coefficient (GTCC). The experiment results on a dataset including ten types of ship and
marine species show that the GTCC-based HMM model achieves an average accuracy
of 89% under different SNR, which is 5 and 8 percentage points higher than ANN and
statistical Euclidean distance classification, respectively.

Statistical learning methods build and train models based on traditional statistical
analysis, which can only roughly fit the distribution of samples and have limited ability
to extract features. Statistical learning methods struggle to handle the recognition tasks
with large samples due to their limited model capacity. Moreover, both GMMs and HMMs
have default assumptions, but the underwater acoustic data, in reality, struggle to meet
these assumptions, which affects the generalization of the model. To better extract and use
the features of underwater acoustic signals for UATR, deep learning models with strong
feature extraction ability have been applied in this field.

3.2. UATR Methods Based on Deep Learning

In recent years, with the improvement in the computing ability of computers, the
research of deep learning (DL) based on neural networks [64] has developed rapidly. A
deep learning model can be composed of network modules with multiple processing
layers. These layers extract features with different levels of abstraction and automatically
adjust parameters through back propagation until suitable data features are extracted for
downstream tasks. Deep learning models are widely used in speech recognition, image
processing, intelligent control, expert systems, and other fields with their powerful feature
extraction ability [65]. Researchers in the UATR field have also turned their attention to
deep learning algorithms [66]. Deep learning-based UATR models are generally supervised,
which train deep neural networks on datasets with labels, and then the network can predict
the type of unknown samples. Table 2 lists the relevant studies on UATR using deep
learning models.

Table 2. An overview of deep learning methods for UATR.

Method Feature Dataset Performance Main Contributions

Dense CNN [34]
Doan et al., 2020 Original audio signal * Real-world dataset 98.85% Acc

Using a dense CNN model
for UATR, which reuses

former feature maps. The
proposed model achieves
high recognition accuracy

under low
computational cost.

CNN, LSTM [67]
Song et al., 2021

One-Dimensional Time
Domain Signals,

LOFAR Spectrum

* Underwater Targets
and Ship Targets 90.1% Acc

Compared the recognition
performance of CNN and
LSTM models when the
inputs are time domain

signals and LOFAR
spectrums, respectively.
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Table 2. Cont.

Method Feature Dataset Performance Main Contributions

Depthwise Separable
Convolution and

Time-Dilated
Convolution [68]

Hu et al., 2021

One-dimensional Time
domain Signals * Ship-radiated Noise 90.9% Acc

Automatically extract the
features of the

one-dimensional time
domain raw signals, and
visualize the clustering

performance of the
proposed method.

Bi-GRU+GRU [69]
Wang et al., 2020 Time domain Signals * Shallow Sea Data # 91% Acc

The proposed model can
effectively tackle the

changing input
signal length.

CNN+Bi-LSTM+
Attention [70]

Kamal et al., 2021

Features Extracted by
Learnable Filterbank

* Indian Ocean
Shallow Data 95.2% Acc

CNN and bidirectional
LSTM model are used to

extract features from
multiple scales.

camResNet [71]
Xue et al., 2022

Time domain Signals;
Frequency domain

signals
* Real-word dataset 98.2% Acc

Introduce channel
attention mechanism to
enhance the energy of

signal features extracted
by ResNet.

UATR-Transformer [72]
Feng et al., 2022 Mel-spectrogram Shipsear [73]

DeepShip [74]
96.9% S_Acc
95.3% D_Acc

Taking the transformer
architecture as the

backbone for UATR for the
first time.

* Dataset is proprietary. # The value is not given in the paper. It is approximate value according to the resulting
diagram provided. Acc: Accuracy. S_ACC: Accuracy on Shipsear dataset. D_Acc: Accuracy on DeepShip dataset.

CNN is one of the mainstream deep learning architectures, which has been widely
used in natural language processing, speech recognition, medical diagnosis, and other
fields [75,76]. A basic convolutional neural network consists of the convolutional layer,
activation function, and pooling layer. The convolutional layer is the core part of the
network, and the convolutional kernel can be regarded as a feature recognizer. The training
process of CNNs for UATR is to adjust the weights of the convolution kernel and make
it suitable for target recognition. After the convolutional layer, the activation function
enhances the generalization ability of the network by non-linear mapping between the
input and output. Pooling can be regarded as a down-sampling operation, the main
purpose of which is to reduce the resolution of the feature map. Common pooling methods
include maximum pooling and average pooling [77]. The pooling operation is helpful
to prevent overfitting of neural networks. When processing the target recognition tasks,
CNNs send the output sample feature vectors to a fully connected layer to map the samples
and labels [78]. In studies of UATR, some researchers use the acquired sonar image data as
the CNN input for target recognition [79–81]. Others directly input time domain signals
into CNN models to identify ship types [34,68]. In general, researchers first transform time
domain signals into various spectrums and then use the CNN model to extract abstract
features of spectrums and recognize underwater targets [8,82].

Doan et al. [34] use dense CNN to extract time domain signal features for UATR. The
proposed target recognition network with the skip-connection technique could reuse former
feature maps, which prevents the gradient vanishing problem. Experimental accuracy on a
real-world dataset with 0 dB achieves 98.85%. Xiaoping et al. [67] compared the recognition
ability of CNN and LSTM models for complex underwater acoustic signals. Experimental
results show that when the classifier takes the time domain signal as input, the accuracy of
CNN on the dataset containing eight types of underwater targets and six types of ships
is five percentage points higher than that of LSTM. Hu et al. [68] used depth-separable
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convolution and dilated convolution for passive UATR for the first time. The dilated
convolution enlarges the receptive field of the model without increasing the parameters so
that the features extracted by the model have better intra-class aggregation and inter-class
separation characteristics. The proposed model achieves better recognition performance
than traditional CNN model.

RNNs are a kind of neural network that is good at processing sequence data. The
input of RNNs at each time step contains the output of the previous time step, and this
structure makes the model capable of memory [83]. Underwater acoustic signals are com-
plex time-varying signals with some correlation between each frame. Additionally, the
memory ability of RNNs makes them suitable for learning the features of underwater
acoustic signals. In recent years, RNNs have also become one of the major solutions for
UATR. Wang et al. [69] proposed a hybrid time-series network, i.e., the combination of
bi-directional gated recurrent unit (Bi-GRU) and multi-layer gated recurrent unit (GRU),
for acoustic signal modulation identification in harsh underwater communication environ-
ments. The network optimizes the internal network structure by cascade order to obtain
more hidden signal features. The experimental results show that the combined network
of 4-layer Bi-GRU and 4-layer GRU have good recognition accuracy and robustness in
an environment with serious interference. CNNs are effective local feature extractors.
Additionally, the combination of CNN and LSTM can extract features from samples better.
Kamal et al. [70] proposed a combination model of CNN and LSTM for target recognition
based on shallow sea acoustic data. First, the standardized data are convolved with the
filter to generate a learnable time-frequency representation. Then, the abstract features of
the time-frequency representation are further extracted using a three-layer two-dimensional
convolution. Bi-LSTM is used to capture the temporal features of the sequence from the
front and back directions. Finally, the selective attention layer is used to select the most
useful features for recognition. Experimental results on acoustic datasets collected in Indian
Ocean shoals show that the recognition accuracy of this end-to-end deep learning model
reaches 95.2%.

Attention is a kind of information selection and resource allocation method, which
devotes limited resources to processing important information [84]. Generally, in order
to select the information that is more important to the downstream task in the input set
of vectors, the input information is represented in the form of key-value pairs. At the
same time, query vectors are introduced, and the correlation between each input vector
and the query vector is calculated by a scoring function [84]. To effectively extract the
low-frequency spectrum under Doppler shift, Xue et al. designed a ResNet with channel
attention mechanism model [71]. The target deep abstraction spectral features are extracted
by ResNet. Then, the channel attention mechanism model is used to weigh the signal
channels and complete information points in each channel. The targets are recognized by
one-dimensional convolution. The recognition accuracy on a real-world dataset containing
four kinds of underwater acoustic targets reaches 98.2%. Transformer [85] is an attention-
based architecture. It is widely used in image processing and natural language processing
fields. The transformer model was introduced to the UATR field for the first time by Feng
et al. and achieves good recognition performance [72]. Compared with the CNN-based
model, transformer architecture can consider both global and local information.

Deep learning is proving to be a potential tool for UATR. However, its application
in this field is limited to a few methods. There are a set of deep learning methods and
applications with excellent performance waiting to be explored.

3.3. Transfer Learning and Data Augmentation Strategies for UATR

Even though deep learning methods have achieved good performance in the UATR
field, it is incredibly to train a reliable enough deep learning model if there is not exist a
large amount of labeled data [86]. Many studies have shown that transfer learning (TL)
and data augmentation methods are effective ways to solve the problem of model training
in the case of insufficient data [87]. TL methods first train a network model on a large and
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related dataset called the source domain, and then use a small target domain dataset to
fine-tune the parameters to make the network model adapt to the new task requirements.
These methods not only release the training pressure on an insufficient dataset but also
reduce the training time on the target source and obtain robust models. Furthermore, the
data augmentation methods such as generative adversarial networks (GANs) [88] also
provide a solution for model training in the case of insufficient data, which expands the
dataset by generating new samples. For training the UATR network, it is hard to construct
a standard dataset of sufficient scale. Therefore, many researchers use transfer learning
or data augmentation techniques for UATR. Table 3 lists the applications of TL and data
augmentation methods in UATR.

Table 3. An overview of transfer learning and data augmentation strategies for UATR.

Method Feature Dataset Performance Main Contributions

VGG-19 [83]
Huo et al., 2020 \ Seabed Objects-KLSG 3 97.76% Acc

Combined semisynthetic data
generation with deep transfer

learning to improve the
recognition accuracy.

GoogleNet [89]
Nguyen et al., 2019 \ * CKI, TDI-2017,

TDI-2018 91.6% Acc Retrain the model to improve
the recognition performance.

ResNet50 [90]
Fuchs et al., 2018 \ ARACATI 4 90% Acc

Transfer learning and
pretrained CNN are used to
extract image features which
can replace manual features
for FLS recognition system.

RSSD+CNN [82]
Ke et al., 2018

Resonance-based
Sparsity Signal
Decomposition

(RSSD)

ShipsEar [73] 93.28% Acc

The model designed is
pretrained in an

unsupervised manner using
one-dimensional convolution

and fine-tuned in a
supervised manner.

VGG-19 [91]
Korkmaz et al., 2022 Spectrograms

Dolphin whistles
dataset 5 92.3% Acc

The mean recognition
accuracy of VGG model

implementing the transfer
learning method is

25.9 percentage points higher
than the baseline and

11.7 percentage points higher
than vanilla CNN model.

RBM+BP [92]
Luo et al., 2021

Combining Power
Spectrum and
Demodulation

Spectrum

ShipsEar [73] 92.6% Acc

Designed a data
augmentation method using
an RBM auto-encoder and

improved the performance of
the underwater acoustic

target recognition system.

cDCGAN+ResNet [93]
Luo et al., 2021

Multi-window
Spectral Analysis ShipsEar [73] 96.32% Acc

The proposed conditional
deep convolutional GAN

model (cDCGAN) has
achieved good results using
data augmentation method.

DCGAN+S-ResNet [94]
Jiang et al., 2022 STFT * Five Different Types of

Underwater Targets 92% Acc

The improved DCGAN is
used to solve the problem of

data insufficient. The
S-ResNet is proposed to

reduce the model parameters
and computational

complexity.

WGAN-GP+CNN,
LSTM [67]

Song et al., 2021

One-Dimensional
Time Domain

Signals,
LOFAR spectrums

* Underwater Target
and Ship Targets 90.1% Acc

Using WGAN-GP to augment
the time domain signals and

LOFAR spectrums,
respectively, then comparing
the recognition performance
of CNN and LSTM models.

* Dataset is proprietary. Acc: Accuracy. \ No related content.
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In recent years, many deep CNN models with remarkable effects on image recognition
have been proposed, and many researchers are trying to transfer the pretrained deep CNN
model to the UATR tasks. ImageNet, a large image database published by Google, provides
a good dataset to pretrain these CNN models [95]. The most direct application of transfer
learning in the underwater target recognition field is to transfer the pre-trained model
on the ImageNet dataset to the underwater sonar image dataset. In the paper by Lipton
et al. [83], TL technology is applied to sonar seabed image classification. The proposed
method pretrains a VGG19 model using the ImageNet dataset. Then, the parameters of
VGG19 are fine-tuned using the dataset acquired in a real scenario and semi-generated
data. Experimental results show that the VGG19 network transferred from the ImageNet
dataset achieves 97.76% accuracy, which is better than the results of SVM and shallow CNN
networks. With the support of pretrained CNN models and ImageNet dataset, many studies
have chosen to transfer pretrained deep CNN models to underwater target recognition tasks.
For example, a pretrained GoogleNet [89] is used for underwater human body automatic
detection based on sonar images. In Fuchs et al. [90], ResNet50 pretrained on ImageNet
is transferred to forward-looking sonar (FLS) image data classification, and the accuracy
reaches 95%. Underwater acoustic spectrums have a similar format to images. Therefore,
the TL strategies mentioned above have immense potential in UATR. Ke et al. [82] proposed
a one-dimensional convolution automatic encoding–decoding model to recognize ship-
radiated noise. It is combined with the feature extraction method based on resonant sparse
signal decomposition. The model is trained on a large unlabeled dataset and then fine-
tuned using a small, labeled dataset. The recognition accuracy of this model on the ShipsEar
dataset [73] reaches 93.28%. Korkmaz et al. [91] compared the recognition performance
of dolphin whistles using PamGuard [96], a software that automatically identifies marine
mammals, vanilla CNN, and VGG models using the transfer learning approach. The results
showed that the mean recognition accuracy of the CNN model was much higher than that
of the PamGuard software, while the VGG model using the migration learning technique
had an additional 11.7 percentage points higher recognition accuracy than the vanilla CNN.
This study offers great potential for the deployment of marine biological detection systems
using deep learning techniques.

Data augmentation methods are kinds of technology that can build synthetic data
by transforming the existing labeled data using various transformations. Due to the
difficulty of acquiring ship radiation signals, it is difficult to construct a sufficient number
of labeled training data. Researchers have tried to apply various data augmentation
techniques for UATR tasks. Luo et al. [92] used a restricted Boltzmann machine (RBM)
autoencoder to augment the ship-radiated noise signal dataset for training the UATR
system. In this method, RBM is used to encode the combined data of the power spectrum
and demodulation spectrum of ship-radiated noise automatically without supervision.
Then, reconstructed samples are obtained by decoding feature vectors layer by layer.
After the above data augmentation processing, the recognition accuracy of a 4-layer Back
Propagation (BP) classifier is improved from 91.4% to 92.6%. Luo et al. [93] proposed a
conditional deep convolution generative adversarial network (cDCGAN) model for data
augmentation. The cDCGAN uses CNN to build the generator and discriminator and
introduces the label information to the training process. It increases the number of ship-
radiated noise samples. A ResNet-based classifier is used to recognize ship type. The test
accuracy is improved from 90.94% to 96.32% after the data augmentation processing. In
the work by Jiang et al. [94], an improved DCGAN [97] architecture is used to augment
the training data of ship-radiated noise targets, and then the proposed S-ResNet is used
as a classifier. The recognition accuracy of the S-ResNet classifier improved by about
six percentage points after using data augmentation technology. Schmidhuber [64] used
WGAN-GP [98] to expand the time domain signal and the LOFAR spectrum and uses CNN
and LSTM to classify underwater targets and ship signals. The experimental results show
that the recognition accuracy of the CNN model increased by 3.7 percentage points when
training with the dataset was augmented.
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4. Challenges

The real marine environment is complex and changeable, and acquiring data from it
poses various problems. For example, performing realistic underwater experiments has a
high cost. The propagation of the acoustic signals process exits expansion loss, absorption
loss, and boundary loss, so acquiring high-quality underwater sound signals is time and
energy consuming. At the same time, due to the limitations of underwater communication
hardware equipment, it is difficult to guarantee the quality of the acquired data. There may
be problems such as non-homogenous resolution, a too-weak target signal, non-uniform
intensity, and reverberation [98]. High-resolution sensors can improve the system of sonar
systems, but they are expensive. Therefore, there is currently a lack of publicly available
datasets for UATR. Again, data management, labeling, and storage also consume a lot of
time and energy. Most UATR methods are tested on the recordings collected in relatively
simple sea areas of the environment, and they do not apply to signals from complex sea
areas. On top of that, the underwater acoustic data collected for military purposes are
mostly highly classified and hard to use for academic studies. The dataset imbalance is one
of the main problems for machine learning-based UATR.

Due to the lack of public datasets, most current studies on UATR based on machine
learning use self-constructed datasets to evaluate the model recognition performance.
The published literature does not provide detailed information about their dataset, so it
is hard to compare the performance of various methods in the same dimension. In the
complex marine environment, underwater acoustic signals are affected by various factors,
such as time, temperature, depth, salinity, geographic location, and sensor type [99]. In
the research, a set of factors should be comprehensively considered and should design
appropriate models, which also brings daunting challenges to the underwater acoustic
target recognition works.

In response to the problem of insufficient training data, some researchers have used
transfer learning and data augmentation techniques in UATR. However, data augmentation
technology has certain limitations. It is often a simple transformation based on raw data.
Even the data generated through the neural network model is similar to the known samples
in its distribution. Whether it can represent the data characteristics in the real environment
remains to be verified. Transfer learning requires pretraining on a large number of source
domain sample data. Whether it is possible to find a source domain close to the target
domain and how to determine the appropriate source domain size are problems that are
currently faced. Moreover, the pretraining process of the model in the source domain also
requires a lot of computing resources and time.

In addition, it is a grant challenge to explore the model architecture and parameters
suitable for underwater acoustic signals and improve the efficiency of network training
because there is a set of problems in the training process, such as the model failing to
convergence caused by the gradient vanishing or gradient explosion. Many machine
learning models, and more so deep learning models based on neural networks, are black-
box models with little interpretability. However, in many practical application scenarios,
the predicted basis of the model is required. It limits the application scope of such methods
to a large extent.

Each method has its limitations. Statistical learning models have a small number of
parameters and compute faster but are only suitable for small datasets. Deep learning
models with more complex structures usually provide better recognition accuracy than
statistical learning methods but require more computational resources and training time.
In addition, deep learning models are less computationally efficient as they are usually pro-
grammed based on the highly integrated python language. Deep learning models require
data with high quality and poor generalization, which makes it hard to deploy current
deep learning-based UATR methods directly to underwater acoustic monitoring systems.
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5. Conclusions and Discussion

This paper reviews the recent studies of underwater acoustic target recognition based
on machine learning, gives the flow chart from underwater acoustics signals acquisition
to data processing and target recognition, analyzes the pros and cons of the machine
learning framework used in relevant studies as well as the recognition performance, and
summarizes the challenges faced by UATR based on machine learning. Due to the lack of
training data, the current development trend of UATR is to combine manual features with
machine learning methods. This paper introduced the feature extraction methods and their
respective characteristics in underwater acoustic target recognition in Section 2. Then, we
summarized the UATR methods based on machine learning and analyze the applicable
scene of different machine learning models by citing the papers in Section 3. According
to the different machine learning methods used, this paper organized this part into three
categories: (1) UATR methods based on statistical learning; (2) UATR technologies using
CNNs, RNNs, and other deep learning methods; (3) the application of transfer learning and
data augmentation technology for UATR. By surveying the relevant literature, we found
some problems and challenges facing UATR, including data acquisition, management,
storage, labeling, computing resource problems, and some disadvantages of machine
learning methods. The details were given in Section 4.

Machine learning methods have been widely used in natural language processing and
computer vision fields and have achieved breakthroughs. On the contrary, the development
of the application of machine learning in UATR both nationally and internationally is slow.
Hence, there is still a set of work to be completed in the future. First, the dataset problem is
one of the main problems faced by underwater acoustic target recognition methods based
on machine learning. Effective data acquisition and preprocessing methods are the focus
of the current progress in automatic UATR. At present, what needs to be solved urgently
is the establishment of an open and standardized dataset for model training and testing,
facilitating the comparative analysis of the studies, and promoting the development of
UATR. At the same time, future works should pay attention to the basic research on the
underwater acoustics, and try to use the fusion of multiple spectral features methods to
describe the features of underwater targets from multiple dimensions. For the insufficient
and unbalanced training data issue, we need to select appropriate transfer learning and
data augmentation techniques according to the actual situation to improve the performance
of UATR. More studies should also be conducted to understand and evaluate existing state-
of-the-art deep learning architectures and their application in underwater acoustic signal
classification. In addition, interpretability is an important issue that needs to be tackled in
the future development of UATR based on machine learning. Only when the model has
certain interpretability can it be applied to more actual scenarios and play a significant role.
In the complex underwater environment, it is hard to solve all the challenges faced by UATR
using a single form of data. Multimodal learning is one of the current research hotspots,
aiming to learn information from multiple modalities in various modalities and to achieve
the communication and transformation of information from different modalities [100].
Many researchers have tried to use multimodal learning for studies such as underwater
navigation [101] and underwater communication [102]. Using multimodal data such as
acoustic, optical, and imagery for UATR offers new ideas for future research.
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2 http://www.cemma.org, accessed on 15 December 2022.
3 https://github.com/HHUCzCz/-SeabedObjects-KLSG--II, accessed on 16 November 2021.
4 https://goo.gl/mwd4gj, accessed on 29 May 2017.
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