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Abstract: Burrowing crabs are considered to be ecosystem engineers, playing a vital role in mangrove
ecosystems through bio-geochemical transformation. This process depends on the size and shape of
burrows. The present study analyzes the architecture of burrows constructed by crabs in a restored
mangrove habitat. Fourteen crab species were found to construct burrows of 13 different shapes,
with a predominance of I-, J-, and L-shapes. Sesarmids were larger in size than fiddlers, and made
burrows with wider openings mostly in the Rhizophora zone. Fiddlers constructed complex burrows
with a vertical position, and made longer and deeper burrows in contrast to sesarmids, which formed
simple burrows with a horizontal position, digging shorter and shallower burrows in Avicennia or
open zones. The sesarmids had smaller burrows without branching in mangrove zones, whereas the
fiddlers had larger burrows with or without branching in open and Avicennia zones. The burrows of
fiddler crabs, especially Austruca occidentalis and A. annulipes, had separate openings and passages for
exit and entry as an adaptation against predators. The present work identified Austruca occidentalis
and A. annulipes as the most potent bioturbating crab species in restored mangrove habitats due to
their efficiency in soil excavation and formation of large-sized burrows.

Keywords: crabs; fiddlers; sesarmids; burrowing; bioturbation; mangrove restoration

1. Introduction

Crabs are a keystone species in mangrove forest ecosystems (Smith et al., 1991) and
are actively involved in burrowing, during which sediments are excavated and mixed
that can alter the physical, chemical and biological aspects. This process is known as
bioturbation. This activity aerates sediment, flushes soil, reduces pore-water salinity,
increases nutrient availability, reduces toxic sulfide levels and creates microhabitats for
benthic organisms [1–3]. The bioturbating crabs are considered to be ecosystem engineers
in mangrove ecosystems because they have considerable impact on ecosystem functioning
through bio-geochemical transformations at the water-sediment interface of mangrove
habitats [3–7].

Crab burrow architecture is species-specific, but the crabs can modify the architecture
to adjust to a wide range of conditions that prevail in different habitats. The crabs display
significant inter-specific variations in their burrow morphologies in relation to different
environmental and biological factors of their biotopes [8,9]. The burrows vary in shape
and size, depending on biological factors such as crab species, size, sex and reproductive
stages [9–11]. The burrow architecture is also dependent on abiotic factors, such as sediment
composition, vegetation, shore elevation, tidal variation, sub-surface root system and
human disturbances [7]. The burrows serve as a refuge against environmental adversity
and as a shelter for food storage and reproduction [11]. This is a major bioengineering
effect that alters physical and chemical processes in mangrove forests [12]. The burrow
functionality varies with architecture, and is differently constructed by different crab
species [13].
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Burrow morphology varies between brachyuran crabs and hence the composition
of burrowing crabs has the potential to impact ecosystems differently [14]. The burrow
morphologies can also provide estimates of bioturbative activity by crabs from burrow
volume and burrow depth [13]. Most species within the sesarmids and the fiddlers are
involved in burrowing in mangrove sediments [6]. The burrow morphologies have been
extensively studied in different species of fiddler crab: Uca rapax, U. pugnax, U. longisignalis,
U. spinicarpa, U. vocator, U. subcylindrica, U. tangeri, U. annulipes and U. vocans [11].

Mangroves are among the most valuable ecosystems on Earth for food fish production,
carbon sequestration, climate change mitigation, pollution removal, coastal protection,
ecotourism and coastal livelihoods. In many parts of the world the mangroves have been
lost or degraded, along with their valuable services, and the long-term survival of the
mangrove ecosystem is at great risk [15]. Hence, mangrove restoration has been popular
for a long time with different objectives, including planting for timber, fuelwood, and
roofing materials before the year 1980, before largely diversifying into coastal protection,
erosion reduction, fisheries enhancement, pollution abatement, biodiversity conservation
and climate change mitigation. Continuous monitoring is made in mangrove restored
sites for the purposes of maintaining the normal tidal water flow, supplementary planting,
weed/pest removal, trash removal, avoiding cattle grazing and de-siltation [16]. However,
the functional role of crabs, a keystone species in mangroves, is largely ignored in the
restored sites.

Vegetation influences the spatial distribution, abundance and burrowing activities of
crabs within mangroves [5]. The fiddler crabs construct fewer burrows on exposed beaches
(non-mangroves) than under the mangrove canopy, according to food availability. However,
the number of crab burrows under the mangrove canopy decreases as the canopy cover
increases, and this is evident by a negative relationship between crab burrow density and
mangrove canopy cover. Such studies are mostly confined to natural mangrove habitats
rather than to restored mangroves [17]. At one site along the southeast coast of India, no
crabs were found to be present originally, but they later became well-established after a
period of mangrove restoration [18] (A. However, there is no data on the crab burrow
architecture in that restored mangrove habitat, and this information is required to provide
insight into the functional aspects of the crabs in the restored mangrove area. Hence,
the present work was undertaken to deal with species-specific burrow excavation and
architecture so as to identify the most influential functional species and also to find out
the relationship between burrow characters and size of the crab species in a restored
mangrove habitat.

2. Materials and Methods
2.1. Study Area

The study area is at an area of mangrove vegetation artificially raised along the
northern banks of the Vellar estuary on the southeast coast of India (Lat. 11◦29′ N; Long.
79◦46′ E; Figure 1). The mangrove forest is about 25 years old and covers an area of about
5 hectares. It is colonized with a Rhizophora zone towards the estuary and an Avicennia zone
landward, and there is a non-vegetated open zone in the upper intertidal area.

2.2. Sampling and Analyses

Sampling was carried out in the three intertidal zones, namely, Rhizophora, Avicennia,
and open zone for three seasons: monsoon (Nov. 2019), post-monsoon (Feb. 2020) and
summer (June 2020). Crab burrow casts were made using plaster of Paris in randomly
selected burrows from a quadrat of 1 sq. m laid in each of three intertidal zones during the
period of low tide.
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Figure 1. Study area along a restored mangrove forest in the Vellar estuary, southeastern India.

Crab burrow studies: Burrow casts were prepared using an aqueous solution of plaster
of Paris, made in a ratio of 3:1 for plaster of Paris powder and water. This solution was
poured into the crab burrows using a syringe until the burrows were completely filled [19].
After 3 h of drying, the burrow casts were carefully dug up manually, or with a spade if the
substrate was hardy. The casts were cleaned and thoroughly washed to remove all debris.
Each cast was measured for architecture in terms of burrow opening diameter (BOD), total
burrow length (TBL), total burrow depth (TBD) and burrow shape (BS). Soil excavation
activity was measured in terms of burrow volume (BV) using a water displacement method
based on the Archimedes principle. The complexity of burrow architecture was calculated
as the ratio between TBL and TBD.

Crab studies: The crabs which emerged out of the burrows while adding plaster of
Paris were collected manually and transferred to the laboratory in polythene bags. The
crabs were individually detected for sex and measured for their size in terms of body
weight as well as carapace length and width using a venire caliper. The crabs were then
identified based on morphological characters by following the World Register of Marine
Species (WORMS).

Statistical analyses: The data was subjected to statistical analysis using SPSS.17 to test
the significance between crab species for crab size or burrow architectures. Levene’s test
was conducted to test for equality of variance and covariance. Since it was non-significant,
further multivariate analysis was made along with post hoc and Tukey’s test to determine
the significant differences for pair-wise comparison of different species. Pearson correlation
coefficients were calculated flagging with significance at 1% and 5% levels at p < 0.01 and
p < 0.05, respectively, to determine the relationship between measures of crabs and burrow
characteristics.

3. Results
3.1. Burrow Types

The shape-based burrow types found in crab species across the intertidal zones of
restored mangrove habitat under different seasons are given in Table 1. In total, 14 burrow-
ing crab species that included fiddlers (seven species) and sesarmids (seven species) were
collected from the study area. A total of 48 burrow casts were prepared and categorized
into 13 types based on shape; these were J, Y, L, C, I, CS, U, LL, V, X, S, CL, and JU types
(Figure 2). The burrows were predominantly ‘I’ shaped, contributing to 35.4% of total
casts, followed by ‘J’ (18.8%) and ‘L’ shaped (16.7%). Other types were ‘Y’ shaped (6.3%),
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LL (4.2%), V (4.2%) and the remaining (‘C’, ‘CS’, ‘U’, ‘X’, ‘S’, ‘CL’ and ‘JU’ shaped) each
contributed only 2.1%.

Table 1. Burrow shape and its structural complexity ratio across three intertidal zones under three
seasons of analysis in the restored mangrove forest.

Species Name Season of Analysis Intertidal Zone Burrow Shape Burrow Structural
Complexity Ratio (TBL/TBD)

1 Metopograpsus messor Monsoon Rhizophora L 0.93

Metopograpsus messor Summer Avicennia J 1.14

Metopograpsus messor Monsoon Rhizophora I 0.93

Metopograpsus messor Monsoon Rhizophora CS 0.91

M. messor Monsoon Rhizophora C 0.94

M. messor Post-monsoon Avicennia CL 0.96

Mean L, J. I, CS, C, CL 0.97

2 Parasesarma guttatum Monsoon Rhizophora L 0.96

3 Parasesarma plicatum Post-monsoon Avicennia L 0.97

P.plicatum Summer Avicennia J 0.96

Mean L, J 0.97

4 Austruca occidentalis Monsoon Avicennia L 0.97

A. occidentalis Monsoon Avicennia L 0.96

A. occidentalis Monsoon Open Y 0.96

A. occidentalis Monsoon Open JU 0.98

A. occidentalis Monsoon Open X 0.97

Mean L, Y,
JU, X 0.97

5 A. lactea Monsoon Avicennia L 0.97

A. lactea Monsoon Avicennia L 0.94

A. lactea Monsoon Avicennia I 0.94

A. lactea Post-monsoon Avicennia I 0.95

A. lactea Post-monsoon Avicennia I 0.96

A. lactea Summer Avicennia I 0.96

Mean L, I 0.95

6 Uca victoriana Monsoon Avicennia L 0.94

7 Austruca variegata Monsoon Rhizophora J 0.92

A. variegata Monsoon Avicennia J 0.97

A. variegata Post-monsoon Rhizophora J 0.92

A. variegata Monsoon Rhizophora I 0.94

Mean I, J 0.94

8 Parasesarma pictum Summer Avicennia J 0.98

Parasesarma pictum Monsoon Avicennia LL 0.97

Mean J, LL 0.98

9 Gelasimus vocans Post-monsoon Avicennia J 0.92

Gelasimus vocans Summer Avicennia J 1.03

Gelasimus vocans Monsoon Avicennia I 0.93

Gelasimus vocans Monsoon Avicennia I 0.95

Gelasimus vocans Monsoon Open I 0.98

Gelasimus vocans Post-monsoon Open I 1

Gelasimus vocans Summer Open I 1.29
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Table 1. Cont.

Species Name Season of Analysis Intertidal Zone Burrow Shape Burrow Structural
Complexity Ratio (TBL/TBD)

Gelasimus vocans Monsoon Avicennia S 0.97

Gelasimus vocans Summer Avicennia V 1.5

Mean J, I, S, V 1.06

10 Austruca annulipes Summer Avicennia J 0.97

A.annulipes Monsoon Avicennia I 0.95

A. annulipes Monsoon Avicennia I 0.93

A. annulipes Monsoon Avicennia I 0.97

A. annulipes Monsoon Avicennia I 0.96

A. annulipes Monsoon Avicennia I 0.93

Austruca annulipes Summer Avicennia Y 1.25

A. annulipes Monsoon Open LL 0.97

Mean J, I, Y, LL 0.99

11 A. cryptica Summer Avicennia I 0.93

12 Episesarma vesicolor Summer Rhizophora Y 0.96

13 Episesarma mederi Post-monsoon Rhizophora V 0.93

14 Parasesarma bidens Monsoon Rhizophora U 0.94
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Figure 2. Crab burrow architectures found in restored mangrove habitat.

Burrow shape varied with crab species. Metopograpsus messor displayed the maximum
number of six types of burrow shape (L, I, CS, C, CL, J), followed by four types in Austruca
occidentalis (L, JU, Y, X), Gelasimus vocans (I, S, J, V) and A. annulipes (I, LL, J, Y). Two types
of burrows were found in A. lactea (L, I), A. variegata (I, J), Parasesarma plicatum (L, J) and
P. pictum (LL, J). Only one type of burrow was found in Austruca cryptica (I), Parasesarma
bidens (U), Uca victoriana (L), P. guttatum (L), Episesarma mederi (V), and E. vesicolor (Y).

Burrowing activity of crabs varied with intertidal zone and season in the restored
mangrove habitat. Metopograpsus messor constructed burrows only in mangrove zones: in
the Rhizophora zone during monsoon and in the Avicennia zone during post-monsoon and
summer. Thus, there seemed to be a shift in the burrow construction from Rhizophora to
Avicennia during monsoon to summer. Parasesarma pictum constructed burrows only in the
Avicennia zone during summer and monsoon. Similarly, Austruca lactea formed burrows
only in Avicennia in all three seasons, and there seemed to be a shift in the shape from I to L
from monsoon to summer. Austruca variegata constructed burrows only in mangrove zones,
and there was also a shift in the shape from I to J from monsoon to post-monsoon. Austruca
occidentalis produced burrows only in the monsoon in both Avicennia and open zones,
whereas Gelasimus vocans made burrows in Avicennia and open zones in all three seasons.
Austruca annulipes produced burrows in Avicennia and open zones during monsoon and
summer (Table 1).
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There was a significant difference between seasons when the variables of crab size
or burrow architecture were considered jointly. All variables were significant except for
crab weight, carapace width, burrow opening diameter, burrow volume and burrow shape.
Similarly, there was a significant difference between intertidal zones when the variables
of crab size or burrow architecture were considered jointly. All variables were significant
except for total burrow length, total burrow depth and burrow shape.

Burrow structural complexity was measured as the ratio between TBL and TBD. This
ratio varied with burrow shape. The ratio was higher than the value of 1 for ‘V’ and ‘Y’; but
less than 1 for other shapes (JU, J, I, X, LL, S, L, U, C, CS). It is interesting to note that the
ratio was found to be high, i.e., exceeding the value of 1, only in summer in the Avicennia
or open zones for the burrow shapes of I, J, Y, V. The ratio also varied with crab species.
It ranged from 0.93 to 1.06 for fiddlers, and from 0.93 to 0.98 for sesarmids. The burrow
structure was relatively complex in fiddlers such as Gelasimus vocans (1.06) and Austruca
annulipes (0.99), and in sesarmids such as Parasesarma pictum (0.98), Metopograpsus messor
(0.97), and P. plicatum (0.97) (Table 1).

3.2. Size of Crab Species

The crab size in terms of weight, carapace length and width for 14 species is shown
in Figure 3. Crab weight varied from 0.17 to 0.36 g for fiddlers, and from 0.22 to 0.90 g
for sesarmids. It was the highest in Austraca occidentalis and Episesarma versicolor, and the
lowest in Gelasimus vocans and Metopograpsus messor. The crab weight was in correlation
with carapace width (r = 0.95), carapace length (r = 0.93), BOD (r = 0.92), MBL (r = 0.48),
TBL (r = 0.44), TBD (r = 0.44), and BV (r = 0.38).
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Figure 3. Crab weight, carapace width and length in 14 burrowing crab species; values significant
between crab species at 1% level.

Carapace length ranged from 0.4 to 0.8 cm for fiddlers and from 0.4 to 2.3 cm for
sesarmids. It was the maximum in Uca victoriana and Episesarma vesicolor, and minimum in
Austraca variegata and Parasesarma pictum (Figure 3). The carapace length was in correlation
with carapace width (r = 0.93), BOD (r = 0.92), MBL (r = 0.40), TBD (r = 0.30) and TBL
(r = 0.30).

Carapace width varied between 0.72 and 1.14 cm for fiddlers and from 0.7 to 2.5 cm
for sesarmids, being the maximum in Austraca occidentalis and Episesarma vesicolor and the
minimum in Gelasimus vocans and Parasesarma plicatum (Figure 3). The carapace width was
in correlation with BOD (r = 0.99), MBL (r = 0.47), TBD (r = 0.40), TBL (r = 0.40) and BV
(r = 0.32).
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There was a significant difference between crab species when considered jointly on the
variables of crab size or burrow architecture. However, there was no significant difference
between sexes in crab size or burrow architecture, except for burrow shape.

3.3. Burrow Architecture of Crab Species

Soil excavation activity in terms of burrow volume in different crab species is shown
in Figure 4. Burrow volume (BV) varied from 3.52 to 45.6 cm3 for fiddlers and from 1.95 to
24.0 cm3 for sesarmids. BV was the highest in Austruca occidentalis and Episesarma vesicolor,
and the lowest in Austruca lactea and Parasesarma plicatum. The BV was in correlation with
TBL (r = 0.81), TBD (r = 0.81) and burrow shape (r = 0.44) (Figure 5).
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Figure 5. Relationship between burrow volume and total burrow length (r = 0.81) and total burrow
depth (r = 0.81).

Burrow measures for 14 crab species are given in Figure 6. Total burrow length (TBL)
ranged from 1.3 to 12.72 cm for fiddlers, and from 2.6 to 9.75 cm for sesarmids. TBL was the
highest in Austruca occidentalis and Parasesarma pictum, and the lowest in Austruca cryptica
and Parasesarma plicatum. The TBL was in correlation with TBD (0.99), BV (r = 0.81), BOD
(r = 0.40), burrow shape (r = 0.38), crab weight (r = 0.44), carapace width (r = 0.4) and length
(r = 0.30).
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Figure 6. Crab species-specific burrow opening diameter, length and depth of burrows; values
significant between crab species at 1% level.

Total burrow depth (TBD) varied from 1.4 to 13.16 cm for fiddlers and from 2.7 to
10 cm for sesarmids. TBD was the highest in Austruca occidentalis and Parasesarma pictum
and the lowest in Austruca cryptica and Parasesarma plicatum (Figure 6). The TBD was in
correlation with TBL (r = 0.99), BV (r = 0.81), BOD (r = 0.39), burrow shape (r = 0.36), crab
weight (r = 0.44), carapace width (r = 0.40) and carapace length (r = 0.30).

Burrow opening diameter (BOD) varied from 0.78 to 1.16 cm for fiddlers and from 0.7
to 2.5 cm for sesarmids. BOD was the maximum in Austruca occidentalis and Episesarma
vesicolor, and the minimum in Gelasimus vocans and Parasesarma plicatum. The BOD was in
correlation with carapace width (r = 0.99), crab weight (r = 0.92), carapace length (r = 0.92),
TBL (r= 0.40), TBD (r = 0.39) and BV (0.31) (Figure 7).
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Figure 7. Relationship between burrow opening diameter and total burrow length (r = 0.40) and total
burrow depth (r = 0.39) at 1% level or burrow volume (r = 0.31; p < 0.05).

4. Discussion

Crabs are key bioturbating organisms in mangrove habitats. Among the crabs,
sesarmids and fiddlers are the most prominent mangrove crab groups affecting biogeo-
chemical transformation in mangrove soil [6]. Not all crab species do construct burrows [20].
The present study recorded 14 burrowing crab species and four non-burrowing species.
These were Selatium brockii, Nanosesarma batavicum, U. boninensis, Paraleptuca chlorophthal-
mus. The present study assessed crab bioturbation activity in restored mangrove habitat by
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evaluating burrow architecture in 14 crab species. The burrow architecture was measured
in terms of burrow shape, burrow opening diameter, total burrow length and total burrow
depth, whereas the volume of soil excavated was evaluated in terms of burrow volume.

Sesarmids are of larger size than fiddlers [6], as evidenced in the present work by crab
weight, carapace length and width (Figure 3), and this could be attributed to the stage
of the crabs as juveniles or mature adults that were collected in the study area. Large-
sized crabs excavate a greater volume of soil, thereby making longer and deeper burrows
with a broader burrow opening so as to enable them to enter into the burrow chamber
and to reside in spacious burrows [9,10]. Sesarmids are larger in size than fiddlers. The
larger sized sesarmids displayed burrows with wider openings, but relatively shorter
and shallower burrows, as found in Parasesarma pictum. The fiddlers were efficient at soil
excavation and also at making deeper and longer burrows as found in Austruca occidentalis
and A. annulipes. Smaller-sized crabs were poor at soil excavation and constructed only
shorter and shallower burrows with a narrow opening, as found in the species of fiddlers
(Gelasimus vocans, Austruca lactea) and sesarmids (Metopograpsus messor).

Sesarmids constructed simple and horizontal burrows due to the hard and compact
mangrove substratum that prevented deep digging, whereas the fiddlers formed com-
plex and vertical burrows due to the porous soil substratum without the interference of
sub-surface root structures. Thus, the fiddlers were found to be much more efficient in
constructing burrows of different shapes than the sesarmids. The fiddlers require burrow
construction to avoid predation, and environmental and human disturbance, whereas the
sesarmids stay protected by the complex structure of the mangrove vegetation; however,
they still require burrows mainly for storing and processing the mangrove litter [9].

The size of burrows is likely attributed to the sex of crabs. Males dig and reside in
larger burrows due to the spatial requirement for their larger body size and chelipeds; but
the large chelipeds prevent the males from moving easily into the burrows as compared to
females with smaller chelipeds [9]. Females and smaller males are better at burrowing than
larger males because the enlarged chelipeds are of limited use in burrowing [8]. Females of
Uca dussumieri and U. vocans were reported to have longer burrows with larger openings
than the males [11]. However, the present study did not find any statistical significance
between crab sexes in burrow construction.

Burrow architecture was recorded to be diverse within crab species. Metopograpsus
messer displayed the maximum of six different types of burrows, followed by four types in
Gelasimus vocans, Austruca occidentalis, and A. annulipes. The burrow structural complexity,
as measured by the ratio between total burrow length and total burrow depth, was higher
in the fiddlers than the sesarmids. This could be attributed to the instability of burrows
due to structural collapse, which requires a continuous construction and reworking effort.
Contrary to our observation, the sesarmids are reported to create a wide range of complex
and irregular burrow shapes as compared to the fiddlers [6,9,21,22]. It is interesting to
note in the present study that the burrow structural complexity ratio exceeded the value
of 1 during the summer. Hence, the diversity of burrow structures might be a response to
higher stress factors such as high temperature, as well as to avoid the intense predatory
pressure [21,23,24].

Crabs constructed burrows simply by starting with an elongated I-shaped shaft which
is then further modified to J, L and other shapes according to their functional requirements.
The present study found a predominance of I-, J-, and L-shaped burrows. Branching of
burrows is likely required to avoid heavy predatory pressure and to accommodate more
juveniles and parents together. Similarly, a greater number of openings may possibly
facilitate the crabs easy escape from predators. The presence of molluscan shells on which
the burrow is constructed appears to be evident by the open end of burrow casts. Twin
burrows were recorded for the first time in this study in Gelasimus vocans, perhaps for
accommodating separately individual crabs of the same or different sex. Thus, burrow
construction is likely to be needs-based. Crab species such as Paraseseama guttatum burrow
only in dry soils where no other shelter is available to hide [20]. The I-shaped burrows
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nurture juveniles, while those that are Y-shaped support adults of Metaplax crabs [25] and
thus there is an ontogenic difference in burrow shape. The present study observed a shift
in burrow shape from I to L from monsoon to summer in the case of Austruca lactea, and a
similar shift was also found from Rhizophora to Avicennia by Metopograpsus messor (Table 1).

There was a specific association of crab burrows with mangroves. Parasesarma pictum
and P. plicatum constructed burrows only in the Avicennia zone because of the cannibalistic
behavior of the species, attacking small crabs that are abundantly available in that zone.
Austruca variegata was observed to construct burrows only in mangrove zones, but not in
the open zone. Sesarmids were found to construct burrows mostly in the Rhizophora zone,
while fiddlers mainly constructed burrows in Avicennia or open zones. The burrows shapes
that were specific to crab species were ‘JU’ to Austruca occidentalis, ‘S’ to Gelasimus vocans,
‘U’ to Parasesarma bidens and CS, C, and CL to Metopograpsus messor.

The species-specific burrow characteristics provide insight into the different bioengi-
neering roles of crab species, which are critical to the functioning and health of the mangrove
ecosystem [14]. The present work identified Austruca occidentalis and A. annulipes as the
most potent bioturbating crab species in restored mangrove habitats, similar to Macroph-
thalmus (Mareotic) depressus for hyper-arid ecosystems [26] and Uca rosea for Sundarban
mangroves [11].
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