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Abstract: A series of numerical simulations of two-degree-of-freedom vortex-induced vibration of
two coupled cylinders with unequal diameters are performed at the Reynolds number of 20,000. The
effects of incident angle, spacing ratio, and diameter ratio on the VIV responses for two cylinders
are investigated. It is shown that the lock-in range of the large cylinder is significantly widened
and the maximum vibration amplitude decreases as a result of the existence of small cylinder. The
mean drag coefficients and root mean square force coefficients of the large cylinder are not varied
significantly with the incident angle and diameter ratio, but the force coefficients of the small cylinder
vary considerably under different configurations. For the configuration of α = 0◦, d/D = 0.05 and
G/D = 0.05, the variations in vibration amplitude and frequency ratio are similar to those of the
isolated cylinder. Different vortex shedding modes such as 2S mode, P+S mode, and 2P mode are
observed for two coupled cylinders at different reduced velocities for different configurations.

Keywords: two coupled cylinders with unequal diameters; vortex-induced vibration; diameter ratios;
incident angles; vibration response; vortex shedding modes

1. Introduction

As oil and gas exploration extends to deep and ultra-deep water, the technological
challenges of the riser system increase rapidly [1]. An important issue for the riser system is
the fatigue failure caused by the vortex-induced vibration (VIV). A real-time and effective
monitoring device is urgently needed to monitor the VIV of riser. Due to the advantages of
multi-parameters, high capacity and accuracy, low cost, easy deployment, and realization
of long-distance monitoring, the fiber optic sensing cables bundled together with the riser
can achieve the real-time monitoring of the VIV of riser. However, due to the proximity
interference between the cable and riser, the dynamic responses of vortex-induced vibration
for the coupled riser-cable system are much more complicated than that of an isolated riser.

Over the past few decades, the investigation of the vortex-induced vibration for
a single elastically mounted cylinder has been extensively conducted [2–5]. Feng [6]
and Williamson et al. [7] experimentally investigated one-degree-of-freedom (1-DOF)
vortex-induced vibration of a single cylinder. The initial branching, upper branching,
and lower branching were observed with the variation in reduced velocity, while the
lock-in and hysteresis phenomena were demonstrated. Verma and De [8] numerically
investigated the two-degree-of-freedom (2-DOF) VIV of an elastically mounted circular
cylinder. Two branches (Initial Branch, Lower Branch) and three branches (Initial Branch,
Upper Branch, Lower Branch) amplitude responses were observed for the low and high
Re values, respectively. It was found that the dynamic responses and wake flow patterns
of two-degree-of-freedom (2-DOF) VIV have a more complicated behavior than those of
1-DOF vortex-induced vibrations [2,9,10].
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The investigation of vortex-induced vibration of two cylinders have drawn consid-
erable attention. Borazjani and Sotiropoulos [11] conducted the numerical investigations
of VIV for two tandem cylinders with equal diameter at Re = 200. It was found that the
gap flow between two cylinders induces the pressure gradients, resulting in significant
oscillatory forces in phase with the vortex shedding. Ping et al. [12] studied the transverse
VIV of two coupled cylinders in a tandem arrangement. It was found that the gap flow
appearing in the lower branch can lead to complex vortex-to-body and vortex-to-vortex
interactions that substantially alter the VIV response. Papaioannou et al. [13] investigated
the effect of spacing ratio on the 2-DOF vortex-induced vibration of two tandem cylinders
for Re = 160, where the spacing ratio plays an important role in the synchronization region
of the upstream cylinder. The maximum amplitude and synchronization range of the
downstream cylinder increase with a decrease in spacing ratio. Chung [14] numerically
investigated the 2-DOF VIV of two identical spring-supported cylinders with the mass
ratio of 2 and Re =100. The streamwise amplitude is generally comparable to the transverse
amplitude and is accompanied by with irregular trajectories. Chen et al. [15] conducted
the numerical simulations of the VIV of two cylinders in side-by-side configuration at
Re = 100 using the immersed boundary method. The dynamic response of the cylinders can
be divided into four different branches. The asymmetric in-flow vibrations are observed
at 4.0 < Ur < 4.4 for L/D = 2.5 (L is the center-to-center distance between two cylinders).
Chen et al. [16] numerically studied the FIV of two side-by-side circular cylinders for
the Reynolds number of 60–200. The phase jump between the lift and displacement is
related to the presence of multiple harmonic frequencies, which is different from that of an
isolated cylinder.

The complex interference between two cylinders with unequal diameters undergoing
VIV has been extensively studied. Zang [17] performed a series of experiments using parti-
cle image velocimetry (PIV) to investigate the VIV of piggyback pipelines in the subcritical
flow regime. For G/D ≥ 0.3, the effect of the piggyback could be ignored due to the weak
interaction between two pipelines. Zang and Gao [18] experimentally investigated the
effects of diameter ratios, gap ratios, and incident angles on the VIV responses of piggyback
pipelines. The results show that the VIV is suppressed significantly for G/D = 0.25 and
α = 90◦. The lock-in regime and vibration amplitude of two piggyback pipelines are greatly
influenced by the incident angle. Assi [19] investigated the wake-induced vibration of
the downstream cylinder for different diameter ratios of 0.33 ≤ D1/D2 ≤ 1 (D1 and D2
represent the diameters of the upstream and downstream cylinders, respectively). The
transverse amplitudes reach 1.5D at high reduced velocity range outside the lock-in region.
Moreover, the transverse displacement of the upstream cylinder becomes larger than that
of downstream cylinder when the spacing ratio reaches a relatively small value. Zhao
et al. [20] carried out the numerical investigation of flow past two side-by-side cylinders
with unequal diameters at low Reynolds numbers based on the finite element method.
Three types of vortex shedding modes were observed and classified as a single-wake
shedding mode, interaction mode, and two-wake mode as the gap ratio increased.

The above-mentioned studies are mostly focused on the VIV of two cylinders with
equal diameter in the low Reynolds number regime. However, the dynamic response
and vortex shedding pattern of coupled two cylinders with unequal diameters are not
well-understood. Zhu et al. [21] investigated the flow-induced vibration (FIV) of two
rigidly coupled tandem cylinders with unequal diameters at Re = 150, the results indicate
that the flow regime transition was sensitive to the gap ratio and the reduced velocity.
Zhao et al. [22] investigated the 1-DOF VIV of two coupled cylinders with equal diameter
in tandem and side-by-side configurations in the cross-flow direction. They found that
the maximum vibration amplitude occurs in the lock-in range at G/D = 0.5 (G is the gap
between two cylinders, D is the diameter of the cylinder) in side-by-side configuration, and
the maximum value is approximately twice that of a single cylinder. Zhao and Yan [23]
conducted the investigation focused on the effect of incident angle α on the lock-in regime
of VIV for two cylinders with unequal diameters using the Petrov–Galerkin Finite Element
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Method (PG-FEM). The results show that the lock-in range is expanded considerably.
The 2-DOF VIV of two coupled cylinders at d/D = 0.1 was investigated numerically by
Rehmanian et al. [24]. The vibration frequency component, vibration amplitude, and
force coefficient are sensitive to the incident angle and gap ratios. The largest vibration
amplitudes in the cross-flow and in-line directions both occur at α = 67.5◦ and G/D = 0.1.
The lock-in regime and vibration frequency of small cylinder are consistent with that of the
large cylinder [25]. Serta and Janocha [26] performed the numerical simulation of 2-DOF
flow-induced vibration of two coupled cylinders at Re = 3.6 × 106, the extended lock-in
range is observed at G/D = 0.1 with the incident angles of α = 90◦ and 180◦. The motion
trajectories and vortex shedding patterns behave more irregularly at α = 90◦. Ping et al. [27]
numerically investigated the VIV of two rigidly connected cylinders of unequal diameters
at Re = 250 and d/D = 0.2. The structural dynamic responses and hydrodynamic forces are
strongly depended on the configurations.

As mentioned above, few investigations have been performed for vortex-induced
vibrations of two coupled cylinders with unequal diameters, especially at subcritical
Reynolds numbers. The purpose of the present study is to investigate the 2-DOF VIV of
two coupled cylinders with unequal diameters to optimize the configuration of coupled
riser-cable systems. The effects of incident angle, spacing ratio, and diameter ratio on the
VIV response and vortex shedding mode of two coupled cylinders are further analyzed.
The paper is organized as follows. In Section 2, the numerical method and validation
are described in detail. In Section 3, the numerical results for vibration amplitude, force
coefficient, motion trajectory, and wake flow pattern are analyzed. Finally, the conclusions
are drawn in Section 4.

2. Numerical Method
2.1. Governing Equations

Two-dimensional models based on RANS equations have been demonstrated to pre-
dict the response amplitudes and frequencies of VIV with sufficient accuracy [4,24,28].
Flow past two coupled cylinders with unequal diameters is governed by the unsteady
two-dimensional incompressible RANS equations:

∂ui
∂xi

= 0 (1)

∂ui
∂t

+
∂

∂xj

(
uiuj

)
= −1

ρ

∂p
∂xi

+
1
ρ

∂

∂xj

(
µ

∂ui
∂xj
− ρuiu′j

)
(2)

where ui denotes the fluid velocity in xi-direction, ρ is density of the fluid, p is the pressure,
µ denotes the kinematic viscosity, and u′iu

′
j denotes the Reynolds stress tensor.

The riser and fiber optic cable are rigidly coupled together, assumed as two coupled
cylinders with unequal diameters. Moreover, the equations of motions of two coupled
cylinders system are expressed as follows:

m
..
x + c

.
x + kx = Fx (3)

m
..
y + c

.
y + ky = Fy (4)

where m, c, and k denote the mass, damping, and stiffness of the two coupled cylinders sys-
tem, respectively. x and y denote the streamwise and transverse displacement, respectively.
Fx and Fy are the fluid forces in the streamwise and transverse directions, respectively.

In the present study, the Shear Stress Transport (SST) k−ω turbulence model is used
for simulating the VIV of two coupled cylinders. A sufficiently fine mesh is adopted to
ensure the accurate numerical simulation of near-wall flow. The distance of the first layer
on the surface of the cylinder defined as y+ = µ f ∆y/ν is less than 1, where µ f is the friction
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velocity and ∆y is the radial distance between the nodes of the first layer mesh and cylinder
surface.

The RANS equations are solved using the Open-Source Field Operation and Manipula-
tion (OpenFOAM®v1806), which is a free, open source CFD software developed primarily
by OpenCFD Ltd. The pressure implicit with splitting of operator (PISO) method and
pimpleFoam solver are used to solve the coupling of pressure and velocity. The second-
order backward implicit Euler scheme is used for the time integration. The convection
terms are discretized using the Gauss linear scheme. The linear scheme and Gauss linear
corrected are used to discretize the interpolation and Laplacian terms, respectively. The
Newmark-β method is used to solve the equations of motion for the elastically mounted
cylinder system. The dynamicFvMesh is used for the two-degree-of-freedom motions of the
system. The quality and effectiveness of the mesh are controlled by the motionDirectional
diffusion model.

2.2. Computational Set Up

The schematics of the 2-DOF VIV of two coupled cylinders with unequal diameters are
shown in Figure 1. The computational domain of the numerical simulation for two coupled
cylinders is 45D × 30D. For the purpose of convenience, the large and small cylinders
are labeled as C1 and C2, respectively. The inlet boundary is located 15D upstream from
the center of C1 and the outlet is placed 30D downstream from the center of C1. The
distance between the top and bottom boundaries and the center of C1 are 15D. On the
inlet boundary, the Neumann condition is used for pressure. The flow velocity is set to be
ux = U and uy = 0. The turbulent kinetic energy k and specific dissipation ω are provided

as k = 1.5(UI)2 and ω = k0.5/
(

C0.25
µ l

)
, respectively, where the turbulence intensity I

is 0.9% [29], the model constant is Cµ = 0.09, and the turbulence length scale l is set to
0.04D [30]. On the outlet boundary, the pressure is set to zero and the normal gradients of
the velocity, k and ω, are zero. The no-slip condition is employed on the surfaces of two
cylinders, k = 0 and ω = 60ν/

(
0.075∆x2), where ∆x is the distance between the cylinder

surface and the first layer of computational nodes. The symmetry condition is adopted on
the top and bottom boundaries.

The mass ratio is m∗ = 2.0 and the damping coefficient for two coupled cylinders is
zero in the present study. The incoming flow velocity is 0.2 m/s, corresponding to the
Reynolds number of 20,000. The diameter ratio d/D and spacing ratio G/D are varied from
0.05 to 0.3, respectively. For the examined configurations, d/D and G/D, are kept consistent.
The incident angle α is chosen to be 0◦, 90◦, and 180◦. The reduced velocity Ur is varied in
the range of 2 to 14.

2.3. Numerical Validation and Mesh Dependency Study

To validate the accuracy of present numerical model, comparisons of the 2-DOF VIV of
an isolated cylinder from the present numerical simulation with reported experiment and
numerical results were performed. In the numerical validation, the simulation parameters
were kept consistent with those used in the experiment of Jauvtis and Williamson [2],
D = 0.0381 m, m∗ = 2.6, ξ = 0.003611 and the natural frequency fn = 0.4, the Reynolds
number varied from 1500 to 10,000.

The variations in the streamwise and transverse vibration amplitudes and the ratios
of transverse vibration frequency to natural frequency with reduced velocities are shown
in Figure 2. The results well capture the initial branching, upper branching, and lower
branching. The variations in the transverse vibration amplitude are generally consistent
with previous results [2,4,5,31], as well as the ratio of transverse vibration frequency to
natural frequency at different reduced velocities. The streamwise and transverse amplitudes
are slightly less than the previous results at 6.4 ≤ Ur ≤ 7 for the super upper branch. The
present results demonstrate that the numerical model is sufficiently accurate for solving
the vortex-induced vibration of two coupled cylinders with unequal diameters.
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Figure 1. The schematics of computational domain of two coupled cylinders system: (a) sketch of
the computational model (α = 90◦); (b) computational mesh (α = 0◦ and d/D = 0.3); (c) mesh details
around two coupled cylinders.

In order to test the mesh and time-step dependency, the numerical simulations of
2-DOF VIV of a single cylinder at Re = 20,000 and Ur = 5 were performed. Three meshes
with different densities were adopted for the mesh dependency study. Table 1 shows the
comparisons of the streamwise and transverse vibration amplitudes, mean drag coefficients,
and root mean square lift coefficients of a single cylinder calculated from different meshes.
The drag and lift force coefficients and the corresponding root mean square values are
defined as follows:

CD =
2FD

ρU2 A
(5)

CL =
2FL

ρU2 A
(6)

CD =
1
n

n

∑
i=1

CD,i (7)

C′D =

√
1
n

n

∑
i=1

(
CD,i − CD

)2 (8)
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C′L =

√
1
n

n

∑
i=1

(
CL,i − CL

)2 (9)

where FD and FL denote the drag and lift force on the single cylinder, respectively. ρ and
U are the density of the fluid and the incoming flow velocity, respectively, A denotes the
projected area of the cylinder in the incoming flow direction.

Figure 2. Comparisons of the response amplitudes and frequencies for the VIV of an isolated cylinder
at different reduced velocities with references [2,4,5,31]: (a) streamwise amplitudes; (b) transverse
amplitudes; (c) frequency ratio in the transverse direction.

Table 1. Mesh dependence for the VIV of an isolated cylinder at Re = 20,000 and Ur = 5.

Mesh Nodes Elements Ax/D Ay/D CD C’
L

M1 160 27,552 0.2135 1.0955 2.3328 1.5947
M2 200 34,752 0.2076 1.1088 2.3401 1.5870
M3 240 48,000 0.2081 1.1093 2.3424 1.5861

As can be seen from the comparison of the results between the coarse and medium
mesh (M1 and M2) in Table 1, the maximum discrepancies of Ax/D and Ay/D are 2.7% and
1.2%, respectively, which are reduced to only 0.24% and 0.05% compared with the results of
M2 and M3, respectively. Moreover, the discrepancies in the values of CD and C′L between
medium mesh and fine mesh are 0.09% and 0.06%, respectively. Therefore, the medium
mesh is considered dense enough to obtain precise results for the following simulations. A
further study of time-step independence is conducted with four different time sizes based
on the medium mesh M2 (U∆t/D = 0.002, 0.001, 0.0005, 0.0002). The comparisons of the
results are shown in Table 2, it can be seen that the maximum difference in CD between
U∆t/D = 0.002 and 0.001 is 6.33% and reduces to 0.78% as U∆t/D decreases to 0.0005.
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Therefore, the non-dimensional computational time step U∆t/D = 0.0005 is suitable and
sufficient for ensuring the convergence and accuracy of the present simulation.

Table 2. Comparisons of results for an isolated cylinder for four different time-step sizes at Re = 20,000
and Ur = 5.

U∆t/D Ax/D Ay/D CD C’
L

0.002 0.210 1.101 2.518 1.551
0.001 0.207 1.110 2.359 1.575

0.0005 0.208 1.109 2.340 1.587
0.0002 0.207 1.109 2.343 1.583

3. Results and Discussion
3.1. Vibration Amplitudes and Frequencies

Numerical simulations were performed to investigate the effects of incident angle,
spacing ratio, and diameter ratio on the VIV of coupled cylinders with unequal diameters.
Figure 3 presents the variations in the non-dimensional vibration amplitudes and the
ratio of transverse vibration frequency to natural frequency with the reduced velocities at
different incident angles and diameter ratios, with the value of diameter ratio and spacing
ratio kept constant. It is found that the variations in the vibration amplitudes of two
rigidly coupled cylinders with the reduced velocities seem more complicated than that of a
single cylinder especially in the range of high reduced velocity. The incident angles and
diameter ratios have significant effects on the vibration amplitudes and frequency for two
coupled cylinders.

For d/D = 0.3, at the incident angle α = 0◦, the transverse vibration amplitude of Ay is
reduced for 3 ≤ Ur ≤ 6 compared with the single cylinder and the maximum value of Ay
reaches 1.03D for Ur = 7. Moreover, Ax is increased significantly for 7 ≤ Ur ≤ 14 and the
frequency ratio fy/fn varies around 1 for 7 ≤ Ur ≤ 14. The comparisons of VIV responses
obtained from three different incident angles at a large diameter ratio (d/D = 0.3) were
performed. The vibration amplitudes and frequencies at the high reduced velocities range
are significantly different regardless of the incident angle, and the increase in diameter of
the small cylinder leads to different flow patterns and pressure distributions, resulting in
the significant variation in vibration amplitude of the large cylinder. As d/D decreases from
0.3 to 0.1, the variations in streamwise and transverse vibration amplitudes become similar
to those of an isolated cylinder. For d/D = 0.1, the transverse vibration amplitude of Ay is
increased for 7 ≤ Ur ≤ 14 and the maximum value of Ay is equal to 1.07D at Ur = 6. The
variation in vibration amplitudes with reduced velocities show some similarities to those
of the isolated cylinder. The transverse vibration frequency ratio fy/fn is constant at 1.15 for
11 ≤ Ur ≤ 14. The lock-in ranges for d/D = 0.1 and 0.3 extend beyond Ur = 14. Moreover, as
d/D decreases to 0.05, both the streamwise and transverse vibration amplitudes decrease
significantly for Ur = 6. The variations in transverse vibration frequency ratio and the
lock-in range are consistent with those of the isolated cylinder. For d/D = 0.05, the small
cylinder has slight effects on the frequency ratio and vibration amplitude of the large
cylinder compared with the large diameter ratios at α = 0◦.

The normalized Fast Fourier Transform (FFT) amplitude spectra of the transverse
displacement are presented as functions of Ur and fy/fn in Figure 4. For d/D = 0.3, the peak
is not obvious due to the presence of small cylinder, especially at high reduced velocities.
Compared with the isolated cylinder, the frequency ratio fy/fn for the dominant peak is
varied from 0.7 to 1.0 in the lock-in region 7 ≤ Ur ≤ 14 at α = 0◦. Meanwhile, the spectra
of the transverse displacement for two coupled cylinders have a wide bandwidth with
multiple peak frequencies for 4 ≤ Ur ≤ 10. A similar phenomenon is also observed for
other incident angles in Figure 4c,d. The appearance of multiple peaks may be caused by
the interference between the reattachment of shear layers and shed vortices. The proximity
interferences between two coupled cylinders lead to the irregularities of lift force and
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vibration amplitude. The peak becomes more obvious with the decrease in d/D compared
with that of α = 0◦. The coupled cylinders can be regarded as a single bluff body for
d/D = 0.05, and a single distinct peak is generally observed in the power spectrum for the
single bluff body mode. As shown in Figure 4f, the frequency ratio fy/fn for the dominant
peak is varied from 0.8 to 1.2 for 6 ≤ Ur ≤ 14. The peak response is different from that of
the isolated cylinder at high reduced velocities 11 ≤ Ur ≤ 14. For d/D = 0.05, the frequency
ratio fy/fn for the dominant peak is varied from 2.6 to 2.9 for 13 ≤ Ur ≤ 14. It can be seen
that two coupled cylinders for the configuration of d/D = 0.05 and α = 0◦ exhibit similar
features to the isolated cylinder, indicating the weak effect of the small cylinder on the
large cylinder.

Figure 3. Variations in the non-dimensional vibration amplitudes and frequency ratio with the
reduced velocities at different incident angles and diameter ratios: (a) streamwise amplitudes;
(b) transverse amplitudes; (c) frequency ratio in the transverse direction.
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Figure 4. Normalized FFT amplitude spectra of the transverse displacement: (a) a single cylinder;
(b) α = 0◦, d/D = 0.3; (c) α = 90◦, d/D = 0.3; (d) α = 180◦, d/D = 0.3; (e) α = 0◦, d/D = 0.2; (f) α = 0◦,
d/D = 0.1; (g) α = 0◦, d/D = 0.05.

3.2. Force Coefficient

Figure 5 shows the variations in CD, C′D, and C′L for two coupled cylinders with
reduced velocities Ur at different diameter ratios and incident angles. For the configuration
of d/D = 0.3 at α = 90◦ and 180◦, the CD of the large cylinder exhibits different behavior from
that of the single cylinder at the lock-in range. However, similar variations are observed for
different incident angles at large reduced velocities. The CD of the large cylinder is reduced
at 3 ≤ Ur ≤ 6 and increased at 7 ≤ Ur ≤ 8 compared with that of the isolated cylinder.
Moreover, the mean drag coefficient CD of the large cylinder reaches the peak value at
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Ur = 6 for α = 0◦ and 180◦, consistent with the variation in the single cylinder. Meanwhile,
it can be seen that the CD of the small cylinder varies significantly for different incident
angles. The large value of CD for the small cylinder is observed in the range of 2.0–2.5 at
α = 90◦. A significant decreasing in CD is observed at α = 0◦ and the negative value of CD
is observed for Ur = 3 and 11 ≤ Ur ≤ 14 due to the shielding effect of the large cylinder.
A strong backflow is formed in the wake shield region, resulting in a force reversal of the
small cylinder. As shown in Figure 5b,c, the variations in C′D and C′L for coupled cylinders
are more complex especially for 2 ≤ Ur ≤ 10. For α = 0◦, the maximum values of C′D and
C′L on the large cylinder decrease by 26.2% and 19.4% compared with the isolated cylinder,
respectively. Moreover, C′D of small cylinder C2 is significantly larger for 5 ≤ Ur ≤ 10
compared with other configurations, which may be caused by the disturbances from the
unsteady vortex shedding mode of large cylinder. It can be seen that the force coefficients
of two coupled cylinders with d/D = 0.3 vary significantly with different incident angles.

Figure 5. Variations in the force coefficient with the reduced velocity: (a) the mean drag coefficient;
(b) the r.m.s. drag coefficient; (c) the r.m.s. lift coefficient.
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For α = 0◦, with the decrease in d/D, the variations in the force coefficients with Ur
for the large cylinder are similar to those of the isolated cylinder. As shown in Figure 5a,
the mean drag coefficient CD of the large cylinder reaches the peak value at Ur = 6 as d/D
decreases to 0.1 or 0.05, consistent with that of the isolated cylinder. When d/D decreases to
0.05, the maximum value of CD becomes smaller. Moreover, it is interesting to note that
the CD of the small cylinder approaches to 0 for d/D = 0.05. For d/D = 0.1, although the
variations in CD for the large cylinder are most similar to the single cylinder among all
configurations, the small cylinder is subject to a certain amount of drag force for 4 ≤ Ur ≤ 6
and the values of C′D and C′L are kept at larger values for 5 ≤ Ur ≤ 6.

The cross-correlation coefficients and phase difference between the transverse displace-
ment and lift force for the large cylinder at different incident angles and diameter ratios are
presented in Figure 6. The cross-correlation coefficient CFL ,Y(τ) of transverse displacement
and lift force is calculated, similar to the method used in Gao et al. [32], as follows:

CFL ,Y(τ) =
{Y(t)}{FL(t + τ)}[

{Y(t)}2
]1/2[

{FL(t + τ)}2
]1/2 (10)

where τ is the time lag. The phase angle ϕ between the transverse vibration amplitude and
lift force is calculated from the phase difference between the peak frequency component of
the vibration amplitude and lift force at the same frequency.

Figure 6. The correlation coefficient and the phase difference between the transverse vibration
amplitude and lift force: (a) the correlation coefficient; (b) the phase difference.

As shown in Figure 6, the correlation coefficient of the isolated cylinder between the
transverse vibration amplitude and lift force is about 1 when they are in phase or anti-
phase with each other [33], and the minimum value of the maximum correlation coefficient
Cmy reaches to 0.64 for Ur = 6. When Ur increases to 7, ϕ changes from 0◦ to 170◦. The



J. Mar. Sci. Eng. 2023, 11, 377 12 of 23

responses of lift force and transverse displacement are always in the in-phase or anti-phase
modes, while the variations in the maximum correlation coefficients are more complicated
for two coupled cylinders than that of the isolated cylinder. For d/D = 0.3, when the
harmonic of the transverse vibration amplitude and lift force is in anti-phase, the maximum
correlation coefficients of two coupled cylinders at different incident angles are smaller than
1. Moreover, the maximum value decreases to about 0.27 at high reduced velocities Ur ≥ 12
for α = 0◦. The decrease in the correlation coefficient may be due to the enhancement
of nonlinear effects of the vortices shed from two coupled cylinders. The vortices shed
from the surfaces of two cylinders are influenced by the gap flow, which may lead to
phase variation between the lift force and vibration displacement. As shown in Figure 4b,
the peak of the spectra at large reduced velocity is not obvious and the spectra of the
transverse displacement for two cylinders are broadband with multiple peak frequencies,
which indicates that the variations in the transverse vibration amplitude and lift force
are significantly random. Different from the sudden change in the phase for the isolated
cylinder at Ur = 7, the phase of two coupled cylinders gradually changes at 4 ≤ Ur ≤ 10
for α = 90◦ or α = 180◦. It is interesting to note that for α = 0◦, the phase is always in the
transition at high reduced velocities and not strictly in-phase or anti-phase. In the VIV of
two coupled cylinders, the phase shift between transverse vibration amplitude and lift force
for d/D = 0.3 or 0.2 appears to be significantly different from that of the isolated cylinder
at different incident angles. For the larger diameter ratio, there is no relatively regular
periodic motions in the lock-in region and the corresponding vibration displacement is
poorly correlated with the lift force.

As the diameter ratio decreases, the effects of the small cylinder on the correlation
coefficients and phase angles of two coupled cylinders become weak for α = 0◦. The phase
angle ϕ is about 0◦ for Ur ≤ 6 and jumps to 180◦ for Ur ≥ 7, and there is no transition
phase for d/D = 0.3 and α = 90◦ or 180◦. However, both the correlation coefficient and phase
angle decrease with Ur for Ur ≥ 12, which indicates the transverse vibration amplitude and
lift force coefficient are not strictly anti-phase. When d/D decreases to 0.05, the minimum
value of the correlation coefficient Cmy is observed at Ur = 7, while ϕ changes from 0◦ to
180◦ as Ur increases to 6. At Ur > 6, the phase angle ϕ is about 180◦, indicating that the
transverse displacement is in anti-phase with the lift force coefficient. It can be seen that as
d/D decreases to 0.05, the correlation coefficients and phase angle of two coupled cylinders
are almost similar to those of the isolated cylinder.

3.3. Trajectory Response

As shown in Figures 7–10, the X-Y trajectories of the two coupled cylinders are
different at different incident angles and diameter ratios. These figures show that the
dynamic responses are strongly depended on the incident angle, spacing ratio, and reduced
velocity. For the case of α = 0◦ and d/D = 0.3, the streamwise vibration response is dominant
and the transverse vibration amplitude is extremely small at low reduced velocity Ur = 2.
For Ur = 3, the trajectories are chaotic and similar to the shapes of “flat Figure 8”, the
reason may be attributed to the effect of streamwise vibration on the transverse vibration
frequency. With the increase in reduced velocities Ur to 5 and 6, the transverse vibration
amplitude becomes dominant. Moreover, the trajectories of two coupled cylinders become
more regular, exhibiting the disordered figure of “8”.

For the incident angle α = 90◦ and d/D = 0.3 presented in Figure 8, different from the
configuration for α = 0◦, the trajectories exhibit inclined enclosed loop shapes, which are
slightly disordered. At 5≤Ur ≤ 7, more chaotic trajectories are observed. For 10 ≤ Ur ≤ 13,
the trajectories become regular and exhibit the inclined enclosed loop shapes. When two
cylinders are arranged at α = 90◦, the trajectories are not strictly symmetrical along the
cross-flow direction and present a certain inclination, which indicates that the presence
of small cylinder has significant effects on the vibration response of the large cylinder.
The X-Y trajectories for α = 180◦ with d/D = 0.3 are shown in Figure 9. An irregular and
chaotic circular trajectory is observed at Ur = 2. The figure of “8” trajectories are observed
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at 4 ≤ Ur ≤ 7. Moreover, the trajectories exhibit the enclosed loop shape and become more
chaotic at high reduced velocities Ur ≥ 10.

Figure 7. X-Y trajectory of two coupled cylinders at α = 0◦ and d/D = 0.3: (a) Ur = 2; (b) Ur = 3;
(c) Ur = 5; (d) Ur = 12.

Figure 8. X-Y trajectory of two coupled cylinders at α = 90◦ and d/D = 0.3: (a) Ur = 3; (b) Ur = 5;
(c) Ur = 7; (d) Ur = 10.
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Figure 9. X-Y trajectory of two coupled cylinders at α = 180◦ and d/D = 0.3: (a) Ur = 2; (b) Ur = 4;
(c) Ur = 6; (d) Ur = 7; (e) Ur = 10; (f) Ur = 12.

To investigate the effect of diameter ratios on the motion trajectory responses of two
coupled cylinders, the X-Y trajectories of two coupled cylinders for d/D = 0.05 at α = 0◦

with different reduced velocities are shown in Figure 10. Different from the complex
and disordered trajectories shown in Figures 7–9, the trajectories for small diameter ratio
d/D = 0.05 behave in a more regular manner. The trajectories of two cylinders resemble
the flattened shape of “8” at Ur = 3. As the reduced velocity Ur increases to 4 and 5, the
trajectories become a little chaotic, but show obvious figures of “8”. The dynamic response
of the system in the lock-in region is disturbed slightly due to the presence of small cylinder.
At Ur ≥ 6, the trajectory behaves as an obvious figure of “8”. As Ur increases to 13, the
transverse vibration amplitude decreases significantly.
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Figure 10. X-Y trajectory of two coupled cylinders at α = 0◦ and d/D = 0.05: (a) Ur = 2; (b) Ur = 3;
(c) Ur = 4; (d) Ur = 5; (e) Ur = 6; (f) Ur = 10; (g) Ur = 11; (h) Ur = 13.
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3.4. Wake Flow Pattern

Figures 11–13 show the instantaneous vorticity contours behind two coupled cylinders
with d/D = 0.3 at different incident angles. The incident angle and reduced velocity play
important roles in the wake flow pattern behind two coupled cylinders.

Figure 11. Instantaneous vorticity field for two coupled cylinders at α = 0◦ and d/D = 0.3.

Figure 12. Instantaneous vorticity field for two coupled cylinders at α = 90◦ and d/D = 0.3.
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Figure 13. Instantaneous vorticity field for two coupled cylinders at α = 180◦ and d/D = 0.3.

At α = 0◦, the vortices shedding from the large cylinder impinge on the small cylinder
and separate on the top and bottom sides due to the dominant streamwise motion at Ur = 2.
The vortex shedding mode in the far wake is similar to 2S mode. When Ur increases to 3, a
negative vortex from the large cylinder divides into two small vortices during the formation
process, leading to a “2P” vortex shedding mode. Then the wake flow pattern becomes
2S mode at Ur = 4. As the reduced velocity further increases to 6 ≤ Ur ≤ 9, the vortices
shedding become more complicated. Moreover, the typical and regular vortex shedding
pattern of VIV is not observed, leading to the significant chaotic motions of two coupled
cylinders. An obvious 2S mode is observed at high reduced velocities 11 ≤ Ur ≤13.

For the case of d/D = 0.3 and α = 90◦, the presence of the small cylinder plays an
important role on the vortex shedding from the large cylinder, resulting in a more complex
and chaotic flow field. The vortices shedding from two coupled cylinders are amalgamated.
A pair of vortices is shed from the rear side of the two coupled cylinders and a triplet or
quadruplet is observed on the upside. The wake flow pattern is significantly irregular at
different reduced velocities. For α = 180◦ shown in Figure 13, the wake flow pattern can
be classified as 2S at Ur ≤ 4. As Ur increases to 7, similar to the case of α = 90◦, the vortex
shedding from the surface of small cylinder is amalgamated with the shear layer on the
upper side of large cylinder. The vortices shed from the small cylinder significantly affect
the vortex shedding pattern of two coupled cylinders. For Ur ≥ 10, the vortices attach to
the surface of the large cylinder for a long period and the vortex formation length increases
compared with Ur ≤ 9, which indicates that the transverse displacement decreases with
slower separation of shear layer.

For the case of d/D = 0.05 and α = 0◦ as shown in Figure 14, with the decrease in
the diameter ratio, the flow field becomes more regular. A symmetric pair of vortices
is observed at Ur = 2. As Ur increases to 3 ≤ Ur ≤ 4, a 2S mode is observed obviously.
For Ur = 5, the flow field becomes slightly irregular, and the vortex pattern is similar to
a P+S mode. The vortices shed from the small cylinder suppress the normal formation
and development of vortices shed from the large cylinder. As the reduced velocity further
increases to 6≤ Ur ≤ 10, the vortex pattern becomes a 2P mode, corresponding to the lower
branch. With the increase in reduced velocities, the vortex shedding pattern changes to a
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2S mode for Ur ≥ 13. The variation in the wake flow patterns of two coupled cylinders is
similar to that of an isolated cylinder, which indicates that the effect of small cylinder on
the coupled system becomes weakened with the decrease in the diameter ratio.

Figure 14. Instantaneous vorticity field for two coupled cylinders at α = 0◦ and d/D = 0.05.

In order to provide a better understanding of the flow topology modifications induced
by a small cylinder, the instantaneous vorticity fields in one vibration period T are further
analyzed. The instantaneous vorticity contours for d/D = 0.3, α= 0◦ and Ur = 5 are presented
in Figure 15. At Ut/D = 300.8, the positive vortices are shed from the bottom side of the
large cylinder surface. At Ut/D = 302.4, the negative vortices shed from the large cylinder
surface are merged with those shed from the small cylinder. The appearance of the negative
vortices below the cylinders complicates the variations in the lift force coefficients of two
coupled cylinders, leading to a slightly disordered figure of “8”. The flow field and dynamic
response become complicated with the presence of the small cylinder.

For d/D = 0.3, α= 90◦, and Ur = 10, more complex interactions are observed in Figure 16.
Since the gap distance between two cylinders is sufficiently large the drop-off of the shear
layer is not directly affected by large cylinder. It can be seen from the time histories
of Y-displacement and CL, two cylinders have four lift periods in one vibration period,
leading to the large positive vortex in the rear of large cylinder consisting of four small
vortices. Moreover, the large period is consistent with the vibration period. A typical
galloping phenomenon is observed at a remarkably lower frequency with respect to the
vortex shedding frequency. The vibration of the coupled two-cylinder system in one cycle
is affected by the combination of four pairs of vortices. At Ut/D = 347.4 and 349.3, three or
four pairs of vortices shed from the small cylinder are mixed with the vortex on the top
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side of the large cylinder and the vortex formation length of the large cylinder increases
due to the presence of the small cylinder, resulting into the smaller vortex intensity on the
top side than that on the bottom.

Figure 15. Instantaneous vorticity contours for the typical time instants in one vibration period at
d/D = 0.3, α = 0◦ and Ur = 5: (a) Ut/D = 300.8; (b) Ut/D = 302.4; (c) Ut/D = 304.0; (d) Ut/D = 305.6;
(e) Ut/D = 307.2.

The instantaneous vorticity contours for d/D = 0.05, α = 0◦, and Ur = 6 are shown in
Figure 17. When two coupled cylinders move to the uppermost position, a pair of vortices
is formed above small cylinder and interact with the upper shear layer of large cylinder.
The vortices shed from the two lateral sides of the small cylinder with opposite sign are
canceled out, resulting in the drag coefficients of small cylinder being almost zero. As
can be seen from Figure 17b–d, the small cylinder is always surrounded by vortices of the
large cylinder when the cylinders move from the uppermost position to the lowest position.
The vortex pattern of the coupled cylinders is similar to that of a single cylinder, and the
coupled cylinders can be regarded as a single bluff body. Although the vortex shedding of
the large cylinder appears not to be significantly affected by small cylinder, the presence of
small cylinder has an effect on the fluctuation of the lift coefficients of two cylinders.
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Figure 16. Instantaneous vorticity contours for the typical time instants in one vibration period at
d/D = 0.3, α = 90◦, and Ur = 10: (a) Ut/D = 347.4; (b) Ut/D = 349.3; (c) Ut/D = 351.2; (d) Ut/D = 353.1;
(e) Ut/D = 355.0.
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Figure 17. Instantaneous vorticity contours for the typical time instants in one vibration period at
d/D = 0.05, α = 0◦, and Ur = 6: (a) Ut/D = 359.3; (b) Ut/D = 360.6; (c) Ut/D = 361.9; (d) Ut/D = 363.2;
(e) Ut/D = 364.5.

4. Conclusions

Numerical simulations on two-degree-of-freedom vortex-induced vibration of two
coupled cylinders with unequal diameters were performed at Reynolds number Re = 20,000.
The effects of the incident angle, diameter ratio, spacing ratio, and reduced velocity on the
VIV responses were investigated. The conclusions are summarized as follows:

(1) The range of the lock-in region of two coupled cylinders is widened significantly com-
pared with that of the isolated cylinder. The maximum vibration amplitude decreases
due to the presence of small cylinder. The differences in the vibration amplitudes
and frequency ratios are particularly pronounced at high reduced velocities especially
for α = 0◦. The differences become smaller with the decrease in diameter ratio. For
the configuration of α = 0◦, d/D = 0.05, and G/D = 0.05, the variations in vibration
amplitudes and frequency ratios become similar to those of the isolated cylinder.

(2) For all configurations, the variations in mean drag coefficients and root mean square
force coefficients of the large cylinder do not vary significantly with the incident angle
and diameter ratio, but the force coefficients of small cylinder behave significantly
different from those of the isolated cylinder. For the configuration of d/D = 0.3 and
α = 0◦, the mean drag coefficient of small cylinder is positive in the lock-in regime
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and becomes negative outside the lock-in regime. As d/D decreases to 0.05, the mean
drag force coefficient of small cylinder almost approaches 0. For α = 0◦, the mean drag
coefficients of two cylinders both decrease slightly as the diameter ratio decreases.

(3) The correlation between the transverse vibration amplitude and lift force coefficients
of two coupled cylinders becomes very weak with the increase in diameter ratio and
spacing ratio, especially for Ur ≥ 11 at d/D = 0.3. The motion trajectories behave
irregular at α= 90◦ and d/D = 0.3 and become regular with the figure of “8” at α = 0◦

and d/D = 0.05.
(4) The presence of the small cylinder has a significant effect on the vortex shedding

modes for the large cylinder especially for α = 90◦ and 180◦, different vortex shedding
modes such as 2S mode, P+S mode, and 2P mode are observed for two coupled
cylinders at different reduced velocities for all investigated configurations. For the
case of d/D = 0.05, G/D = 0.05, and α = 0◦, the vortex shedding from the large cylinder
is not significantly affected.
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