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Abstract: Trajectory tracking is a fundamental task of the dynamic positioning (DP) system. This
paper studies the problem of trajectory tracking of DP ships constrained by control inputs under
environmental disturbances. To solve this problem, we develop a novel anti-disturbance Lyapunov-
based model predictive control (ADLMPC) scheme. Firstly, an extended state observer (ESO) is
designed to estimate environmental disturbances. By combining the ESO with Lyapunov-based model
predictive control, the ADLMPC scheme is devised. Secondly, a virtual controller which satisfies
input constraints is developed by backstepping and the auxiliary dynamic system, and it is integrated
into the Lyapunov contraction constraint in ADLMPC. We show that if the parameters for the
virtual controller are appropriately determined, the recursive feasibility of ADLMPC is theoretically
guaranteed, and the uniform ultimate boundedness of all signals in the trajectory tracking control
system is achieved. Finally, the simulation results display the efficacy and superiorities of the
ADLMPC scheme.

Keywords: trajectory tracking; Lyapunov-based model predictive control; anti-disturbance control;
dynamic positioning

1. Introduction

The dynamic positioning (DP) system can control a ship to keep it in the desired
position or navigate on a pre-determined track by using thrusters actively and automatically
to balance the environmental forces caused by wind, waves, current, etc. The DP technique
has been widely applied in many marine engineering industries, such as offshore drilling
and deep water pipe laying [1].

Trajectory tracking is an essential task for DP ships. Typical trajectory tracking tasks
for DP ships including oceanic exploration, area target searching, pipe laying, etc.; some
of these tasks require a high precision in tracking performance. Therefore, the design of
a high-level DP controller with high performance is crucial. However, as the ship is a
nonlinear, strongly coupled, and constrained system, it brings severe challenges to the
design of the controller. Moreover, the DP ship is frequently perturbed by unknown envi-
ronmental disturbances, and anti-disturbance should be solved. Various control theories
have been resorted to for trajectory tracking problems by plenty of researchers. A nonlinear
trajectory tracking controller was designed by backstepping in [2]; this method can avoid
the linearization of the model of the ship. The dynamic surface control technique, which can
prevent “computation explosion” in backstepping design, was applied in the controller [3].
This controller successfully made the underactuated ship track a smooth curve trajectory.
However, this technique requires high accuracy in the controlled model. Under unknown
environmental disturbances and model uncertainties, the sliding mode control was adopted
in the ship trajectory tracking controller due to its robustness [4,5]. The sliding mode control
theory combined with the control allocation algorithm was adopted in an AUV to com-
plete the task of trajectory tracking and station-keeping [4,5]. The simulation results and
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experimental results in [4,5] verified the tracking and station-keeping performance and the
system robustness under the effects of unknown disturbances. However, the “chattering”
effect in sliding mode control cannot be entirely eliminated. Observers were introduced
to the control system to estimate unknown disturbances and model uncertainties in [6–9].
The estimated values were utilized to design the trajectory tracking controller such that the
ship could overcome the influence of disturbances and uncertainties. Corresponding simu-
lations showed that the trajectory tracking accuracy was improved. Besides the trajectory
tracking of ships, the strategy of the controller combined with the observer is also applied
in many other fields. In [10], a fast terminal sliding mode control technique based on the
disturbance observer is developed to stabilize the underactuated robotic system. Both
simulation results and experimental validations on a cart-inverted pendulum system were
provided to demonstrate the effectiveness of the proposed method. A lumped perturbation
observer-based extended multiple sliding surface control method was presented for the
SISO system with matched and unmatched uncertainties, and numerical simulation was
performed to verify the efficacy of the proposed method compared with integral type
sliding mode control and dynamic surface control [11]. With the development of intelligent
control theories, fuzzy control, adaptive control, neural network, etc., they were combined
with other advanced control theories to achieve ship trajectory tracking [12–14]. In [15],
an adaptive non-singular fast terminal sliding mode control with an integral surface for
the tracking control of nonlinear systems with external disturbances was developed. The
disturbances were compensated for by an appropriate parameter-tuning adaptation law,
and the tracking task was accomplished by a new fast terminal sliding scheme with a
self-tuning algorithm to guarantee control inputs were chattering-free. Integrating these
different theories can overcome each other’s drawbacks and improve control performance,
but the design of such controllers is relatively complicated. Input constraints are not con-
sidered in most of the above controllers, which may deteriorate control performance and
even the stability of the system in practical applications. In fact, some techniques can solve
the problem of control input constraints, such as the composite nonlinear feedback (CNF)
method. A CNF controller was developed to achieve the reference tracking of uncertain
time-delayed linear systems constrained by actuator saturation. The simulation results
illustrated that the transient performance was improved [16]. However, the CNF method
has not been fully developed for nonlinear systems.

Compared with other control techniques, the distinct advantage of Model Predictive
Control (MPC) is its capability to cope with system constraints explicitly and optimize
control performance, so it is widely applied in various industries [17]. However, stability
cannot be guaranteed due to the optimal control problem with a finite horizon [18]. Accord-
ing to recent research, there are two main ways to achieve stability. The first is constructing
the appropriate terminal cost and constraint set for the optimal control problem [19–21],
but there has yet to be a unified constructing method. The second is choosing a sufficient
large prediction horizon [22]. This can avoid creating a terminal cost and constraint set,
but the larger the prediction horizon, the greater the computing burden on MPC. Unlike
the two ways above, a Lyapunov-based MPC (LMPC) scheme was proposed. In this
scheme, a Lyapunov contraction constraint was established in the optimization problem
so that LMPC could inherit the stability property of the designed virtual Lyapunov-based
controller [23,24]. The LMPC scheme was employed in [25,26] to achieve trajectory track-
ing of AUVs. The recursive feasibility and stability were theoretically guaranteed by
choosing appropriate controller parameters, but the suggested selection guidelines were
conservative.

For the problem of unknown environmental disturbance affecting control performance,
a nominal nonlinear MPC controller and a sliding mode controller which handled distur-
bances specifically were designed [27]. The final control law was obtained by adding the
control laws of the two controllers above. ESO was employed to estimate environmental
disturbances online, and then a feedforward compensation was provided to the nominal
MPC trajectory tracking control law [28,29]. However, the final control law in [27–29]
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may violate the input constraints. In [30], environmental disturbances were estimated
through a disturbance observer, and the maximum estimation error of the observer was
used to tighten the input constraints. The tightened constraints could ensure that the final
control law would satisfy the input constraints. Tube-based MPC schemes were devel-
oped in [31,32], which could keep the trajectory under disturbances in a small tubular
region centered on the nominal trajectory. However, many controller parameters need to
be determined in the tube-based MPC scheme, placing a high computing burden on the
processor.

In view of the research above, we focus on the trajectory tracking control of perturbed
DP ships in this paper. Enlightened by the work in [25], a novel trajectory tracking control
scheme is developed for DP ships, in which environmental disturbances and input con-
straints are taken into consideration. The major features of the proposed control scheme
are summarized below:

(1). By incorporating the ESO into the LMPC scheme, the anti-disturbance LMPC (ADLMPC)
scheme is developed. Estimations of environmental disturbances by ESO are utilized
to update the prediction model online rather than providing feedforward compensa-
tion on MPC control law. Not only can this improve the control performance, but it
avoids the control law violating input constraints.

(2). A new-type Lyapunov contraction constraint involving a virtual control law designed
using the backstepping technique and auxiliary dynamic system is added to the
ADLMPC scheme. As the virtual control law meets the requirements of the control
inputs, both the recursive feasibility of ADLMPC and its closed-loop stability are
guaranteed naturally. Compared with the LMPC controller proposed in [25,26], the
proposed ADLMPC controller parameters selection guidelines are more flexible due
to the rigorous range of parameters for the LMPC controller that must be satisfied to
guarantee recursive feasibility and closed-loop stability.

The rest of this paper is structured in the following sections. Section 2 presents the
mathematical model of the DP ship at low speed. Section 3 introduces the control objective
and the design of the ADLMPC scheme. Additionally, an analysis of recursive feasibility
and closed-loop stability is provided in Section 3. Section 4 performs simulations and
shows the analysis of simulation results. Section 5 comes up with conclusions.

The following notations are used in this paper: the Euclidean norm is denoted by ‖ · ‖;
diag{·} indicates diagonal operation. λmax(·) and λmin(·) are the maximum eigenvalue and
minimum eigenvalue of the matrix within the brace, respectively.

2. Preliminaries and Problem Formulation
2.1. Mathematical Model of Ship Motions

The earth-fixed coordinate system OXeYeZe and the body-fixed coordinate system
GXYZ must be introduced to establish the mathematical model of ship motions. These two
systems are shown in Figure 1. The origin O of the Earth-fixed coordinate system is any
point on the earth’s surface. The axes of OXe, OYe, and OZe point to the north, east, and
spherical center of the earth, respectively. The body-fixed coordinate system adheres to
the ship with its origin G set at the center of gravity. The GX axis points to the ship’s bow
direction, the GY axis is perpendicular to the GX axis and points to the ship’s starboard,
and the GZ axis points to the spherical center of the earth.
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When the DP ship performs the trajectory tracking task, ship motion generally consists
of the surge, sway, and yaw (seen in Figure 1). Consequently, the ship’s motion can be
deemed as 3-DOF (degree-of-freedom) motion. The 3-DOF kinematics model of the DP
ship is defined as [1]:

.
η = R(ψ) (1)

where η =
[
x y ψ

]T refers to the ship attitude vector in the earth-fixed coordinate

system, in which (x,y) is ship position and ψ is the heading of the ship; v =
[
u v r

]T

denotes the ship speed vector in the body-fixed coordinate system, in which u is surge
speed, v is sway speed, and r is yaw rate; R(ψ) is the rotation matrix described by

R(ψ) =

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (2)

The dynamic model of the DP ship is defined below [1]:

M
.
v = −Dv + τ + d (3)

where τ =
[
τx τy τN

]T is the control input vector expressed by force and torque gen-

erated by thrusters; d =
[
dx dy dN

]T denotes the environmental disturbances; M is
the inertia matrix presenting the sum of the ship’s mass and added mass; D indicates the
damping coefficient matrix. These two matrices are written as

M =

m− X .
u 0 0

0 m−Y .
v −Y.

r
0 −N .

v Iz − N.
r

 (4)

D =

−Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

 (5)
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Remark 1: This paper focuses on low-speed trajectory tracking, so each hydrodynamic
derivate in matrix D is linear. Additionally, the DP ship is fully actuated, for which τy
may not be zero.

To facilitate the subsequent controller design, we can describe the mathematical model
of the DP ship at low speed by combining Equations (1) and (3)

.
ζ =

[
03×3 R(ψ)
03×3 −M−1D

]
ζ +

[
03×3
M−1

]
τ +

[
03×3
M−1

]
d = f (ζ, τ, d) (6)

where the state variable is ζ =
[

x y ψ u v r
]T .

2.2. Problem Formulation

Consider a reference trajectory pd(t) = [ xd(t) yd(t) ψd(t) ud(t) vd(t) rd(t) ]T, and
the tracking error ζe is described as ζe = ζ − pd =

[
xe ye ψe ue ve re

]T . The
control objective in this paper is to design an anti-disturbance controller for the perturbed
DP ship (Equation (6)) with control input constraints and speed state (u, v, and r) constraints
such that the DP ship can accomplish the trajectory tracking task accurately. In other words,
trajectory tracking error ζe should converge to a neighborhood of the origin.

Commonly, the control input constraints include two aspects: saturation of control
inputs and saturation of the rate of change in control inputs. These two kinds of saturation
are caused by the physical limits of ship thrusters. As this paper focuses on low-speed
trajectory tracking, the speed state constraints have to be considered. These constraints can
be set based on the suggestions of DP operators and general knowledge about DP ships.

To facilitate the controller design, some assumptions are considered as follows:

Assumption 1: pd(t) and time derivatives of pd(t) are smooth and bounded.

Assumption 2: Environmental disturbances have limited energies and generally vary
slowly over time. As such, values of disturbances and time derivatives of disturbances are
bounded.

3. ADLMPC of Low-Speed Trajectory Tracking Based on ESO

An MPC controller is a natural choice for the objective above due to its capability
to handle constraints. Considering its recursive feasibility, closed-loop stability, and anti-
disturbance ability, a novel ADLMPC scheme of low-speed trajectory tracking is developed
by integrating LMPC with ESO. Figure 2 shows the architecture of the novel trajectory
tracking control scheme.
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In the ADLMPC scheme, ESO can estimate environmental disturbances d. The pre-

diction model can provide predictive state ζp =
[

ηT
p vT

p

]T
over the prediction horizon
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and be updated online through estimated environmental disturbances d̂, improving the
prediction capability and control performance. The optimization module can determine
the control input τ based on tracking error ζe and predictive state ζP. Moreover, the Lya-
punov contraction constraint is added to the optimization module to guarantee closed-loop
stability.

3.1. ESO Design

To facilitate the design of the ESO, Equation (3) can be rewritten as

.
v = −M−1Dv + M−1τ + M−1d (7)

The ESO can be developed for Equation (7) as{ .
v̂ = −M−1Dv + M−1d̂ + M−1τ − β1(v̂− v)
.
d̂ = −β2(v̂− v)

(8)

where v̂ and d̂ are estimations of v and d, respectively; β1 ∈ R3×3 and β2 ∈ R3×3 are observer
gain matrices that can be designed. Let the speed estimation error and the disturbance
estimation error be ṽ = v − v̂ and d̃ = d − d̂, respectively. Considering Assumption 2,
the estimation errors above can converge to a neighborhood of the origin by determining
appropriate β1 and β2. Details of the proof can be seen in [33].

3.2. ADLMPC Controller Design

Based on the ESO and the control objective in Section 2, the optimization problem at
time t0 can be defined by

min
τmpc

J =
∫ t0+N

t0

(‖ζe(t)‖2
Q + ‖τmpc(t)‖2

R)dt (9a)

s.t.
.
ζ(t) = f (ζ(t), τmpc(t), d̂(t)) (9b)

τmin ≤ τmpc ≤ τmax (9c)
.
τmin ≤

.
τmpc ≤

.
τmax (9d)

vmin ≤ v ≤ vmax (9e)
.

V(ζ(t0), τmpc(t0), d̂(t0)) ≤
.

V(ζ(t0), τvir(t0), d̂(t0)) (9f)

where N denotes the prediction horizon and Q and R represent weighting matrices which
are diagonal and positive-definite. In detail, Q can be adjusted to specify the emphasis
placed on the trajectory tracking error of particular states, while R can be tuned to describe
the energy cost of the control inputs. For example, if a high precision of trajectory tracking
is needed, the values of elements in Q can be set large. Additionally, if energy consumption
is limited in some cases, the values of elements in R can be set large. τmpc is the control
input produced by the ADLMPC controller; τmax and τmin are the maximum and minimum
τmpc;

.
τmax and

.
τmin are the maximum and minimum change rates of τmpc. Equation (9e)

means the constraints of ship speed states u, v, and r, due to the DP ship, are tracking
trajectory at low speed. Equation (9f) is the Lyapunov contraction constraint which exploits
a virtual Lyapunov-based trajectory tracking control law τvir. It should be noted that τvir
does not actually control the DP ship but only guarantees closed-loop stability. V(·) is the
corresponding Lyapunov function candidate for Equation (6).

Remark 2: Equation (9a–9f) has to be discretized first to solve the optimization problem
numerically.

Then, we need to design τvir and V properly. Many techniques, such as sliding
mode control, backstepping, and dynamic surface control, can be utilized to develop τvir.



J. Mar. Sci. Eng. 2023, 11, 281 7 of 22

Considering the complexity of the controlled system and input constraints, we incorporate
the auxiliary dynamic system into the backstepping technique to develop τvir.

Define the following variables:

e = η − ηd (10)

δ = v− vd (11)

where e ∈ R3 and δ ∈ R3 are position error and speed error, respectively; ηd = [xd yd ψd]
T

denotes reference position; and vd ∈ R3 is intermediate control.
By differentiating both sides of Equation (10), we can obtain

.
e = R(ψ)(vd + δ)− .

ηd (12)

In order to stabilize Equation (10), vd can be designed as follows:

vd = R−1(ψ)(
.
ηd − K1e) (13)

where K1 ∈ R3×3 is a specified control gain matrix that is positive-definite and diagonal.
From Equations (7) and (10), the time derivative of δ is

.
δ = M−1(−Dv + d + τc + ∆τ)− .

vd (14)

where τc denotes the command control input without consideration of input constraints;
∆τ = τvir − τc is the error between command control law and virtual control law which sat-
isfies input constraints. To weaken the impact of ∆τ on control performance, we introduce
the following auxiliary dynamic system [34]:

M
.
ξ = −K2ξ + ∆τ (15)

where K2 ∈ R3×3 is a specified control gain matrix which is positive-definite and diagonal;
ξ ∈ R3 is the state of the auxiliary dynamic system.

Based on ξ, the new speed error δ considering input constraints is defined as

δ = δ− ξ (16)

Considering Equations (14) and (15), the time derivative of δ becomes

.
δ = M−1(−Dv + d + τc + K2ξ)− .

vd (17)

In order to stabilize Equation (17), τc can be designed below

τc = Dv− d̂ + M
.
vd − K2ξ − K3δ− RT(ψ)e (18)

where K3 ∈ R3×3 is a specified control gain matrix that is positive-definite and diagonal.
According to Equations (9c), (9d) and (18), τvir can be presented as

τvir(t) = satM(τvir(t− h) + h× satR((τc(t)− τvir(t− h))/h)) (19)

where h denotes the sampling period; satM(τ(t)) =


τmax, τ(t) > τmax
τ(t), τmin < τ(t) < τmax
τmin, τ(t) < τmin

is the

saturation function of the control input, and satR(τ(t)) =


.
τmax,

.
τ(t) >

.
τmax.

τ(t),
.
τmin <

.
τ(t) <

.
τmax.

τmin,
.
τ(t) <

.
τmin

is

the saturation function of the change rate of the control input.
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The Lyapunov function candidate V for Equation (6) is designed below:

V =
1
2

eTe +
1
2

δ
T Mδ +

1
2

ξT Mξ (20)

By differentiating both sides of Equation (20), the following equation can be obtained:

.
V = eT .

e + δ
T M

.
δ + ξT M

.
ξ (21)

Based on Equations (12), (13), (15), (17), (18) and (21), the right-hand side of
Equation (9f) can be modified to

.
V(ζ(t0), τvir(t0), d̂(t0)) = −eTK1e− (δ− ξvir)

TK3(δ− ξvir)
−ξT

virK2ξvir + eT R(ψ)ξvir + ξT
vir(τvir − τc)

(22)

where ξvir is the state of the auxiliary dynamic system affected by τvir.
According to Equations (7), (12), (15), (17) and (21), the left-hand side of Equation (9f)

can be described as
.

V(ζ(t0), τmpc(t0), d̂(t0)) = e(t0)
T(R(ψ(t0))v(t0)−

.
ηd(t0))

+(δ(t0)− ξmpc(t0))
T(−Dv(t0) + d̂(t0) + τc(t0)−M

.
vd(t0)

+K2ξmpc(t0)) + ξmpc(t0)
T M

.
ξmpc(t0)

(23)

where ξmpc is the state of the auxiliary dynamic system affected by τmpc.
Therefore, the expression of Equation (9e) is

e(t0)
T(R(ψ(t0))v(t0)−

.
ηd(t0))

+(δ(t0)− ξmpc(t0))
T(−Dv(t0) + d̂(t0) + τc(t0)−M

.
vd(t0)

+K2ξmpc(t0)) + ξmpc(t0)
T M

.
ξmpc(t0)

≤ −e(t0)
TK1e(t0)− (δ(t0)− ξvir(t0))

TK3(δ(t0)− ξvir(t0))

−ξT
vir(t0)K2ξvir(t0) + e(t0)

T R(ψ(t0))ξvir(t0)
+ξT

vir(t0)(τvir(t0)− τc(t0))

(24)

3.3. Stability Analysis

In the last section, the Lyapunov contraction constraint (Equation (24)) is established,
but the choice of control gain matrices K1, K2, and K3 is not discussed. To satisfy the recur-
sive feasibility of ADLMPC and closed-loop stability, we analyze the selection guidelines
of K1, K2, and K3 in this section.

Theorem 1. Provided that control gain matrices K1, K2, and K3 ensure λmin(K1) >
1
2 , λmin(K2) > 1,

and λmin(K3) > 0, the command control input τc (Equation (18)) designed for the mathematical
model of the DP ship (Equation (6)) can guarantee the uniform ultimate boundedness of all signals
in the trajectory tracking control system under virtual control law τvir.

Proof . According to Young’s inequality and Equation (22), the following inequality can be
obtained:

.
V ≤ −eTK1e− δ

TK3δ− ξTK2ξ + 1
2 eTe + 1

2 ξTξ + 1
2 ξTξ + 1

2 ∆τT∆τ

= −eT
(

K1 − 1
2 I3×3

)
e− δ

TK3δ− ξT(K2 − I3×3)ξ +
1
2‖∆τ‖2

≤ −(λmin(K1)− 1
2 )e

Te− λmin(K3)δ
T

δ− (λmin(K2)− 1)ξTξ + 1
2‖∆τ‖2

≤ −2µV + C

(25)

where µ = min
{

λmin(K1)− 1
2 , λmin(K3)/λmax(M), (λmin(K2)− 1)/λmax(M)

}
and

C = 1
2‖∆τ‖2. �
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To solve Equation (25), we can obtain

0 ≤ V(t) ≤ C
2µ

+ (V(t0)−
C
2µ

)e−2µt (26)

Equation (26) indicates that if µ > 0 then λmin(K1) >
1
2 , λmin(K2) > 1, andλmin(K3) > 0,

lim
t→∞

V(t)max = C
2µ . Therefore, V(t) is uniformly ultimately bounded. In accordance with

Equation (20), we can judge the uniform ultimate boundedness of e, δ, and ξ. Further
consideration of Assumption 1 together with Equations (10), (11), (13) and (16) concludes
that the uniform ultimate boundedness of η, v, and vd are all satisfied, which completes the
proof.

Then, we analyze the recursive feasibility of ADLMPC and closed-loop stability of
the system controlled by τmpc. Input constraints are considered in the design of virtual
control law τvir(t) in ADLMPC. Therefore τvir(t) is always the feasible solution of Equation
(9), which naturally satisfies the recursive feasibility. In terms of closed-loop stability, the
following inequality can be obtained based on Equations (9f) and (25):

.
V(ζ(t0), τmpc(t0), d̂(t0)) ≤

.
V(ζ(t0), τvir(t0), d̂(t0)) ≤ −2µV + C (27)

The solution of Equation (27) is similar to Equation (26), which means the uniform
ultimate boundedness of all signals in the trajectory tracking control system are satisfied
under the MPC control law τmpc.

4. Simulation Results

In this section, comparative simulations of the trajectory tracking of the model DP
ship using Matlab are conducted to verify the efficacy and superiorities of the proposed
ADLMPC scheme. The parameters for the model DP ship are taken from a supply vessel
named Northern Clipper [35].

The reference trajectory adopted in simulation case 1 is a circular trajectory defined by

pd(t) =



xd = 300 cos(0.0067t)
yd = 300 sin(0.0067t)
ψd = a tan 2(3 cos(0.0067t),−3 sin(0.0067t))
ud = 2
vd = 0
rd = 0.0067

(28)

The disturbance on the model ship in simulation case 1 is assumed to be
d(t) =

[
6× 105 sin(0.05t)(N) 1.8× 105 sin(0.05t)(N) 4.4× 106 sin(0.05t)(N ·m)

]T. The initial
state of the model ship is ζ(0) = [ 260(m) 0(m) 50 · π/180(rad) 0(m/s) 0(m/s) 0(rad/s) ]T.
The upper bound and lower bound of speed states u, v, and r are set as ±3 m/s, ±2 m/s, and
±1◦/s, respectively. The maximum and minimum force and torque generated by thrusters are[
−1× 106N −3× 105N −7.62× 106N ·m

]T and
[
1× 106N 3× 105N 7.62× 106N ·m

]T,
respectively. The minimum and maximum change rates of force and torque are[
−2× 105N · s−1 −6× 104N · s−1 −1.524× 106N ·m · s−1

]T and [
2× 105N · s−1 6× 104N · s−1 1.524× 106N ·m · s−1

]T.
For the ADLMPC controller in simulation case 1, the prediction horizon N and sam-

pling period h are set to be 25 s and 0.5 s, respectively; weighting matrices are designed as
Q1 = diag

{
3× 106, 3× 106, 5× 108, 3× 106, 3× 106, 5× 1010} and R1 = diag

{
1× 10−10, 1× 10−9, 1× 10−11};

control gain matrices are developed as K1 = diag{0.7, 0.7, 0.7}, K2 = diag
{

1× 105, 1× 105, 1× 108}
and K3 = diag

{
1× 107, 1× 107, 1× 1010}; observer gain matrices in ESO are chosen as

β1 = diag{0.4, 1.6, 1.2} and β2 = diag{0.12, 0.7, 0.5}. The virtual controller developed
through backstepping and an auxiliary dynamic system in ADLMPC is the comparative
controller. The choices of control gain matrices are the same as those in the ADLMPC
controller. Moreover, the ESO should be incorporated into the virtual controller to estimate
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and compensate for disturbances. The main reason for choosing the virtual controller as
the comparative controller is that the control law generated by the virtual controller not
only can make the ship track the reference trajectory, but also satisfies the control inputs
constraints.

To solve the optimization control problem Equation (9) numerically, the software
package called CasADi is selected. This package is developed to assist rapid and efficient
implementation of different methods for numerical optimal control [36]. Due to Equation
(9) being a quadratic programming problem, this package solves the problem using the
sequential quadratic programming (SQP) method, using the IPOPT solver.

Simulation results of case 1 are presented in Figures 3–10. Specifically, the ship
trajectories controlled by the ADLMPC controller and comparative virtual controller with
ESO (VIR+ESO) are illustrated in Figures 3 and 4. As we can see, both controllers show high
qualities of control performance, which can accurately control the model ship perturbed
by environmental disturbances to track reference trajectory. However, Figure 3 illustrates
that the model ship can track the reference trajectory more rapidly with the proposed
ADLMPC controller. Meanwhile, Figure 4 demonstrates more detailed information. The
position tracking error e =

[
x− xd y− yd

]T and the heading tracking error of both
controllers are presented in Figure 5, which indicates that tracking errors resulting from
both controllers converge to a small neighborhood of the origin. The efficacy and closed-
loop stability of both controllers are verified. In detail, by the effect of ADLMPC and the
virtual controller, the position tracking error achieves convergence in about 100 s and 300 s,
and the corresponding steady-state error is near 0 and about 0.5 m. Moreover, the mean
square errors (MSE) for both controllers are listed in Table 1. It can be seen from Table 1
that compared with the VIR+ESO, the MSEs of position states (x and y) with the proposed
ADLMPC controller appear to have different degrees of decline. The improvements in the
MSEs of position states with the ADLMPC controller are 20.2% and 73.5%, respectively.
This information shows that no matter the accuracy of tracking or the convergence time,
the ADLMPC controller’s tracking performance is better than the virtual controller, which
mainly results from the optimization module in ADLMPC. This module can provide
optimal or sub-optimal control law by solving the optimization problem online, which
means that thrusters can be utilized more efficiently. Figures 6 and 7 describe the control
inputs of both controllers, from which we can observe that control inputs do not violate
the input constraints. Additionally, the torque generated by the ADLMPC controller in
the first 100 s is more significant than that generated by the virtual controller. This means
that the ADLMPC controller fully utilizes the thrusters to track the reference trajectory
rapidly. The rates of change in control inputs produced by both controllers also satisfy
the control input constraint in Figure 8. However, the rates of change in control inputs
generated by the virtual controller are much more severe, aggravating the wear of thrusters
and reducing their lifetime. It can also be understood that the virtual controller has to
frequently change the thrust to achieve a similar tracking performance as the ADLMPC
controller. Figure 9 illustrates the variation of speed states (u, v, and r) over time. Although
both controllers can control the model ship to track reference speed, the state of r controlled
by the virtual controller is out of the upper limit in 14–32 s. The main reason is that
the speed state constraints are not considered when designing the virtual controller. This
highlights the advantage of the ADLMPC controller in tackling system constraints explicitly.
The estimation performance of the designed ESO is plotted in Figure 10. It reveals that the
designed ESO can accurately estimate the actual disturbances. Regarding the computing
burden of the ADLMPC controller, the average calculation period of the optimization
control problem Equation (9) is around 70 ms, which means that the ADLMPC has positive
real-time performance.
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Figure 5. Tracking errors of position and heading controlled by ADLMPC and VIR+ESO.
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Figure 10. Estimations of environmental disturbances by ESO.

Table 1. Mean square errors of position states and heading state for case 1.

MSE ADLMPC VIR+ESO Improvement

x (m2) 23.9584 30.0405 20.2%
y (m2) 4.1882 15.8001 73.5%

ψ (rad2) 0.0174 0.0175 0
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To demonstrate the effects of the parameters for the ADLMPC controller on tracking
performance, another simulation (simulation case 2) with a different set of parameters
for the ADLMPC controller is performed. In this simulation case, the reference trajec-
tory and environmental disturbances are the same as in case 1. However, the weighting
matrices Q and R are changed to Q2 = diag

{
1× 102, 1× 102, 5× 105, 1× 102, 1× 102, 5× 105} and

R2 = diag
{

1× 10−8, 1× 10−7, 1× 10−9}. The remaining parameters are maintained, in-
cluding the prediction horizon, control gain matrices of the virtual controller, and observer
gain matrices. The initial states of the model ship and environmental disturbances are also
the same as those in case 1. Simulation results are shown in Figures 11–16, and ‘ADLMPC1’
and ‘ADLMPC2’ in these figures mean the ADLMPC controller with weighting matrices
Q1, R1, and with Q2, R1, respectively.

The ship trajectories controlled by the ADLMPC1 controller and the ADLMPC2 con-
troller are demonstrated in Figures 11–14. The ADLMPC1 controller shows a high accuracy
in tracking performance under the effects of environmental disturbances, whereas the
quality of tracking by the ADLMPC2 controller deteriorates. Specifically, Figures 13 and 14
illustrate that instead of maintaining the ship position and speed on the reference values,
all these states fluctuate near the reference values. On the other hand, Figures 15 and 16
show whether the magnitude of control inputs or rate of change in control inputs generated
by the ADLMPC2 controller are smaller than those generated by the ADLMPC1 controller,
especially in the first 100 s. The main reason for the phenomena above is that the values of
elements in Q1 are larger than those in Q2, while the values of elements in R1 are smaller
than those in R2. A decrease in Q and an increase in R mean that we pay more attention to
the energy cost of thrusters rather than the accuracy in tracking. Therefore, the ADLMPC
controller reduces the energy cost by degrading the tracking performance.
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Figure 11. The trajectory of the DP ship controlled by ADLMPC1 and ADLMPC2.
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Figure 14. Tracking errors of position and heading controlled by ADLMPC1 and ADLMPC2.
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Figure 15. Control input generated by ADLMPC1 and ADLMPC2.
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To investigate the advantage of anti-disturbance in the ADLMPC controller compared with
the LMPC controller proposed in [25,26], we conduct the simulation (simulation case 3) under
environmental disturbances. For effective comparison, the parameters for the LMPC controller
and ADLMPC controller are set to the same values as those of the ADLMPC controller in case
1. The initial states of the model ship and environmental disturbances are also the same as
those in case 1. Simulation results are shown in Figures 17–19. These figures demonstrate that
the accuracy of trajectory tracking in the effects of environmental disturbances in the ADLMPC
controller is much higher than that of the LMPC controller. It can be seen from Table 2 that the
MSEs of x, y, and ψ with the LMPC controller are more than 8 times, 20 times, and 10 times
larger than those with the ADLMPC controller. These simulation results can illustrate the
effectiveness of anti-disturbance with the ADLMPC controller.
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Table 2. Mean square errors of position states and heading state for case 3.

MSE ADLMPC LMPC Improvement

x (m2) 23.9584 189.35 87.3%
y (m2) 4.1882 190.866 97.8%

ψ (rad2) 0.0174 0.1807 90.4%
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5. Conclusions

In this paper, a novel ADLMPC scheme of low-speed trajectory tracking is proposed.
With unknown environmental disturbances, the proposed ADLMPC scheme can accurately
control the DP ship affected by constraints of control inputs and speed states to track
reference trajectory optimally. By incorporating a tuned ESO to estimate disturbances,
the estimations are exploited to update the predictive model in ADLMPC such that the
control law generated by the ADLMPC controller can compensate for disturbances without
violating control input constraints. A Lyapunov-based virtual control law that fulfills the
requirements of the control inputs is designed and employed to establish the additional
Lyapunov contraction constraint in ADLMPC, which naturally guarantees the recursive
feasibility of ADLMPC and closed-loop stability. Furthermore, the range of parameters
for the ADLMPC controller is wider than that of the LMPC controller proposed in [25,26],
which means that the ADLMPC controller can control the DP ship to track reference trajec-
tory more flexibly. Simulation results showed that, compared with the virtual controller
combined with ESO and LMPC controller without ESO, the proposed ADLMPC control
scheme could improve the accuracy of trajectory tracking and convergence time to reference
trajectory under disturbances and constraints. The improvements in MSEs in position states
with the virtual controller and LMPC controller are 20.2%, 73.5%, 0, and 87.3%, 97.8%, and
90.4%, respectively.

In the near future, the ship model test will be conducted to verify the proposed
ADLMPC method. Furthermore, we notice that the current computing burden of the pro-
posed ADLMPC is acceptable due to the optimization control problem and corresponding
constraints being relatively simple in low-speed mode. When the DP ship navigates at high
speed, this controlled system is underactuated and presents strong coupling and nonlinear-
ity. In this situation, whether the real-time capability of ADLMPC can be guaranteed or
not is unknown. Therefore, the extension of this work will focus on the implementation of
ADLMPC on the trajectory tracking of the DP ship at high speed.
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