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Abstract: The performance of underwater target detection algorithms is affected by poor imaging
quality in underwater environments. Due to the arithmetic power limitation of underwater devices,
existing deep learning networks are unable to provide efficient detection processes with high detec-
tion accuracy. Lightweight CNN models have been actively applied for underwater environment
detection, yet their lite feature fusion networks cannot provide effective fusion effects and reduce
the detection accuracy. In this paper, a lightweight algorithm based on multi-scale feature fusion
was proposed, with the model parameters greatly reduced, improving the target detection accuracy.
The forward propagation memory overhead is reduced by using multi-scale shared convolutional
kernels and pooling operations to co-construct the query matrix in the Tansformer encoding stage.
Then, the feature fusion path is optimized in order to enhance the connection of multi-scale features.
A multiscale feature adaptive fusion strategy is used to enhance the detection performance and
reduce the dependence on the complex feature extraction network. The feature extraction network
is also reparameterized to simplify the operation. Using the UPRC offshore dataset for validation,
the study results have demonstrated that the statistical mAP metrics validate the detection accuracy.
Compared with SSD, RetinaNet and YOLOv5-s improved by 13%, 8.6%, and 0.8%, while the number
of parameters decreased by 76.09%, 89.74%, and 87.67%. In addition, compared with the YOLOv5-lite
model algorithm with the same parameter volume, the mAP is improved by 3.8%, which verifies the
accuracy and efficiency of the algorithm in this paper.

Keywords: underwater target detection; multi-scale fusion; transformer; YOLOv5; lightweight

1. Introduction

There are plentiful application scenarios for underwater environment perception,
which could provide information support for underwater pipeline inspection, marine
pasture management and underwater navigation perception [1–3]. Due to its relatively low
cost and the ability to maintain a high degree of accuracy within a certain range, the optical
vision detection method has become an attractive research object.

In contrast to the two-stage target detection algorithm, the single-stage detection
algorithm utilizes an end-to-end inference process to pinpoint the target position directly,
enhancing system operational efficiency and reducing post-maintenance costs [4]. It has
subsequently evolved into the mainstream studies on algorithms for visual detection
in underwater devices. To adapt to the complex underwater environment, single-stage
networks commonly use feature pyramid structures for feature extraction. In addition, it is
possible to selectively train detectors for multi-scale feature maps, which can improve the
accuracy of detecting targets of different scales.

However, underwater targets are often densely distributed and interfere with each
other, which prevents the detection algorithm from effectively locating the targets, causing
the detection accuracy to be compromised. Image pyramids are commonly used to extract
multi-scale image features to resolve this issue, but the detection accuracy cannot be ef-
fectively enhanced because the target features cannot be connected by existing methods.
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Therefore, literature [5] proposed a single-stage algorithm called MD-SSD using MobileNet
to extract multi-scale feature maps for prediction. However, there is little correlation within
multi-scale feature maps, which lead to the algorithm’s detection accuracy improvement
being unsatisfactory. RetinaNet performs feature fusion using pyramids that span multiple
scales and semantic information layers, which improves its multiscale information flow
capability to enhance detection accuracy [6]. The literature [7] employed the YOLOv4
network, which is commonly used in industry to detect underwater organisms. The combi-
nation with PANet [8] has provided additional bottom-up path enhancement feature fusion
capability [9], which demonstrated bi-directional path fusion’s effectiveness. However,
because of the lack of smoothness in simple bidirectional fused features as well as the poor
connection between multi-scale features, the combined network only results in a limited
improvement in detection accuracy. As a further enhancement, in the literature [10], ASFF
was used in conjunction with an attention mechanism to control the contribution between
features at multiple scales, which is applied to underwater sonar images to improve the
degree of association of multi-scale features. The algorithm improves the smoothness of
feature fusion, but the complicated fusion path and the nonnegligible computational cost
is challenging to adapt to the minimal storage and the computational requirements of
underwater detection devices.

The above processing techniques have failed to consider the regional correlation
between feature elements, which makes it challenging to effectively increase the gradient
weights of target regions when processing complex underwater environment images. The
literature [11] used a Transformer to improve the feature region correlation in YOLOv5 to
enhance the detection accuracy of small targets, but excessively relies on complex backbone
network feature extraction, which cause real-time operation tasks difficulty for detection
robots. Therefore, it is complicated to find a balance between the accuracy and efficiency of
the above algorithms.

To resolve that problem, our paper proposes a lightweight Transformer integrated
object detection algorithm based on cross-scale feature fusion with enhanced multi-scale
feature fusion. The fusion path is improved by an adaptive weighted feature fuser, and
the correlation of local features of the algorithm is also improved with better detection
accuracy. At the same time, the proposed model’s lightweight implementation achieves a
lightweight network for detecting low-quality underwater image targets while maintaining
high operational efficiency.

2. Related Work
2.1. YOLOv5-lite Detection Framework

The lite network is adopted to replace the conventional standard convolution with
a computationally intensive and read-simplified structure based on large convolutional
detection networks. To make it more flexible to the operation and deployment of mobile
embedded devices, the network model’s depth and width are compressed with an accept-
able performance float. Based on Ultralytics LLC’s YOLOv5 optimization, the network
structure of YOLOv5-lite is divided into three major parts based on its design concept:
Backbone network, multi-scale feature fusion network (Neck), and predictor network
(Head). Moreover, YOLOv5-lite was used in conjunction with ShuffleNetv2 to compress
the backbone network [12], making it shallower in depth and more efficient to operate.

The structural framework of the YOLOv5-lite algorithm is shown in Figure 1.
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Figure 1. YOLOv5-lite overall structure.

The YOLOv5-lite network described above first feeds the online enhanced image data
into the feature extraction network backbone, which performs multi-scale feature extraction
on images. According to experimental results published in the literature [13], YOLOv5’s
frequent use of the random residual structure (CSP Bottleneck) consumes more cache
memory and slows down the inference speed. In order to integrate the multiplexed module
branches and enhance network parallelism, the Lite network adopted ShuffleBlock rather
than the original structure module. The memory overhead is reduced, causing channel
changes in the hidden layer. The multi-scale feature map was then passed through the PAN
structure used for feature fusion to realize multiscale feature information interaction. Fi-
nally, point-wise convolution was used to statistically analyze the multi-resolution semantic
feature maps in order to complete target location prediction and category evaluation.

To sum up, YOLOv5-lite optimized element-level operations by merging an efficient
convolution structure with equal channels. The model fragmentation structure was reduced,
which could achieve the goal of compressing the model depth, making the algorithm easy
to deploy. However, due to the simplification of the original complex model, the algorithm
has also diminished the anti-disturbance ability in complicated scenarios. The network’s
simple bi-directional path feature fusion structure has a low regional correlation within
feature elements extracted from dense multi-scale targets. Therefore, the underwater
detection accuracy of the algorithm could not be guaranteed.

2.2. Vision Transformer Models

Convolutional neural networks still play a dominant role in target detection, and
ViT [14] relies on a self-attentive mechanism that works well for other tasks such as NLP.
ViT adaptively divides images and adopts an architecture without convolutional modules to
achieve effective results, but the uncorrelated nature between patches during initial training
makes it difficult for the network to converge. DeiT [15] improves the efficiency of training
Vit, enabling large networks training with better training direction. However, it cannot
adapt to the storage capacity of underwater devices, which require the same model size
as CNN. MobileFormer [16] uses MobileNetV2 [17] and parallel branching of ViT, which
makes the model size compressed and connects local and global information through a
bridging module. However, with the presence of a large amount of low-frequency noise in
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the underwater environment, the detection and recognition of targets should emphasize
the capture of high-frequency information at the shallow level of the model and the union
of low-frequency information at the high level of the model. In this paper, we combine
with Transformer in several different stages of the CNN deep layer and enhance the feature
fusion capability of neck structure in lite type network to improve the underwater target
detection performance.

3. YOLOv5-lite Detection Framework with Multi-Scale Feature Fusion

Since single-stage target detection algorithms that rely solely on complex backbone
networks are unable to fully exploit multi-scale features, in this paper, we optimize the
inference structure of the backbone network to ensure stable operation and rapid detection
of underwater intelligent devices. Moreover, considering that the multiscale information in
the feature pyramid implies spatial distance association information, this paper improves
the feature fuser of YOLOv5-lite in combination with Transformer to enhance the multiscale
feature association of the Neck structure. The feature fusion capability is enhanced by
improving the adaptive fusion path, which ensures the robustness of the algorithm in
detecting underwater targets of various scales.

3.1. Backbone Network Design

To reduce storage costs, YOLOv5-lite compresses the network and downscales using a
two-branch structure. To ensure stable training and potential generalization, the operation
requires data distribution adjustment of the features using batch size regularization (BN)
after the convolution operation. While BN and data batch size are directly correlated,
as data batch size scales get smaller, regularization errors increase with network depth.
Consequently, the distribution of the data at inference deviates from the distribution of the
data at training, which has a negative impact on test performance. In order to improve
the batch normalization after 3 × 3 convolution in the ShuffleBlock residual structure and
improve the architectural anti-perturbation performance, batch-free normalization (BFN),
which has been shown to be effective in the literature [18], is applied in this paper. The
layer normalization (LN) can be expressed as Equation (1).

x̂j = LN(xj) =
xj − µ
√

σ2 + ε
, j = 1, 2, . . . , d (1)

where, µ = 1
d

d
∑

i=1
xj and σ2 = 1

d

d
∑

i=1
(xj − µ)2 represent the mean and variance of the data

samples, respectively. LN can be generalized to group normalization (GN) by dividing
neurons into groups, making it possible to use it for small batch training. Performance
degradation could be minimized by ensuring that the inputs at higher levels have almost
identical distributions.

The proposed network structure reduces data distribution shifts brought about by
small batches of training data and mitigates information loss during downsampling. In
order to lessen the loss of inference efficiency caused by multi-branch structure, this paper
optimizes ShuffleBlock based on the concept of structural reparameterization that has
been suggested in the literature [19]. To increase the network’s detection accuracy during
training, the training and inference processes of forward inference are decoupling. This
decoupling process is shown in Figure 2. To increase network inference speed and reduce
hardware throughput data overhead while maintaining the same network performance,
the extracted structure parameters are fused during the inference process.



J. Mar. Sci. Eng. 2023, 11, 320 5 of 17J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 5 of 18 
 

1×1 Conv

3×3 
DWConv

1×1 Conv

Concat

1×1 Conv

3×3 
DWConv

Channel 
Shuffle

BN

BN

ReLU

BN

ReLU

BN

BN

ReLU

1×1 Conv

3×3 
DWConv

1×1 Conv

Concat

1×1 Conv

3×3 
DWConv

Channel 
Shuffle

ReLU

ReLU

ReLU

1×1 
DWConv

BN

XBN

InferenceTrain

 

Figure 2. Training and inference module. 

When the model is trained, the convolution and batch normalization operations are 

represented as Equation (2): 

( )

1

2

C
j

i i j j

i

j j

j

w x b

O



 
 

=

 + −

= +
−


 (2) 

where ( )j

iw  is the convolution parameter of the jth batch of data, b is the network param-

eter bias,   is the normalized scale factor, and   is the bias term. After the input fea-

tures are convolved with 3 × 3 and 1 × 1 convolutions and the corresponding batch nor-

malization operations, the model nonlinearity capability is enhanced using ReLU activa-

tion. The two branches are then stacked with channels rather than using linear computing 

to increase the network operation rate, and finally shuffle channels are used to enhance 

the exchange of feature information. 

In addition, in order to reduce the number of parameters, regularization manipula-

tion and convolution are fused at the time of modular inference. The convolution and 

batch normalization manipulation can be broken down into weight terms and bias terms 

using the information gathered from the above equation. These terms are then used as 

Figure 2. Training and inference module.

When the model is trained, the convolution and batch normalization operations are
represented as Equation (2):

O = γj

C
∑

i=1
w(j)

i × xi + bj − µj√
σj

2 − ε
+ β j (2)

where w(j)
i is the convolution parameter of the jth batch of data, b is the network parameter

bias, γ is the normalized scale factor, and β is the bias term. After the input features are
convolved with 3 × 3 and 1 × 1 convolutions and the corresponding batch normalization
operations, the model nonlinearity capability is enhanced using ReLU activation. The two
branches are then stacked with channels rather than using linear computing to increase the
network operation rate, and finally shuffle channels are used to enhance the exchange of
feature information.

In addition, in order to reduce the number of parameters, regularization manipulation
and convolution are fused at the time of modular inference. The convolution and batch
normalization manipulation can be broken down into weight terms and bias terms using
the information gathered from the above equation. These terms are then used as new
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convolution weights and bias data for sharing network parameters. The model inference
structure that results from this can be stated as Equations (3) and (4):

ŵi =
γj√

σj
2 − ε

C

∑
i=1

w(j)
i (3)

b̂j =
γj√

σj
2 − ε

(bj − µj) + β j (4)

where ŵi denotes the new convolutional kernel weights utilized for the parameters, and b̂j
indicates its parameter bias. The re-parameter utilization mechanism could save nearly 36%
of the number of forward propagation parameters for each residual shuffle unit, improving
the network operation efficiency.

3.2. Transformer Modules Design

The ViT processes images as text to improve regional correlation, by encoding feature
local blocks as feature vectors as input to the Transformer module as a way to obtain the
degree of autocorrelation between feature local blocks. To calculate the vector similarity
based on self-attentiveness, the standard Transformer needs three projection matrices, Wq,
Wk and Wv, respectively. However, the large feature map will cause a threefold increase
in the Transformer’s encoding space, making it difficult for the capacity and computing
power of small hardware devices to meet their requirements of accuracy and efficiency. In
this paper, we obtain the linkage weight between local blocks of images by self-attentive
operation based on sliding window. The self-attention formula in each window can be
expressed as Equations (5) and (6):

yi = ∑
j∈N(i)

αi→jWvxj (5)

αi→j =
e(Wqxi)

T
Wkxj

∑z∈N(i) e(Wqxi)
TWkxz

(6)

where the similarity αi→j is calculated from the query matrix Wq, key matrix Wk. The scalar
between [0,1] is obtained as the feature local block vector linkage weights. Thereafter,
Softmax is used to normalize αi→j, controlling the contribution of this vector in the spatial
location.

To simplify the computation, Transformer uses multi-headed self-attentiveness to be
responsible for different coding vectors separately. However, the above mechanism only
establishes spatial association of feature local blocks through a single layer encoder, ignoring
the effect of detailed local information such as image texture on target detection, which
could bring significant performance degradation when the number of model parameters is
reduced to small networks.

Multi-scale features are beneficial for detection or semantic segmentation. Large neural
networks use multi-scale design both in the feature layer hierarchy and single-stage feature
extraction. The multi-scale design can help the network to extract structural features from
different perspectives, hence we establish the convolution of multi-scale shared kernel
parameters to extract the query matrix Wq of feature local block encoding vectors. The
AtrousFormer module described in literature [20], which uses pooling operations combined
with convolution operations to build local perceptual fields, allows the query vector to be
built aggregating detailed information of the local feature space.

The multi-scale self-attentive query structure is shown in Figure 3.
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Figure 3. Multiscale query Transformer.

The given input features X ∈ RH×W×C are encoded using a multilayer perceptron to
map them by dimensional channels, after which the features are spanned by dimension
to obtain N (N = H ×W) graph feature vectors. Additionally, the number of channels is
divided into channel dimensions by a custom number of multi-headed self-attention, and

finally the encoded feature vector Xemb ∈ RN×num_head× C
num_head is obtained.

Unlike classification, spatial constraints need to be considered when performing
underwater detection tasks. Thus, the spatial template relationship unique is introduced
to convolution instead of the position encoding of the standard transformer. By sharing
convolution kernel parameters applied to multi-scale convolution kernels, the amount of
spatial location information of features could be increased while reducing the number of
parameters and memory overhead.

In addition, there is morphological occlusion of the target, which could easily lead to
feature confusion as the target features are disturbed by underwater environmental noise.
Building the query matrix by convolution kernels with learnable parameters may only lead
to the problem of feature gradient disappearance. Therefore, in this paper, the ability of
query features to resist spatial displacement bias is boosted by adding feature pooling to
the matrix building process. Equation (7) is an expression of the computational process.

Fq = ∑
r∈R

SiLU(DConvr(Fe, Wk=3
q , g = d)) + avgpool(Fe) (7)

where Fe is the feature map deformed by encoding, SiLU(·) is the activation function,
DConvr(·) is the expansion convolution operation with r as the expansion rate, Wk=3

q ∈
Rk2×d×d/g is the kernel weight to obtain multi-scale queries of feature local block vectors
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by setting different expansion rates, and avgpool(·) is the average pooling corresponding
to the kernel size to enhance the generalization ability of multi-headed self-attentiveness
by aggregating vector data features.

Shallow features have more spatial information and larger feature map resolution.
Since the direct application of Transformer is unable to balance the forward propagation
parameter memory overhead, shallow features are calculated in our paper by implement-
ing a convolutional self-attentive module (CSAFormer), which could directly predict the
similarity between the query and key value matrix as the weight of the attention values.
The structure is shown in Figure 4.
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In order to directly predict the similarity matrix, the 3 × 3 sliding kernel is imple-
mented inside the convolutional self-attentive module and encoded with a fully connected
layer mapping, which is proved to have better performance when the sliding kernel is
small. The convolutional multiplication operation is represented by the Batch matrix multi-
plication (BMM) as the batch matrix multiplication carried out by the divided local feature
blocks. Each kernel parameter has a corresponding similarity weight matrix consisting
of k2 elements. Finally, the summation operation of the k2 different self-attention weights
associated with the input values is performed. The entire structure includes learnable filters
as well as internal self-attentive dynamic kernels, which improve the spatial adaptability of
shallow information. To implement the CSAFormer module, internal residual connections
are added in this paper.

3.3. Multi-Scale Neck Structure Improvement

For low quality underwater images, shallow backbone networks are unable to extract
important features. It is a common strategy to increase the complexity of the backbone
network, which could introduce too many parameters, making the deployment of under-
water devices difficult. The literature [21] claimed that detection algorithms would also
achieve better results by relying mainly on multi-scale feature fuser. Therefore, in this
paper, we extract the shallow backbone network of YOLOv5-lite, and potential features
for fusion in the Neck module could be utilized. By making multi-scale features process
high-level linguistic and low-level spatial information with the same priority at an early
stage, the network’s detection performance should be improved. An adaptive path weight
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in multi-path fusion is presented to reduce single fusion nodes and improve the fusion
capability of the Neck structure. Additionally, we combine the Generalized FPN applied to
the internal block connection of YOLOv5-lite in order to address the gradient growth issue
that may arise as a result of the enhanced Neck structure emphasizing only feature fusion.
The improved Neck structure fusion unit is shown in Figure 5.
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As shown in the right part of Figure 5, the enhanced Neck structure log2 n − link
utilizes 3 layers of feature layers at the same scale as input. The feature maps are connected
between the same scales using jumping layers to reduce the gradient disappearance prob-
lem during the back-propagation of the complex Neck structure. This connection allows
the lth layer to receive at most log2 l + 1 layers of feature information. Compared with
dense-link, it reduces the computational cost while maintaining the performance.

The cross-scale feature maps are fused in the Neck structure after up-sampling and
down-sampling transformations, as shown in the left part in Figure 5. The up-sampling
uses bilinear interpolation to ensure the information association between elements, and the
down-sampling operation in this paper uses the Soft-Pool proposed by Stergiou A (2021) to
enhance the weight ratio of dominant information in down-sampling [22], which can be
expressed as Equation (8).

p̃ = ∑i∈R
epi

∑
j∈R

epj
× pi (8)

where p is a pixel in the feature map and j is an index within the pooling kernel. The risk of
losing information by down sampling in the high-dimensional feature space is reduced by
retaining the dominant weights at high activation value locations. However, this approach
has significant computational cost, which is expressed in this paper by simplifying the
computation as Equations (9) and (10).

p̃ = ∑i∈R
HardSwish(pi) + 1

ε + ∑
j∈R

(HardSwish(pj) + 1)
× pi (9)

HardSwish(x) = x
ReLU6(x + 3)

6
(10)

where HardSwish(·) is the ReLU activation function improvement function with limited
upper bound to prevent the noise gradient from affecting the pooling result and enhance
the advantage of high-dimensional features in the deeper layers of the network, which is
a very small value protection calculation. This method saves 0.47 times the computation
time while ensuring performance and is more appropriate for lite type networks.

After that, cross-layer fusion is performed by adjusting feature scales and using
learnable parameters to balance the importance between multi-scale features, which allows
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the network to maintain a sufficient amount of information exchange even when the
network scales over large distances, improving the detection accuracy of the network
detector.

4. Experimental Verification and Analysis
4.1. Experimental Data Set

In this paper, optical vision target detection is applied to offshore underwater robots.
The multi-scale feature fuser’s fusion ability is enhanced with the model keeping lightweight,
enabling the shallow lightweight network to detect targets effectively in challenging
underwater environments. To train the model and validate generalization, this paper
uses 2900 actual underwater images from the underwater robot professional contest
(URPC) (https://www.curpc.com.cn/, accessed on 1 September 2020). Target types include
holothurian, echinus, scallops and starfish. These include targets that are morphologically
overlapping, densely distributed, and various sizes and scales. Some image examples are
shown in Figure 6.
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4.2. Experimental Parameter Setting

The training environment in this paper is on an Ubuntu system, and the training
device is a graphics card RTX2080-11G, RAM size of 16 G, using pytorch framework. The
ImageNet pre-trained network model is transferred, the batch size is set to 16, the image
size is 416 × 416 and iterative training is performed for 500 epochs. The dataset was
divided in 8:2 for training and testing. The number of class instances, real bounding boxes
visualization, real frame label centroids, and aspect ratio scatter plots of the dataset are
shown in Figure 7.

The first image of Figure 7 demonstrated that the experimental dataset suffers from
instance category imbalance. There were 2797 instances of holothurian, 10,995 instances of
echinus, 1160 instances of scallops, and 3269 instances of starfish. The minimum category
is less than 1/10 of the maximum category. Therefore, in our paper, the category loss
function is replaced with Focal-loss and the category loss is weighted for the dataset with
the weighting parameters of 3.26, 0.83, 7.85, and 2.79. The second column of images in
Figure 7 shows that the labeled boxes are relatively balanced in length and width. The first
image in row 2 shows that the center points are also distributed mainly based on the image
center. Thus, take the default anchor distribution.

https://www.curpc.com.cn/
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Figure 7. Data set label analysis.

4.3. Ablation Experiments

To analyze the effect of the improved multiscale feature fuser, Neck adaptive fusion,
Cross Stage Partial replacement to Transformer is improved in two volumes of YOLOv5-lite
network, respectively. YOLOv5s-lite and YOLOv5g-lite are employed by Rep-Shuffle and
Rep-Convolution module as the backbone network convolution. The number of model
parameters and computation are observed in Table 1, while the intermediate modules are
ablated for the evaluation index of mean Average Precision (mAP), which measures the
accuracy of the model.

Table 1. Comparison of ablation experiments.

Generalized-
FPN

CSA
Former

Arous
Former

Soft
Pool mAP (%) Total Parameters of

the Model
Total Model

Calculation (GFLOPS)

73.8 5,574,845 16.2
3 74.1 5,640,642 16.3

3 74.2 6,200,397 17.7
3 76.3 11,561,597 17.8

3 3 3 77.1 5,773,330 16.9
3 3 3 3 77.5 5,740,690 19.7

By comparing the mAP values of the network with the above improved modules
and the original YOLOv5-lite, it is evident that the mAP of the improved Neck with the
Generalized-FPN feature fusion method, the replacement of the original convolution oper-
ation with Arous Former and CSA Former, and the improvement of the downsampling
method with Soft Pool in detecting underwater targets increased by 0.3%,0.4%,2.5%, and
3.7% respectively. The above results show that the proposed algorithm in this paper has
higher accuracy and recall rate in underwater target detection. On the other hand, if the
fusion structure in the neck is replaced directly by CSAFormer, the number of model pa-
rameters will increase by 559755; if the fusion structure is simply replaced by ArousFormer,
the number of model parameters will increase by 5920955, while our proposed network
distinguishes deep features from shallow features to improve the detection accuracy while
balancing the parameters and computational effort. In addition, the backbone network
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reparameterization method implemented in this paper can save 9192 model parameters
and reduce the computational effort by 0.1 GFLOPs while maintaining the mAP value,
which makes the model easier to reason about.

Feature pooling can be used in convolutional neural networks to aggregate feature
representations, reduce computational requirements and allow for the creation of larger
and deeper architectures. As shown in Figure 8, the results are compared by comparing
images undergoing common pooling operations with the soft pool optimized in this paper.
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The output results for the 9 × 9 size pooling kernel for the 255 × 255 image are shown
in the figure. We observe that the image looks patchy after the maximum pooling operation,
emphasizing the main features but lacking in specifics. Edge contours are missing from
the average pooling, which filters out the peak information. When aggregating the image
data in our proposed algorithm and Soft Pool method, the focused information is afforded
with more weight, which is advantageous for the transfer of feature information during
down sampling. However, during inference, we observe that the feature values in Neck
are small and sparse, so the exponential operation is discarded and has a higher inference
speed than the SoftPool method.

4.4. Intermediate Characteristics Analysis

Transformer enhances the detection accuracy of the model in complex environments
by finding the intrinsic associations between feature vectors. In this paper, we obtain the
potential connections between scales by directly integrating Transformer in the multi-scale
feature fuser. It enables the multi-scale features to be fully fused and boosts the key feature
weights, so that the algorithm structure can be more robust to low quality targets in complex
scenes. For example, the recall rate is higher, while accuracy is maintained in scenes with
occlusion between targets and dense target distribution.

By visualizing the intermediate feature layer after Transformer in Neck, generating
attentional heat map can visualize the change of network gradient values (Selvaraju R R,
2020). The position of the attention of the intermediate layer of the network during the
fusion of the target features was analyzed and visualized, as shown in Figure 9.

Intermediate layer feature maps exist in high dimensional feature space with more
semantic information between dimensions [23,24]. Columns 2 to 6 of Figure 9 show the
different semantic feature maps extracted from the middle layer feature maps. The feature
map visualization shows that our proposed algorithm has higher gradient values at the
target location in the target dense scene among stones and less activation of the same class
gradient values in the background. In mud-obscured scenes, this algorithm can effectively
correlate the gradient activation between the same class, but YOLOv5s-lite is unable to
do so, which leads to low detection confidence. In complex terrain, the algorithm in this
paper can effectively highlight dense target activations in the terrain, while YOLOv5s-
lite activations cannot obtain effective target locations. The algorithm in this paper also
effectively distinguishes water plants from terrain on the background semantic dimensional
map, leading to a higher recall rate for the algorithm.
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It can be seen from the attentional heat map in column 7 of Figure 9 that the algorithm
in this paper can effectively focus on the target location region in the dense scene of
stones. In the mud-obscured scenes, the attention of this paper’s algorithm for scallop class
detection is in the scallop salient region, and there is a gradient change connected domain
between the same kind, which proves that this paper’s algorithm effectively associates the
inter-target connection. YOLOv5s-lite is affected by mud and sand and primarily focuses
on regional details as the detection basis. In complex terrain, our proposed algorithm
focuses on separating the foreground and background and focuses more on the target
region than YOLOv5s-lite, resulting in a more reliable detection of the target

4.5. Algorithm Comparison Experiment

To validate the performance advantage of the algorithm in this paper, the existing
popular single-stage target detection neural network is presented as a reference for the
experiment. The mAP index of other networks is tested with the same hardware platform
and the same data set. The experimental results are summarized in Table 2.

Comparing the metric results of different algorithms in the table, compared to the SSD
algorithm [25], which uses predictors directly for prediction based on multi-scale feature
maps, the algorithm in this paper shows a 13% improvement in detection results and a
76.09% reduction in the number of parameters. Compared to the RetinaNet algorithm [26],
a positive and negative sample optimization network with integrated feature pyramids,
the detection result of this paper’s algorithm is improved by 8.6 and the parameter consid-
eration is reduced by 89.74%. Compared to YOLOv5, the computational and parameter
volumes are reduced by 81.98% and 87.67%, while the accuracy is even slightly higher than
YOLOv5s mAP when YOLOv5g-lite is used, with an improvement of 0.8% and 0.3%. On a
YOLOv5-lite network of the same volume, the mAP improvement of 3.7% on YOLOv5g-lite
and 3.3% on YOLOv5s-lite using this paper’s algorithm indicates that the improvement of
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this paper’s algorithm on the Neck is more important. The experimental data show that
the algorithm in this paper balances the number of parameters and performance accuracy,
and the algorithm is more efficient for underwater target detection and more suitable for
underwater device deployment.

Table 2. Comparison of detection performance and number of parameters of different algorithms.

Method Backbone Size mAP (%) Parameters

SSD VGG 300 × 300 64.5 24,013,232
RetinaNet ResNet50 600 × 600 68.9 55,938,472
YOLOv4 DarkNet-CSP 416 × 416 78.0 64,363,101
YOLOv5s DarkNet 416 × 416 76.7 7,071,633
YOLOv5l DarkNet 416 × 416 77.2 46,563,790

YOLOv5s-lite DarkNet 416 × 416 70.1 1,649,853
YOLOv5s-lite (our) DarkNet 416 × 416 73.4 1,432,930

YOLOv5g-lite DarkNet 416 × 416 73.8 5,574,845
YOLOv5g-lite (our) DarkNet 416 × 416 77.5 5,740,690

The UAV real-time detection algorithm is widely used in the application deployment
of unmanned intelligent devices [11], and the performance of this paper’s algorithm on
real-time detection is reflected by comparing it with this detection algorithm. In addition,
the corresponding module implementation is replaced with the standard Transformer for
real-time experimental comparison, reflecting the detection efficiency of this algorithm
in terms of module improvement. 260 underwater images are selected for testing. The
average test time and frame rate per second (fps) are calculated separately. The results are
shown in Table 3.

Table 3. Comparison of the real-time performance.

Models Average Test Time (ms) fps

YOLOv5-lite-s-tran (*) 32.0 30.98
TPH-YOLO 24.5 40.75

YOLOv5-lite-g(ours) 20.7 48.28
YOLOv5-lite-s-tran 18.6 53.58
YOLOv5-lite-s(ours) 18.4 54.39

The results show that the algorithm in this paper improves the single image processing
speed by 15.5% and the detection frame rate by 18.47% over TPH-YOLO on Average Test
Time. It is also more efficient than YOLOv5-lite-s, which replaces some convolutional layers
with standard Transformer. In the individual module (*) replacement test, the algorithm
in this paper improves the detection performance while improving the detection rate by
42.5% and the detection frame rate by 75.5%.

Regarding the ability to identify each category compared with the baseline algorithm,
i.e., YOLOv5, YOLOv5s-lite, YOLOv5g-lite and the performance of this paper’s algorithm
in the test images. The results in Table 4 show that the algorithm in this paper improves
the detection accuracy for different categories of targets, so the model can improve the
detection performance in each target type.

Table 4. Comparison of target type identification.

Models
AP

mAP
Holothurian Echinus Scallops Starfish

YOLOv5-lite-s 58.0 88.5 55.3 78.6 70. 1
YOLOv5-lite-s(ours) 64.0 91.5 57.2 80.7 73.4

YOLOv5-lite-g 65.2 90.2 60.0 79.8 73. 8
YOLOv5-lite-g(ours) 69.9 91.4 64.6 84.1 77.5
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The visualization of the detection results of the algorithm in this paper is depicted as
Figure 10.
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By applying our proposed algorithm to different underwater environments for verifi-
cation, it can be seen from the visualization result graph that the underwater targets have a
different scale size distribution. By improving the multi-scale feature fusion in this paper,
targets of different sizes can be effectively detected. In the case of unclear underwater
fogging, this algorithm can identify the sea cucumber targets hidden in the water plants.
The high recall rate is also maintained in dense scenes.

5. Discussion

Underwater environmental sensing devices require lightweight network models, but
lightweight designs tend to focus on the backbone, which hinders the information exchange
of the extracted features [27–29]. Low frequency noise that interferes with target detection
is difficult to eliminate due to the complex optical properties of the water body. The
absorption and scattering of light underwater leads to blurred targets and low contrast,
compromising the target detection process. Enhancing the backbone as in atmospheric
environments is not appropriate, and detection should incorporate with underwater multi-
scale features. Through experiments we verified the effectiveness of enhancing feature
fusion behind a light backbone, outperforming large network models in terms of detection
performance. It is obvious that the effective mechanism is the improvement of the network
normalization in backbone, which makes the cumulative error at the time of training is
mitigated. The shallow high-resolution feature maps in the network are effectively fused
with the deep low-resolution feature maps. The deep feature map is filtered several times
to eliminate the high frequency information [30], and the underwater interference that
is considered to be mainly present is smoothed, which can guide the shallow feature
map to detect and locate the target, while the Transformer structure module implemented
separately for different scale feature maps in this paper can strengthen the connection of
spatial features and improve the detection accuracy, which can be seen from the ablation
experiment. In addition, the corresponding improvements on the large model obtain
slightly higher performance gains than the small model, probably mainly because the deep
feature maps on the large model have more dimensions and have a better information base
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when performing fusion. This allows Transformer to perform spatial attention modeling
with longer vector lengths, representing a stronger representation and ultimately resulting
in better model performance. However, the lightweight network still has difficulty in
convergence during training. In this paper, we set the downsampling multiplier to 8, 4, and
0 to balance the corresponding computational cost. It is a challenge to balance and adjust
the hyperparameters during training for our further research.

6. Conclusions

For the optical image target detection and localization needs of underwater inspection
robots, we propose a lightweight target detection model with improved multi-scale feature
fusion. The inference process is simplified by using the re-parameterization mechanism
and optimizing the data normalization method to improve the operational efficiency of
the model feature extraction. Then the model parameters are optimized and the weight
adaptive path is designed to reconstruct the Neck, which enhances the information ex-
change of multi-scale features. Combined with the improved Transformer, the local feature
correlation is enhanced to compensate for the scale information in the deep feature space.
The underwater environment perception capability of the algorithm is improved at the
multi-scale level. Eventually, the detection efficiency is improved while maintaining the
operational efficiency of the algorithm. Presently, the proposed network improves the
detection algorithm for the Neck structure, but does not fuse different scale feature layers
in terms of feature correlation between multi-scale feature extraction layers, which will be
the direction of future optimization.
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