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Abstract: The present paper aims to study the crack propagating behavior of a stiffened plate under
tensile and bending displacement load loads. The extended finite element method (XFEM) is used
to analyze the residual ultimate strength of stiffened plates with a central crack. The quasi-static
crack growth process is simulated by software ABAQUS. The validity of the grid is validated by
the plate with a central crack. The numerical method is validated by comparing the fatigue crack
growth rate of the round compact tension specimen (RCT) results of the extended finite element with
experiment values. Influential parameters, including the size of the stiffened plates, heights of the
stiffeners is varied, and uniaxial tensile and four-point bending models are analyzed. The results
show that ultimate strength is reduced by the action of tensile and bending loads. The bottom plate
and stiffener are destroyed with crack propagation, successively. With the increase in stiffener height,
the crack resistance will also increase, thus restraining the central crack growth of stiffened plates.

Keywords: extended finite element method; stiffened plate; cracking process; the ultimate strength

1. Introduction

Ships work constantly under complex sea conditions, suffering from the combined
action of wind, waves and current. In order to cope with the complex working conditions
of the ocean, many structures with increased ultimate strength have been proposed, such as
stiffened X-joints [1,2] and the stiffener [3]. Stiffened plates are the basic components of ship
hull, and the existence of cracks will reduce the ultimate strength of structural components
and eventually endanger the entire hull security. Thus, crack propagation in steel structures
cannot be prevented. Predicting the residual ultimate strength of cracked structures is of
crucial importance for ships’ health monitoring and repair policy [4,5]. Residual ultimate
strength analysis of stiffened plates with crack was the subject of many studies in the past
years. Therefore, conducting research on the residual ultimate strength of cracked stiffened
plates is essential for the reliability of ship structures during service.

Over years, researchers have devoted time to the development of efficient numerical
methods for crack growth modeling, such as the boundary element method [6,7], mesh
free method [8,9], finite element method (FEM) [10,11] and extended finite element method
(XFEM) [12–14]. Among these methods, XFEM has gradually become the most popular
method to study crack growth problems. In XFEM, as a crack grows, there is no need for
re-meshing and refinement work. Fries [15] modified the standard XFEM approximation
with a ramp function to overcome the inherit problem lying in blending elements, so
optimal convergence rate and high accuracy can be achieved, the method is frequently
referred to as corrected XFEM. Till now, the XFEM has been applied in various fracture
problems including the cohesive crack propagation [16,17], crack growth with frictional
contact [18,19], elastodynamic crack propagation [20], branched and intersecting crack
growth [21], and three dimension crack propagation [22], even heat transfer problem [23].
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In the past, some studies on residual ultimate strength of stiffened plates with cracks
under different stress conditions have been carried out. Shi et al. [24] determined the
residual ultimate strength of cracked steel stiffened plates subjected to axial compression
through numerical calculation. Poknam et al. [25] studied the influence of cracks on the
residual ultimate strength of cracked continuous stiffened plates under combined lateral
pressure and compression in the plate. Zhenfei et al. [26] used tension experiments and
electrical measurements for measuring the ultimate strength, failure mode, and strain-
evolution process of stiffened plates. Kang et al. [27] analyzed the influence of the residual
ultimate strength of cracked stiffened plates under cyclic load on the bearing capacity of
stiffened plates. Huwei et al. [28] analyzed the ultimate strength and fracture failure of hull
stiffened plates based on plastic accumulation have been studied under cyclic compression
and compression–tension load.

From the research work carried out so far on the residual ultimate strength of stiffened
plates with cracks, it is observed that the problems with crack resistance in the presence of
different working conditions (uniaxial tensile and four-point bending conditions) have not
been given much attention. Studying the crack resistance of stiffened plates in different
working conditions are inevitable. The relationship between the reaction force and defor-
mation is output, which can be used to characterize the crack resistance of stiffened plates.
In addition, XFEM has been used to deal with such problems. The numerical method
using ABAQUS 2020 [29] will be validated by the RCT specimen. In the present work, two
numerical models are presented to show the residual ultimate strength of a stiffened plate
with a central crack.

This paper is organized as follows: Description of XFEM formulation in software
ABAQUS for crack problem in Section 2. Followed by a detailed information of two
validate case which validate the correctness of the mesh and method in Section 3. In
Section 4, numerical results of tensile and four-point bending model are presented, the
effect of variations in the stiffener size is investigated. Finally, main conclusions are
summarized as Section 5.

2. Numerical Formulation
2.1. Model Problem Definition

Consider a body in the state of equilibrium with the boundary conditions in the form
of traction and displacement conditions, as depicted in Figure 1.
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Figure 1. A body in a state of elastostatic equilibrium.

The strong form of the equilibrium equation can be written as:

∇ · σ + b = 0 in Ω (1)

where ∇ is the gradient operator, σ is the Cauchy stress, and b is the body force. The
behavior of the bulk material is assumed to be linear elastic, the constitutive relation is
defined as σ = D ·ε.
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With the following boundary conditions:

u =
-
u on Γu

σ · nΓ =
-
t on Γt

(2)

where, nΓ is the ourward unit normal vector to the external boundary Γ, and
-
t is the

prescribed load vector on the boundary Γt,
-
u is the the prescribed displacement on the

boundary Γu.
The variational formulation of the boundary value problem can be defined as:

Wint = Wext (3)

Or ∫
Ω

σ · δε dΩ =
∫

Ω
f b · δu dΩ +

∫
Γt

f t · δu dΓ (4)

2.2. XFEM Discretization

XFEM is based on the partition of unity method, and uses rich functions to enrich
the local elements, so as to approximate the displacement of the standard finite element to
simulate the discontinuity between cracks and the singularity of the crack tip. ABAQUS2020
only introduces the Heaviside enhancement function, not the crack tip branch functions.
Thus, as for 2D-corrected XFEM, displacement approximation in ABAQUS takes the form:

uh(x) = ∑j∈N Nj(x)uj + ∑k∈M Nk(x)H(x)ak (5)

As shown in Figure 2, N is the nodes set in the mesh; M is the node set belonging to
the split element intersected with the crack. In Equation (5), uj is the classical finite element
displacement; Nj(x) and Nk(x) are standard FE shape functions; ak is the nodal unknowns
added to the M set of nodes. H(x) is the Heaviside function used to model the discontinuity
in displacement, which takes +1 on one side of the crack surface and −1 on the other side.
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Discretization of Equation (4) using the XFEM procedure Equation (5) results in a
discretesystem of linear equilibrium equations:

Kuh = f (6)

where K is the stiffness matrix, uh is the vector of degrees of nodal freedom (for both
classical and enriched ones) and f is the vector of external force. The global matrix and
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vectors are calculated by assembling the matrix and vectors of each element. K and f for
each element e are defined as

Ke
ij =

[
Kuu

ij Kua
ij

Kau
ij Kaa

ij

]
(7)

f e
i =

{
f u
i f a

i
}T (8)

And uh is the vector of nodal parameters:

uh =
{

u a
}T (9)

with
Krs

ij =
∫

Ωe
(

Br
i
)T DBj

sdΩ (r, s = u, a) (10)

f u
i =

∫
Γt

Ni f tdΓ (11)

f a
i =

∫
Γt

Ni H f tdΓ (12)

In Equation (10), B is the matrix of shape function derivatives,

Bu
i =

Ni,x 0
0 Ni,y

Ni,x Ni,y

 (13)

Ba
i =

(Ni H),x 0
0 (Ni H),y

(Ni H),x (Ni H),y

 (14)

3. Case Validation
3.1. Validation of the Method

In order to check the validity of the mesh, a comparison between the numerical results
and the theoretical value will be presented in this section for stress intensity factors (SIFs) of
the central cracked plate. A detailed geometry and boundary conditions for the specimen
is displayed in Figure 3. The plate thickness is 10 mm, and tensile load σ= 100 Pa.
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The specimen SIFs at crack tips are defined as follows:

KI = σ
√

0.5πa
(

1 + 0.5948λ2 + 0.4812λ4
)

(15)

where σ, a are the axial tensile load and the crack length in the specimen, respectively. And
λ is given as λ = a/W, where W is the width of the central plate with crack.

The stress contour plot of σyy using different elements is shown in Figure 4. From the
results, it can be deduced that the model with the mesh size of 2.8 mm is more accurate,
however, the model with this mesh size will be more computationally costly.
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Table 1 depicts the values of normalized SIFs at the tip of the center cracks for various
elements. Material properties of stiffened plate model are shown in Table 2. For the central
cracked plate, the theoretical value of SIFs is found as 574.1 MPa·mm1/2. As a reference
numerical simulation, XFEM analysis by commercial software ABAQUS is conducted, and
the SIFs value of crack tip is derived from the program provided by the software. When
the average element of the model is taken as 5 mm, the numerical value of SIFs is found
as 570.7 MPa·mm1/2. The normalized SIFs are 0.994, where the normalized SIFs are the
ratio of the numerical value of SIFs to the theoretical value. The observation from Table 1 is
that the SIF is 0.001 % more accurate than the theoretical value in the case where the mesh
size is 5 mm, thus acceptable results can be obtained by using the 5 mm element size in the
numerical simulation in this paper.

Table 1. Normalized SIFs in the central cracked plate.

Element Size 10 5 2.8

Normalized SIFs 1.205 0.994 1.005

Table 2. Material properties of stiffened plate model.

Young modulus E = 205.8 GPa
Poisson’s ratio υ = 0.3

Max Principal Stress σ Max = 235 MPa
Fracture Energy GIc = GIIc = GIIIc = 42.2 N/mm
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3.2. Validation of the Present Method

In order to check the validity of the method, the numerical results and the experimental
value will be compared in this section for fatigue crack growth rate of round compact
tension specimen (RCT). The experiment of crack growth in RCT under cyclic loading
is selected from the previous research work conducted by Wang et al. [30]. A detailed
geometry and boundary conditions for RCT is displayed in Figure 5. Additionally, material
properties of 2024-T4 aluminum alloy are shown in Table 3. The specimen’s thickness is
3.7 mm, the initial crack length is a0 = 5 mm, the maximum applied load Pmax = 3 kN, and
the stress ratio R = 0.3. The fixed crack growth increment is chosen as ∆a = 6 mm.
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Table 3. Material properties of 2024-T4 aluminum alloy.

Young modulus E = 73.1 GPa
Poisson’s ratio υ = 0.33

Tensile yield strength Sy = 324 MPa
Paris exponent m = 3.738
Paris constant C = 1.048 × 10−8

Strain hardening constant α = 0.314
Strain hardening exponent n = 11.74

The meshes used in XFEM is shown in Figure 6. It can be seen from Figure 6 that
XFEM does not need to refine the mesh at the crack tip. Compared with the traditional
finite element method, the extended finite element method uses a uniform mesh at the
crack, which can save the calculation cost. The stress contour plots of σyy obtained by
XFEM are shown in Figure 7. It can be noticed from Figure 7 that stress concentration
occurs at the crack tip when the load is applied.

Figure 8 provides the comparison of numerical results and experimental data. From
the results, it is observed that XFEM is in good agreement with the experimental data.
Hence, this method can be used to simulate the crack growth behavior of stiffened plates.
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4. Numerical Case of Stiffened Plate
4.1. Description of the Models

Figure 9 shows the two stiffened plate models considered in the present study and
material data are taken from the previous research work conducted by Peng and Yang [31],
and material properties are shown in Table 2. The length, width and thickness of plate
are denoted by a, b and t, respectively, and the web height and thickness of stiffener are
represented by hw and tw. The cap-stiffened plate is used to simulate the bending model
in order to fit the reality. The width and thickness of the cap are represented by ac and tc,
respectively. The detailed geometric dimensions of stiffened plates are listed in Table 4.
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Figure 9. Geometries of stiffened panels: (a) tensile model; (b) bending model.

Table 4. Geometric dimensions of stiffened plates (unit: mm).

Models a b t hw tw ac tc

tension 200 400 10 30 6
bend 300 1000 10 75 6 100 6

4.2. Uniaxial Tension of Stiffened Plates with Central Cracks

The geometry and boundary conditions of the uniaxial tensile model in Figure 10 is
taken for uniaxial tension of the stiffened plate’s analysis. The length of the uniaxial tensile
model is 400 mm, and the central crack length is a0 = 20 mm. Fully constrain the bottom
of the stiffened plate and the x-direction of the plate to simulate the working condition of
the tensile model. To facilitate the observation of the crack growth process, the average
length of the element is 3 mm to located the crack tip inside the element. The model is
subjected to tensile displacement load S = 0.6 mm, and the stress contour plot is depicted
in Figure 11. As the figure shows, in the process of progressive displacement loading,
stress concentration will occur at the crack tip whether on the plate or the stiffener. The
displacement load required for crack initiation is 0.234 m, and later in the crack growth,
the stress at the crack tip increases. The increasing speed of displacement load required by
crack propagation gradually decreases, which means that when the crack propagates to the
bottom plate of the tensile model, the crack resistance of the stiffened plate decreases.
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The variation of the reaction force (RF) with time is depicted in Figure 12. It is
concluded that when the crack of the bottom plate expands, the reaction force is linear with
displacement load. When the bottom plate is completely damaged, the reaction force drops
sharply, and the maximum reaction force is found as 441.31 kN. Until the stiffened plate
breaks, and the reaction force reduces to 0.
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4.3. Four-Point Bending of Stiffened Plate with Central Crack

A geometry and boundary conditions of four-point bending model in Figure 13 is
taken for bending of stiffened plate’s analysis. The four-point bending model is simulated
by constraining the support in the x and y directions, and applying the displacement load
200 mm away from the crack. In order to load the bending displacement, the stiffened plate
is attached with a cap, the thickness, width and length of which are 6 mm, 100 mm, and
1000 mm, respectively. The model is subjected to tensile displacement load S = 5 mm, and
the stress contour plot is depicted in Figure 14. It can be observed from Figure 14 that with
the growth of the central crack of the stiffened plate, the stress at the crack tip also increases.
The displacement load required for crack initiation is 0.88 m. Later in the growth of the
crack, the increased rate of displacement load becomes lower. Therefore, with only a small
amount of displacement load added, the crack will growth rapidly until the bottom plate
of four-point bending model is broken.
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The relationship between the reaction force of the bending model and the loading
displacement is shown in Figure 15. The curve shapes of the reaction force versus the
loading displacement are similar to the uniaxial tensile model. During crack growth, the
reaction force and displacement load show a linear relationship, and the maximum reaction
force is found as 264.4 kN. When the bottom plate is destroyed, the reaction force decreases
rapidly, which means that the crack resistance of the stiffened plate decreases, until the
stiffened plate is destroyed, and the reaction force reduces to 0.
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4.4. Influence of the Stiffener Size

The stiffener height has considerable influence on the ultimate strength of the stiffened
plate. In this section, the plate geometry and material must be kept constant so as to
examine the effect of different stiffener sizes on the residual ultimate strength of cracked
stiffened plates. Three stiffener heights have been considered. Figure 16 shows the stress
contour plots for crack propagation and the reaction force of the tension model under
different stiffener sizes. It can be seen from Figure 15 that the stress is concentrated at the
crack tip of stiffened plates with different heights of stiffeners during crack propagation,
which also represents the correctness of this results. It is concluded that an increase in the
stiffener height will significantly improve the ultimate bearing capability. This means that when
the size of stiffeners increases, the crack resistance of tensile model will also be strengthened.

Figure 17 shows the stress contour plots for crack propagation and the reaction force of
the four-point bending model under different stiffener sizes. It can be seen from Figure 17
that with the increase in the stiffener height in the four-bending model, the reaction force
also increases. This shows that increasing the stiffener height in the bending model can
increase the crack resistance of the stiffened plate.



J. Mar. Sci. Eng. 2023, 11, 302 13 of 16

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 11 of 15 
 

 

loading displacement are similar to the uniaxial tensile model. During crack growth, the 
reaction force and displacement load show a linear relationship, and the maximum reac-
tion force is found as 264.4 kN. When the bottom plate is destroyed, the reaction force 
decreases rapidly, which means that the crack resistance of the stiffened plate decreases, 
until the stiffened plate is destroyed, and the reaction force reduces to 0.  

 
Figure 15. The relation of the reaction force of bending model with displacement load. 

4.4. Influence of the Stiffener Size 
The stiffener height has considerable influence on the ultimate strength of the stiff-

ened plate. In this section, the plate geometry and material must be kept constant so as to 
examine the effect of different stiffener sizes on the residual ultimate strength of cracked 
stiffened plates. Three stiffener heights have been considered. Figure 16 shows the stress 
contour plots for crack propagation and the reaction force of the tension model under 
different stiffener sizes. It can be seen from Figure 15 that the stress is concentrated at the 
crack tip of stiffened plates with different heights of stiffeners during crack propagation, 
which also represents the correctness of this results. It is concluded that an increase in the 
stiffener height will significantly improve the ultimate bearing capability. This means that 
when the size of stiffeners increases, the crack resistance of tensile model will also be 
strengthened. 

 
(a) 

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 12 of 15 
 

 

 
(b) 

 
(c) 

Figure 16. Stress contour plots for uniaxial tensile model in different stiffener sizes; (a) hw = 20 mm, 
RF = 399.5 kN; (b) hw = 30 mm, RF = 421.7 kN; (c) hw = 50 mm, RF = 450.7 kN. (Unit: MPa.) 

Figure 17 shows the stress contour plots for crack propagation and the reaction force 
of the four-point bending model under different stiffener sizes. It can be seen from Figure 
17 that with the increase in the stiffener height in the four-bending model, the reaction 
force also increases. This shows that increasing the stiffener height in the bending model 
can increase the crack resistance of the stiffened plate. 

 
(a) 

Figure 16. Stress contour plots for uniaxial tensile model in different stiffener sizes; (a) hw = 20 mm,
RF = 399.5 kN; (b) hw = 30 mm, RF = 421.7 kN; (c) hw = 50 mm, RF = 450.7 kN. (Unit: MPa)



J. Mar. Sci. Eng. 2023, 11, 302 14 of 16

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 12 of 15 
 

 

 
(b) 

 
(c) 

Figure 16. Stress contour plots for uniaxial tensile model in different stiffener sizes; (a) hw = 20 mm, 
RF = 399.5 kN; (b) hw = 30 mm, RF = 421.7 kN; (c) hw = 50 mm, RF = 450.7 kN. (Unit: MPa.) 

Figure 17 shows the stress contour plots for crack propagation and the reaction force 
of the four-point bending model under different stiffener sizes. It can be seen from Figure 
17 that with the increase in the stiffener height in the four-bending model, the reaction 
force also increases. This shows that increasing the stiffener height in the bending model 
can increase the crack resistance of the stiffened plate. 

 
(a) 

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 13 of 15 
 

 

 
(b) 

 
(c) 

Figure 17. Stress contour plots for bending model in different stiffener sizes; (a) hw = 50 mm, RF = 
74.4 kN; (b) hw = 75 mm, RF = 255.4 kN; (c) hw = 100 mm, RF = 335.3 kN. (Unit: MPa.) 

5. Conclusions 
In the present study, the residual ultimate strength of a stiffened plate with a central 

crack under displacement loading is simulated by XFEM. Two types of working condi-
tion, tension and bend were considered. In order to more reasonably evaluate the ultimate 
bearing capacity of stiffened plates with central cracks, the size of stiffeners is considered. 
Based on the results, the following conclusions and insights can be summarized. 

(1) For crack propagation, using XFEM, provided by software ABAQUS, to numerical analysis is in good agree-
ment with theoretical value. XFEM can model crack growth with ease, as it precisely obtains results without 
refining the mesh. 

(2) The ultimate strength of central-cracked stiffened plates is reduced under displacement load both in tension 
and four-bending models. When the crack propagates, the stress is concentrated at the crack tip. 

(3) The stiffeners can restrain the cracking of specimens with initial cracks. Increasing the stiffener height, the 
ultimate residual strength of stiffened plates with central cracks improves accordingly for tension and bend 
models. 

Author Contributions: methodology, Z.C. and J.Z.; software, Z.C. and J.Z.; validation, G.L.; writ-
ing—original draft preparation, Z.C.; writing—review and editing, Z.C. and G.L. All authors 
have read and agreed to the published version of the manuscript. 

Funding: This research was funded by [National Natural Science Foundation] grant number [No. 
51909153] And The APC was funded by [National Natural Science Foundation(No. 51909153)]. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data that support the findings of this study are available on re-
quest from the corresponding author, Guangzhong Liu, upon reasonable request. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 17. Stress contour plots for bending model in different stiffener sizes; (a) hw = 50 mm,
RF = 74.4 kN; (b) hw = 75 mm, RF = 255.4 kN; (c) hw = 100 mm, RF = 335.3 kN. (Unit: MPa)

5. Conclusions

In the present study, the residual ultimate strength of a stiffened plate with a central
crack under displacement loading is simulated by XFEM. Two types of working condition,
tension and bend were considered. In order to more reasonably evaluate the ultimate
bearing capacity of stiffened plates with central cracks, the size of stiffeners is considered.
Based on the results, the following conclusions and insights can be summarized.

(1) For crack propagation, using XFEM, provided by software ABAQUS, to numerical
analysis is in good agreement with theoretical value. XFEM can model crack growth
with ease, as it precisely obtains results without refining the mesh.

(2) The ultimate strength of central-cracked stiffened plates is reduced under displace-
ment load both in tension and four-bending models. When the crack propagates, the
stress is concentrated at the crack tip.
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(3) The stiffeners can restrain the cracking of specimens with initial cracks. Increasing the
stiffener height, the ultimate residual strength of stiffened plates with central cracks
improves accordingly for tension and bend models.
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