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Abstract: Due to the limited energy in underwater sensor networks, underwater nodes need to
be deployed sparsely. However, sparse USNs will lead to poor tracking coverage and detection
capability. To solve these problems, the mobility of nodes in depth can be utilized to optimize the
node topology to achieve data fusion more reliably and effectively. In this paper, for underwater
target tracking, a node depth adjustment algorithm is proposed. Firstly, after introducing the sound
velocity profile on acoustic signal transmission, the asynchronous particle filter algorithm based on
delay estimation is improved, which makes the filter more suitable for an underwater environment.
Secondly, the influence of node topology on the tracking accuracy is analyzed, and the optimization
problem of node depth adjustment is constructed, in which the depth-related Fisher Information
Matrix is designed as the optimization criterion. Thirdly, for scenarios in which the target depth
is either known or unknown, the analytical method and the interior point method are employed
to solve the problem, respectively, and the optimal depth adjustment strategies in corresponding
scenarios are obtained. The simulation results show that the proposed algorithm can fully adjust the
node depth and achieve a more accurate tracking performance.

Keywords: node depth adjustment; Fisher Information Matrix; sparse USNSs; transmission delay

1. Introduction

The ocean, which occupies 71% of the earth’s area, is rich in natural resources and
strategic status. As a necessary technology for underwater defense and resource develop-
ment, underwater target tracking has received extensive attention and research in recent
years [1-3]. With the rapid development of wireless sensor networks, underwater target
tracking based on underwater sensor networks (USNs) has also received extensive atten-
tion [4-6]. Unlike traditional acoustic sensor arrays [7] or acoustic imaging sensors [8],
USNs have the advantage of flexible distribution, comprehensive dimensions and strong
concealment, which allow them to achieve better real-time tracking [9]. In this paper, we
focus on solving the problem of underwater target tracking using USNs.

To track the moving targets, underwater sensor nodes with sensing ability are needed
to collect measurements and transmit data related. Too few nodes participating in tracking
will lead to fewer measurements and increase the tracking error; while more nodes will
cause data redundancy and create unnecessary waste [10]. Therefore, how to effectively
balance the number of nodes participating in tracking and the tracking accuracy is an
urgent problem to be solved. To this end, researchers have proposed a large number of
solutions from multiple perspectives. After improving the particle filter with the help of
mutual information (MI), ref. [11] presents a node scheduling strategy based on posterior
Cramer-Rao lower bound (PCRLB) to improve the tracking efficiency [11]. Ref. [12]
sets three indicators as the objective function to design a multi-objective node selection
algorithm, which overcomes the influence of node position fluctuations and achieves
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better performance. Zhang S designs an unbiased quantizer and achieves optimal bit
allocation, which reduces the number of nodes and the amount of measurement involved
in tracking [13]. The relationship between node topology and PCRLB is derived in [14],
and it also improves tracking accuracy by selecting a specific topology. Xu S [15] studied
the optimal sensor deployment strategy for 3D-AOA localization combined with topology.
The studies above are based on USNs in which underwater nodes are deployed densely.
However, considering the relevant high cost of underwater sensor nodes, it is difficult to
deploy them as densely as wireless sensor networks [16,17]. At the same time, the dense
deployment of nodes will cause collisions and packet loss [18]. Therefore, we have to
sparsely deploy nodes in the underwater area.

However, sparse USNs will lead to poor tracking coverage and detection capability.
Once the target moves to an area with low coverage, USNs cannot obtain enough data due
to the limitation of the node sensing radius. A feasible way to solve the above problems
is to use the mobility of nodes. The authors of [19] set a mobile sink as the relay node to
balance the energy consumption of each node during data gathering. Ref. [20] constructed
a node scheduling and depth adjustment algorithm using the theory of two-dimensional
convex hull and spanning tree to obtain higher network coverage. For wireless sensor
networks, considering the mobility of nodes, ref. [21] obtained the optimal combination of
nodes through an optimization algorithm to improve tracking accuracy. An Autonomous
Underwater Vehicle was introduced into [22]; its fusion center can be moved to the optimal
position to reduce the energy consumption of nodes during acoustic communication.
However, these mobility policies do not actually apply to USNs. It is difficult to move
the sensor nodes to any given location. Underwater sensor nodes are usually equipped
with pressure monitors which can flexibly change the depth by using pressure. Therefore,
node depth adjustment becomes an easier solution. Ref. [23] realizes the self-organized
adjustment of the node position structure through the dynamic adjustment of the node
depth, which improves the tracking accuracy. Ref. [24] combines node selection with depth
adjustment, which enhanced the real time performance of the algorithm while reducing the
tracking error. However, the algorithm mentioned above does not take the impact of node
topology on tracking into account, so there are certain defects.

In recent years, as the application background of target tracking has become more and
more complex, the tracking scenarios are no longer limited to ideal environments [25-27].
In reality, underwater acoustic transmission generally has problems such as large delay,
small bandwidth, serious clutter and scattering. Another of these issues is the transmission
speed of the sound wave underwater at 1480 m/s, presenting a larger propagation delay
and asynchronous phenomenon than the land scene [28]. To solve this problem, ref. [29]
proposed a Kalman filter and a particle filter based on sequential asynchronous filters,
which overcome the disadvantage that the asynchronous measurement cannot be directly
fused. Ref. [30] establishes the relationship between snapshot state and asynchronous
measurements and designs an asynchronous particle filter algorithm based on delay esti-
mation. However, in addition to the propagation delay, the underwater environment also
has a depth-dependent sound velocity profile phenomenon. None of the articles above
considered the acoustic ray transmission.

In summation, in the field of underwater target tracking, research on node mobility
has achieved many results. However, there are still research gaps in the problem of node
depth considering a complex underwater environment. Therefore, in order to solve the
problems of underwater sensor transmission delay and node topology in the process of
node depth adjustment, this paper studies the node depth adjustment in sparse underwater
sensor networks through the convex optimization.

The main original work includes:

1.  Considering the transmission delay and sound velocity profile theory, the particle
filter algorithm under time delay estimation is improved;

2. The problem of depth adjustment is constructed. Based on the relationship between
FIM and node depth, the problem above is converted into an optimization problem.
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To avoid the impact of the four-point coplanar topology on tracking and positioning,
the node topology constraint is also designed;

3. Anode depth adjustment algorithm using convex optimization is proposed, different
solution strategies are designed for cases in which the target depth is known or
unknown, and the node depth adjustment is realized.

The rest of the paper proceeds as follows. In Section 2, the system model is formulated
and the particle filter under time delay estimation is also improved. After deriving the
relationship between node depth and FIM, a node depth adjustment problem considering
topology is designed in Section 3. In Section 4, the corresponding algorithms are proposed
when the target depth is known and unknown. In Section 5, simulation results are presented
to verify the effectiveness of our algorithm. Finally, the conclusions of this paper are drawn
in Section 6.

2. System Model
2.1. Target State Model

In this paper, the target is assumed to perform a constant velocity (CV) movement in
the underwater three-dimensional space. For the sake of simplicity, a maneuvering point is
used to model this target. The target state can be expressed as:

X = Fr_1 X1 + wi—1 1)

where Xi = Xk, Xk, Vi, Vs Zks 2k Tis the target state at time k. The real position and velocity
vector of the target in each direction is given by u; = [xk,yk,zk]T and vy =[xk, ¥y 2] T,

respectively. The state transition matrix is given as:

Fi_1 = diag(Fcv, Fcv, Fcv)
_|1r T )

where diag(-) means a diagonal matrix, T is the sampling interval. The process noise wy_1
is assumed to be the white, zero-mean and Gaussian with the covariance matrix Q. _1:

Qx1= q2diag3(Q/9/Q)
THE
5 T
where g% means the process noise parameter.

Sound travels relatively slowly in an underwater environment compared to radio in
the air. In sparse underwater sensor networks, the nodes are sparsely deployed and widely
distributed. It is difficult to obtain synchronous measurements of the target; at the same
time, the impact of transmission delay cannot be ignored. Typically, the transmission delay
is affected by propagation speed and transmission time [31]. The propagation speed of
underwater sound is different in environments with different salinity and temperature, and
at different depths. During target tracking, the temperature and salinity of the monitoring
area are basically stable, and only the propagation depth is constantly changed by the
movement of the target and underwater sensor nodes. Therefore, we assume that the
temperature and salinity are fixed, and mainly consider the effect of depth change on sound
velocity.

As shown in Figure 1, under the influence of transmission delay, there is a significant
difference between the target position at the sampling moment and the real position
corresponding to the measurement. Therefore, the transmission delay is introduced into
the target state model. Considering the ray tracing and depth-dependent sound velocity
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profile [32] as shown in Figure 2, the transmission delay T, , between the target and the
sensor node can be expressed as:

(4)

i(ln 1+ sin6, —ln1 +s1n9n)

Ty = —=
b cos 6y, cos O,

where 7 is the update factor, 8, = Bo — &g and 0, = Bo + ag represent the ray angle at the
Z =2z}

V G+ ()’
O.SE\/(xkfx”er(ykfy;c’)z
b+0.5a(z—z]")
represents the angle of the ray trajectory deviates from this straight line; b is the speed of

sound.

target and the nth node, respectively; By = arctan > represents the

angle of the straight line between target and the nth node; ap =

Target position at the
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Figure 1. The relationship between the target position and the real position.
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Figure 2. Ray Tracing Theory.
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After computing the transmission delay T, ,,, the real state corresponding to the mea-
surement in (1) is given as:

Xi .
i Xk — Xk Th,n
i Xk Tp,
t;{ Xy
X, = yt;( _ Yk — Y Ton (5)
A A y
t Yk
Zi Zk — ZkTpn
Lk Zk
|t ]

2.2. Measurement Model

We assume M = 4 underwater sensor nodes are placed in the sparse USNs, and that
they send acoustic waves and compute the range measurements via the time of arrival
(TOA) algorithm [33]. As shown in [33], based on the TOA of echoes from the target
after transmitting acoustic pulses from the nodes, the ranges of the nodes to the target are
determined. To simplify the problem and find out the rules of node depth adjustment, we
assume the detection model of nodes satisfies the 0—1 model [34], so there is no possibility
of locating incorrect targets. The range measurement of the nth node at time k is:

70 = 1 (X)) + O] ©)

2 2 2
W (Xy) = ra(k) = \/(xk — )+ (e — )"+ (2 — 27) @)
where Z} is the range measurement of the nth node at time k; h} (X)) represents the
measurement equation; s} = [x,’z,yz,zﬂ T(n =1,---,M) is the real position of the nth
node; v} is the measurement noise, which is assumed to be independent and follows a
Gaussian distribution with parameters N (0,07).

As shown in Figure 2, the transmission of sound is not a straight line but a curve due
to the sound velocity profile. After taking this into consideration, a coefficient is needed
to correct the range measurement of (6). So, multiplicative noise is used to represent the
correction coefficient, and (6) can be further expressed as:

Zj = (1468 (Xk) + 0} (8)

where 67 is the multiplicative noise which satisfies 67 ~ N(0,02) and v} is regarded as
the additive noise. In this case, {} is the measurement noise of the nth node at time k, i.e.,
OF ~ N(O,rn(k)éf + vZ)

2.3. Improved Particle Filter under Time Delay Estimation

Considering the nonlinear characteristic of (8), the particle filter (PF) is used to realize
data fusion. PF can solve the nonlinear and non-Gaussian problems of underwater target
tracking [35,36]. To overcome the defects in calculation of transmission delay in [30], (4) is
introduced to improve the algorithm, which makes the proposed particle filter algorithm
more suitable for underwater scenes.

Assuming the probability density function (pdf) of each node at time k is p(Z}' ‘x;‘(),
the measurement likelihood over all M nodes is given by:

p(Zi|xi) = TT)L, p(Z) |%E) )

where Z = (Z},Z2,--- ,ZM). After adopting the transition prior p(xk|xx_1) as the pro-
posal distribution, the importance weights of particles are calculated as:

wi = wi_1p(Z|x}) (10)
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The specific process is shown in Algorithm 1.

Algorithm 1. Improved particle filter under time delay estimation.

Obtain the sampled particles x}( based on the prior state p(xx_1)
.fori=1---Mdo

Calculate the transmission delay by (4);

Calculate the real state corresponding to the measurement by (5);
Calculate the likelihood function;

. end for

. Update importance weights by (10)

. Normalize the weight using w,i( = w]i( / Zf\i 1 w}i{

. Estimate out the target state &, = ):f\i 1 w,’;xk

. Resampling {x;'c,N_l} ~ {x}c,w,’(}

3. Problem Formulation
3.1. Relationship between FIM and Node Depth

The Fisher Information Matrix (FIM) provides a theoretical limit on the mean square
error (MSE) of target state estimation during tracking, which is represented as [37]:

EX— X X — X > Tt (11)

where E express the expectation, Xj is the estimate of Xj, and Jj is the FIM at kth time. J;,
can be calculated as:

i = Epizi itz 1) |~ V3108 P(Zi XilZ1xn) | (12)

where Vi((’; = Vx, V)T(k is the second-order partial derivative operator with respect to X.
E,[-] denote the expectation with respect to a.

Since p(Zk, Xk|Z1:4-1) = p(Zi| X)) p(Xk|Z1k—1), (12) can be decomposed into two
parts as [38]:

T =IR + Tk (13)

where «
JE = EvziXilzis ) [—fo log P(ZkIXk)] (14)
Tk = Ep(Xe/zas 1) [—V§£ log p(Xk|ZI:k71)} (15)

where J? is the FIM obtained from range measurement data and J. is the priori FIM.
When the depth of the target is known, J; can be expressed as a 2 x 2 matrix:

2 . .
1 X = X =) (v — v
et G0 D],
j=1 (xk - xk) (]/k - yk) (yk - l/k)
where JP = b dy the elements in J¥ are constants. ¢y = ——r— + ﬁ The
KT lde o) k C 8T 2mAm T AR

definition of parameters in g; x can be seen in Section 2. The specific derivation process is
shown in Appendix A. It can be seen from (16) that the node depth will have an impact on
8jk and will further influence the FIM.

When the depth of the target is unknown, it is necessary to estimate the target in three
directions simultaneously. At this point, J; can be expressed as a 3 x 3 matrix:
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M
Je=Ti + '21 ikl
]:

ag
dy
ek

dy

€k
by fx
fe o

y (=) (o)) (o) @A) | o
+ jgl ik (xk — x{() (}/k - ]/f() (yk - yi) (yk — yf() (zk 2— z{()
(=) (@ -2) (w-n)(=m-4)  (%-2)

where the elements in ],I; are constants.

Analyzing (17), it can be found that once the target depth is unknown, the node depth
will have an impact on both ]]f and gj . The node depth has a greater effect on FIM than
the scene with known depth.

3.2. Node Depth Adjustment Problem

Now that the relationship between FIM and node depth has been introduced, this
section will design a depth adjustment algorithm for underwater sensor nodes. By adjusting
the node depth and optimizing the node topology, the tracking accuracy performance can
be improved. Therefore, in this subsection, we formulate an optimization problem that
uses the FIM as the performance index to establish the objective function and solve the
optimal depth position of nodes by maximizing FIM.

The nodes move up and down in real time by changing the buoyancy, as discussed
in [39]. Their positions will continuously adjust and will not return to the initial position

after moving once. Assume the depth of the node j at time k is z{(, after adjusting the depth
once, the node depth is:

A=+ d] as)

where df( is the depth adjustment value of node j at time k. The depth adjustment vectors
Dy can be further represented as Dy = [di, d%, d,3<, dé] )

Traditionally, due to the choice of FIM as an index, three optimality criteria are
widely used in optimization problems: A-optimality criterion, D-optimality criterion and
E-optimality criterion [40]. The A-optimality criterion is to maximize the trace of FIM, the
D-optimality criterion is to maximize the determinant of FIM and the E-optimality criterion
is to maximize the maximum eigenvalue of FIM. Computing FIM is not trivial considering
that A-optimality and E-optimality are variable under scaling of parameters and linear
transformations of output. Therefore, we adopt the D-optimality criterion as the metric of
tracking accuracy. Finally, we take the absolute value of FIM as an index to measure the
tracking performance, and the node depth adjustment problem is constructed as follows:

p, M S
argmaxdet(Jy) = |J + 121 Sik(Di)Jy
Dy =

s.t. |dj| < Dmax

(19)

where Dmax is the maximum value of the node’s moving distance each time.

The depth adjustment of nodes will also change the topology among nodes. Ref. [41]
showed that node topology will have a significant impact on underwater target tracking.
As shown in Figure 3, when the four nodes are coplanar, the TOA algorithm will not only
determine a real target T1, but will also generate a false target T2, which is a mirror image
of T1. Therefore, when adjusting the depth of nodes, it is necessary to avoid this topology
as much as possible.
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Figure 3. The impact of node topology on target tracking.

Therefore, to avoid four nodes being coplanar, we set a constraint on the topology.
Firstly, an underwater sensor node is taken as S1, which is connected with the other three
nodes S2, S3, S4. In this way, three vectors are formed. Using the knowledge of geometry,
when the mixed product of the constructed vectors is zero, we can assume that the four
nodes are coplanar, which needs to be avoided. Hence, based on the principles above, the
topology discrimination matrix Y is set as:

Y, = xi—x,{ yﬁi_y’{ Zﬁ_zk (20)
Ye =X Yo~ Yk Z

The topology discrimination matrix Y needs to satisfy:
det(Yy) #0 (21)

Combining (19) and (21), the node depth adjustment problem considering topology
can be expressed as:

argmaxdet(J;) =
Dy

M
Ik + ‘21 gik(D)J}
]:

: (22
s.t. ’d{c( < Dmax :

det(Yy) #0
In scenarios in which the target depth is known and unknown, the influence of node

depth on FIM is different, and the computational complexity of FIM’s determinant is also
inconsistent. So, this paper will use different algorithms to solve these, respectively.

4. Depth Adjustment Algorithm
4.1. Depth Adjustment Algorithm When the Target Depth Is Known

When the target depth is known, FIM is the 2 X 2 matrix, and its second-order deter-
minant can be calculated directly:

M M M 2
det(Jy) = <bk + Zgi,k(Dk)AzZ> (Ck + Zgj,k(Dk)B]z> - (dk + Zgj,k(Dk)Aij> (23)
i=1 i i=1

j=1 j
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where A; = x; — xk, =Yk — yk After simplification:
(MM 2 )
det(Jx) = 7 21 21 8ik(Di)8jx(Di) (AiBj — AjB;)” + brey — (dy)
i=17i=
M (24)
+ 121 Sik (Dk) (kajZ + CkA]'2 — deA]'Bj)
=

By ignoring the constant items, (24) can be abbreviated as:
2 2 1 2
det(J,) = Z 2ix (D) (kaj + AP — 2dkA]-Bj) + 5L gk (D) (AiB; — A;B)* | (25)
i=1

During the node depth adjustment, the horizontal position of the nodes remains
unchanged and g; x(Dx) is always positive. Considering the existence of kajz + ckA]-2 -
2d; A;Bj, it is difficult to determine the monotony of det(Jy ). So, the value of b;B jz +c A ]2 —
2dy A;B; is discussed in two cases:

o Casel: byB* 4 cxAj* — 2dy AjBj > 0
In this case, det(Jj) is positively correlated with g; x(Dy). According to (16), the smaller
the height difference between the node and the target, the larger g; (D) will be. Therefore,

in order to maximize the determinant of FIM, the height difference between the node and
the target needs to be reduced:

d]k—argmm‘ ]—zk—i-d‘

I
dk

= argmm‘ (zk + d]) — zk‘ (26)

s.t. ‘d ] < Dmax
det(Yy) #0

So, when the node is above the target, the node should move down to get as close to
the target as possible, and vice versa.

o Case2: B+ ctA? —2d;AjB; < 0

For convenience, we define Q; = ((bB]-2 +cA? —2dA;Bj) + 5 Z gl( ) (A;B; — A]-Bl-)2>.

In this case, the monotonicity of det(J) is determined by the Value of Q;. When Q); is posi-
tive, such as in case 1, the larger g; 1 (Dx), a better performance will be achieved; conversely,
when Q); is negative, we need to maximize the height difference between the node and the
target as much as possible:

argmm‘ >0
dj

dl =
k
argmax‘ <0
d]
s.t. ‘d}c‘ < Dpmax

det(Yy) #0

(27)

After classification, the objective function can be transformed into a monotone func-
tion to realize the corresponding depth adjustment algorithm. The detailed node depth
adjustment algorithm when the target depth is known is shown in Algorithm 2.
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Algorithm 2. Node depth adjustment algorithm when the target depth is known.

1. Calculate kaj2 + CkAj2 - deA]'B]';

2. if ka]‘Z + CkA]‘Z — deAij >0

3. minimize the height difference between the node and the target
4. elseif by Bj* + cA? — 2d;AjBj < 0

5. if Q] >0

6. minimize the height difference between the node and the target
7. elseif Qj <0
8.

9.

maximize the height difference between the node and the target
endif
10. endif

According to Algorithm 2, at each sampling moment, the computational complexity
of the algorithm is O(1) when the target depth is known.

4.2. Depth Adjustment Algorithm When the Target Depth Is Unknown

When the target depth is unknown, the FIM is a 3 x 3 matrix. The value of its third-
order determinant cannot be directly calculated, so we design a node depth adjustment
algorithm based on a logarithmic penalty function to solve the corresponding problem.

We maximize the logarithmic determinant of the FIM rather than the determinant of
FIM. Then, (21) is also transformed into a constraint in the form of an absolute value power
function, which transformed (22) into a convex optimization problem:

M
argmax log det(J;) = IE + 'Elgj,k(Dk)Ilf(Dk)
]:

Dk‘
st.dj — Dmax <0 je{l,---,M} (28)
@ +Dmax <0 je{l,---, M}
—|det(Yg)| <0

Generally speaking, ref. (28) can be transformed into a Lagrange function and the
optimal solution can be obtained by using KKT condition [42]. Considering the complexity
of KKT, it may not be suitable for the real-time node scheduling during underwater target
tracking. Therefore, in order to solve (28), including the inequality constraints, we use the
interior point method [43] to traverse the feasible region to find the optimal solution.

With the help of a special interior point method, the logarithmic barrier function
method, we add inequality constraints into the objective function combined with the
penalty value. Then, (28) can be transformed into an unconstrained optimization problem:

M
argmin — log det (]E + L ik (DI} (Dk)>
Dy j=1 (29)

_éjA_fl (108 (Dmax — d]) +10g (Dmax + d},) ) + 4 (log|det(Y)|)

It is worth noting that the penalty value is not fixed in the logarithmic barrier func-
tion method, and the optimal solution needs to be calculated by continued increment
of the penalty value until the requirements are met. In this paper, we call these outer
iterations. The flow of the logarithmic barrier function method can be seen in Algorithm 3.

Algorithm 3. Logarithmic barrier function—Outer Iterations.

Determine the starting point Dy and set { > 0, « > 0, error threshold €; > 0.
Repeat

1. Obtain the optimal solution Dj;

2. Update the optimal solution Dy = Dy,

3.if M/t < €7, then exit

4. =uag
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Then, we use the gradient descent method to get the optimal solution, which can be
referred to as inner iterations. Through the gradient descent method described in Algorithm
4, we obtain the optimal solution under a certain penalty value.

In the first step of Algorithm 4, the gradient corresponding to the objective function
needs to be calculated, so we define:

M
¢(D, ¢) — log det <I£ + '21 gj,k(Dk)Ii(Dk)>
=

(30)
M . .
%jg (108 (Dmax — ) +10g (Dmax + d} ) ) + *(10g]|det(¥i)])
Each element of the gradient vector (V Dk(p)j(é ) can be expressed as:
? p, M S
(Vb,9); = ag |~ logdet( Ji + .Zlgj,k(Dk)IﬂDk)
]:
31)
M . .
-1 1 (10g (Dmax — d}) +10g (Dmax + ) ) + g(log|det(yk))}
j=1

Let Q be an invertible matrix and g be a scalar. Using the property

dlogdet(Q) __
9

M
tr{Q*l aa% }, and after we define W]f: + ]El 8ik(Dx) ],i (Dx), (29) can be further written as:

(Ve9),(0)

j
B.
B; 2 (z{( —|]— d{c) (32)

jo gl
Zp+dy

0 0 A;
202
_ w1l _ S 1 B 0 O
J7 j j Aj

1 11 +ltr(Yk—1)ai’f
¢\ Dmaxtd,  Dmax—d, ) ¢ od)

Algorithm 4. Gradient descent method—Inner Iterations.

Get the feasible starting point Dy from Algorithm 3 and set error threshold e, > 0, the maximum
number of iterations K, k = 0 Repeat until k > K

1. Calculate the gradient g = -V f

2. If |V f] < €, then exit and output D}, = Dy

3. Choose Step size t by backtracking line search

4. Update Dy = Dy, + tg,

5.k=k+1

Next, the computational complexity of the depth adjustment algorithm is analyzed
when the target depth is unknown. The gradient corresponding to (30) is composed of
a 1 x M vector, so the computational complexity of the gradient is O(M). At the same
time, in the gradient descent method with a fixed penalty value, only the corresponding
gradient needs to be calculated during a single iteration. Combined with the maximum
number of iterations set, the maximum computational complexity is O(MK). In the outer
iteration in which the penalty value is constantly changing, the computational complexity
is O(1)In(&/€1). In summary, when the depth is unknown, the maximum computational
complexity of the depth adjustment algorithm is O(MKIn(¢/e€1)).

5. Simulation and Analysis

In this section, the proposed algorithm will be simulated and analyzed. The space of
the tracking area is 500m x 500m x 500m. The underwater sensor network is composed
of four nodes whose positions are (100 m, 300 m, 400 m), (50 m, 200 m, 20 m), (200 m, 50
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m, 150 m) and (400 m, 400 m, 160 m). These four nodes are assumed to be homogeneous
and can detect the target without bias. The variance of multiplicative noise ¢2 is 5 and
the variance of additive noise ¢2 is 1.5 x 107, The variance of process noise wy_1 is
1 x 10~*Igx. The initial state of the target Xy = [100,5,100,5,100,1]7; the initial estimate
state of the target Xy = Xo; the sampling interval is T = 1s; the tracking lasts 50 s. The
update factor is 2 = 0.017; the speed of sound is b = 1473. The number of particles in the
particle filter is 1000. The simulation runs MC = 100 times.

To indicate the accuracy of target tracking after node depth adjustment, root mean
square error (RMSE) is adopted to measure the tracking performance, which is defined as:

C

M=

X —%;)’
RMsE(E) = | S o

Il
—

where X and X represent the real position and the estimated position of the target at time
k, respectively.

In this study, simulations were carried out to verify that the effect of particle filter
improved. Besides the proposed algorithm, the pseudo-synchronous fusion algorithm
using the traditional PF [35] and the asynchronous fusion algorithm based on delay es-
timation [30] are also compared. The pseudo-synchronous fusion algorithm ignores the
problem of transmission delay and regards the received measurements as synchronous
data for fusion. The asynchronous fusion algorithm based on delay estimation takes the
problem of inconsistency in propagation delay into consideration. However, it does not
consider the ray tracing theory. Figure 4 shows the RMSE of each fusion algorithm.

U————————

Pseudo-synchronous fusion
12f Asynchronous fusion |
—— Our algorithm

time/s

Figure 4. RMSE of each fusion algorithm.

It can be seen from Figure 4 that compared with pseudo-synchronous fusion, the pro-
posed algorithm has better tracking effects, and it has further improved the asynchronous
fusion based on delay estimation. In order to further verify the advantages of the proposed
algorithm, simulations with different target initial speeds and node numbers are also
carried out. The initial speeds of the target are vy = 15,5117 v = [1,1,1] vy = [15,15,1]F
respectively, and the number of nodes M = 4,8,16. Figure 5 and Table 1 present the
comparisons of RMSE in various scenarios.
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Figure 5. RMSE of each fusion algorithm in various scenarios.
Table 1. Average RMSE of each fusion algorithm in various scenarios.
Number of Nodes Target Speed Algorithm in [35] Algorithm in [30] Our Algorithm
4 11,1 2.7358 2.1998 1.9915
4 55,1 4.7154 2.9405 2.6358
4 15,151 8.4613 6.5201 4.4348
8 55,1 2.6527 1.7071 1.6421
16 55,1 2.4136 1.5231 1.5008

According to Figures 4 and 5a,b, as the speed of the target increases, the RMSE of
each algorithm increases as well. However, each algorithm is different in terms of its
effectiveness at overcoming the impact of speed. Since the transmission delay is related to
the speed of the target, the pseudo-synchronous fusion has the least effect on overcoming
the impact of speed. Compared with the asynchronous fusion algorithm based on delay
estimation, the proposed algorithm can overcome the tracking error more easily, as it
considers the theory of ray tracing.

According to Figures 4 and 5c,d, with the increase in the number of nodes, each
algorithm can achieve better tracking accuracy. This is because more nodes can provide
more measurements for fusion. However, compared with the four-node scenario, the
improvement that occurs as a result of more nodes participating in tracking is limited, as
seen in Figure 5¢,d. Considering the limited energy of the underwater sensor network,
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too many nodes participating in tracking will consume a lot of energy. Therefore, from
the perspective of balancing tracking accuracy and energy consumption, sparse USNs can
achieve the best tracking performance. This also verifies the rationality of using four nodes
for depth adjustment in our simulation.

Next, we simulate a case in which the target depth is known. In order to evaluate the
effect of the proposed algorithm, the underwater target tracking based on a fixed node [11]
is also simulated. Figure 6 shows the tracking effect under these two schemes. The detailed
corresponding average RMSE and the average moving distance of nodes are shown in
Table 2. The tracking error improved by 23.59% following the depth adjustment. To a
certain extent, this proves that there is an inevitable relationship between node depth
adjustment and target tracking accuracy. By improving the node topology, the proposed
depth adjustment algorithm has an obvious effect.

*“j)ebthkuﬁﬁSMﬁenf
5t~ Node fixed /

RMSE/m

OO 5 10 15 20 25 30 35 40 45 50
time /s
Figure 6. RMSE where the target depth is known.

Table 2. Average RMSE and the average moving distance of nodes where the target depth is known.

Average RMSE/m Average Moving Distance/m
Depth adjustment 1.7495 40
Node fixed 2.2898 0

Considering that the maximum value of the node’s moving distance determines the
extreme value of the height difference between the node and the target, the value of Dmax
will affect the performance of the tracking algorithm based on depth adjustment. Figure 7
presents the tracking performance under different Dmax and Table 3 gives the detailed
average RMSE and moving distance. It can be found from Figure 7 that the tracking error
decreases with the increase in Dmax. This is because the larger the Dmax, the faster the
mobile node reaches the topology with the maximum FIM.
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0 5 10 15 20 25 30 35 40 45 50
time /s
Figure 7. RMSE of different Dmax where the target depth is known.

Table 3. Average RMSE and average moving distance of nodes where the target depth is known.

Dmax Average RMSE/m Average Moving Distance/m
0 2.2898 0
1 1.7495 40
2 1.6546 76.73
5 1.5175 169.49
10 1.4933 188.83

Figure 8 further shows the depth variation of nodes under different Dmax. It can
be seen from Figure 8 that the depth variation presents a linear relationship because the
adjustment scheme given in (31) makes each node move in the direction where the height
difference is at its maximum. At the same time, the target moves in constant velocity, so
the moving distance of nodes varies linearly, as shown in Figure 8. As Dmax increases, the
inflection point appears earlier. This also shows that underwater sensor nodes can reach
the optimal depth position faster, providing more reliable and accurate measurements for
target tracking. Combining Figure 8 and Table 3, it can be found that the tracking error and
the average moving distance are a pair of contradictory quantities, and how to balance the
relationship between them is a very important topic.
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Figure 8. Depth changes of different Dmax where the target depth is known.

The effect of multiplicative noise on depth adjustment cannot be ignored. We make
a comparison between the tracking performance of depth adjustment and node fixation
under different multiplicative noises in Figure 9, and the detailed average RMSE and
improvement under different multiplicative noises is shown in Table 4. From Figure 9, it
can be determined that the RMSE of the depth adjustment algorithm does not decrease
significantly with the increase in the multiplicative noise variance, because it will also be
used as a part of the height adjustment objective function in the algorithm design process,
and the same is true of height adjustment. Moreover, as the variance of multiplicative noise
increases, the proposed algorithm improves the tracking performance more significantly
than the algorithm with fixed nodes, which shows that the proposed algorithm is more
suitable for measurement environments with severe multiplicative noise interference,
especially in an underwater environment.
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Figure 9. RMSE of different multiplicative noises where the target depth is known.

Table 4. Average RMSE and improvement under different multiplicative noises where the target

depth is known.

Multiplicative Noise Algorithm Average RMSE/m Improvement
Depth adjustment 1.7866
-5 0
25x 10 Node fixed 1.7902 0.30%
Depth adjustment 1.8494
_5 o,
7.5 x 10 Node fixed 2.0223 9.35%
Depth adjustment 1.7495
—4 0,
15x 10 Node fixed 2.2898 30.89%
Depth adjustment 1.7148
—4 0
25 x 10 Node fixed 2.4657 43.81%

For a case in which the target depth is unknown, simulations are also carried out.
Figure 10 presents the tracking performance of our algorithm under different Dmax, and
Table 5 shows the average RMSE and moving distance of different Dmax. It can be seen
from Figure 10 that the node depth adjustment algorithm after convex optimization can
also improve the tracking accuracy. In this case, Dmax = 10 improves the tracking accuracy
by 18.61% compared to when the node is fixed.
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Figure 10. RMSE of different Dmax achieved by our algorithm where the target depth is unknown.

Table 5. Average RMSE and the average moving distance of nodes where the target depth is unknown.

Dmax/m Average RMSE/m Average Moving Distance/m
0 2.2101 0
1 2.1061 41.09
2 2.0211 53.29
5 1.8759 137.49
10 1.8632 232.11

In addition to the node fixed scenario, the depth adjustment algorithm based on
harmony search (HS) proposed in [23] is also simulated for comparison. Figure 11 and
Table 6 show the results obtained by HS. It can be found that the node depth adjustment
algorithm based on HS can also improve the tracking accuracy. However, since the HS is an
intelligent optimization algorithm, the result obtained is not unique, and the optimization
result is unstable. Compared with the depth adjustment algorithm based on convex
optimization, the tracking effect is worse.

6 I I I I A
- Dmax=1 ',/;
5f - - Dmax=2 i
Dmax=5

g 4 < Dmax=10 ]
~

3 3 )
=

2 o

1 -

50

Figure 11. RMSE of different Dmax achieved by HS where the target depth is unknown.
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Table 6. Average RMSE and the average moving distance of nodes achieved by HS when the target
depth is unknown.

Dmax/m Average RMSE/m Average Moving Distance/m
1 2.2741 0.31
2 2.1781 2.38
5 1.9976 5.15
10 1.9224 13.35

The average moving distance of all nodes under different Dmax are further presented
in Figure 12. Obviously, the node depth adjustment presents a nonlinear relationship
because the target depth is unknown in this case. The four nodes have different depth ad-
justment processes, which can adjust the position more flexibly and build a more complete

topology.
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%) = ) )
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0 25 50 25 50 0 25 50 0 25 50
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) g & 200 =
£ 20( £ 200 200
15 101
25 50 0 25 50 100 5 5 5 5
time/s time/s ti%ffe/s 0 0 ti?n)c/s o0
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Figure 12. Depth changes of different Dmax when the target depth is unknown. (Blue line is achieved
by algorithm in this paper; red line is achieved by HS in [23]).

Since the time complexity of the algorithm is calculated in this paper, we also design
the corresponding simulation for verification in this part. Figure 13 presents the running
time of the two algorithms under different Dmax. It can be seen from Figure 13 that the
interior point algorithm can reach convergence faster and achieve deep adjustment.
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Figure 13. Runtime of each algorithm when the target depth is unknown.

The above simulations show that when the target depth is unknown, the depth
adjustment algorithm based on the interior point method has excellent results. When
using the same number of underwater sensor nodes to participate in target tracking, the
depth adjustment algorithm based on the interior point method can not only obtain the
optimal depth adjustment strategy with a faster convergence speed than the intelligent
optimization algorithm, but can also adaptively adjust the node topology, obtain more
complete measurement data and effectively improve tracking accuracy.

6. Conclusions

This paper proposes a node depth adjustment algorithm for target tracking in sparse
USNs. Node depth adjustment is described as an optimization problem of maximizing
the value of Fisher information matrix. Two different convex optimization methods are
used to adjust node depth when the target depth is known and unknown. Compared to
other algorithms, the algorithm proposed in this paper considers the acoustic transmission
delay and node topology. The simulations illustrate that the proposed algorithm is superior
and more robust to the comparison algorithm in tracking accuracy; a better node topology
can be obtained, and the measurement data can be improved with the help of node depth
adjustment. Future work will further improve the algorithm combination with node energy
consumption. For example, considering the two different types of indicators of node
energy consumption and tracking accuracy, a multi-objective depth adjustment problem is
constructed to achieve energy efficiency optimization in the process of underwater target
tracking. We will also combine machine learning technology to design a depth adjustment
algorithm that is more suitable for dense underwater sensor networks.
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Appendix A
When the depth of the target is known, (14) can be expressed as a 2 x 2 matrix:

olnp(Zy|xgyx)  9Inp(Zy|xiyx)

D_ a7 XY
Je = ~Ep@xo) | ampzloey)  onp(Zelxme) (A1)
0Oy oy?

Each element of ]lk) can be further simplified as [38]:

Do [Om(X) " 1 [0m(X)] |1, (o1 ORk 1 ORg
Jetij) = [axka>} Ry [ax¢o>]*ztr(Rk AR ano>> (A2)

where I (X ) is the joint measurement equation of each node and tr(-) is the trace of matrix.
Ry is the diagonal matrix formed by the measurement noise covariance diag [R%, cee, Rf(\ﬂ ,
where Rfc = (sz(k). After substituting (7) into (35), ]? can be calculated as follows:

oM | (n-s) () (n-sd)
4 f; o (2= x}) (e~ v} (e —v)’ )

_ 1 203
where g]‘,k = W + (714(]() .

Unlike the method of calculating J¥, J¥ can be calculated with the idea of particles and
Gaussian approximation p(Xy|Z1.x—1) ~ N(pug, Px), where:

1Y
M:E;& (A4)
P = ;% (%) (%~ ) (A5)

i=1

Considering Jf ~ P,:I [38], Ji can be expressed as:
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