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Abstract: Due to the increasing number of transportation vessels, marine traffic has become more 

congested. According to the statistics, 89% to 95% of maritime accidents are related to human fac-

tors. In order to reduce marine incidents, ship automatic collision avoidance has become one of the 

most important research issues in the field of ocean engineering. A generalized behavior decision-

making (GBDM) model, trained via a reinforcement learning (RL) algorithm, is proposed in this 

paper, and it can be used for ship autonomous driving in multi-ship encounter situations. Firstly, 

the obstacle zone by target (OZT) is used to calculate the area of future collisions based on the dy-

namic information of ships. Meanwhile, a virtual sensor called a grid sensor is taken as the input of 

the observation state. Then, International Regulations for Preventing Collision at Sea (COLREGs) is 

introduced into the reward function to make the decision-making fully comply with COLREGs. 

Different from the previous RL-based collision avoidance model, the interaction between the ship 

and the environment only works in the collision avoidance decision-making stage. Finally, 60 com-

plex multi-ship encounter scenarios clustered by the COLREGs are taken as the ship’s GBDM model 

training environments. The simulation results show that the proposed GBDM model and training 

method has flexible scalability in solving the multi-ship collision avoidance problem complying 

with COLREGs in different scenarios. 

Keywords: reinforcement learning; multi-ship encounter situations; collision avoidance; obstacle 

zone by target (OZT); intelligent decision-making 

 

1. Introduction 

Marine surface vessels autonomously sailing at sea has been the dream of ship de-

signers for several decades. With the development of artificial intelligent decision-making 

technology, advanced sensors, and control methodology, this dream might come true 

soon [1]. Therefore, the concept of the marine autonomous surface vessel (MASS) was 

introduced by the International Maritime Organization (IMO) for fueling present ship in-

telligent collision avoidance decision-making research [2]. The issue of autonomous colli-

sion avoidance on ships is one of the decision-making optimization problems that schol-

ars have paid long attention to. 

Numerous model-based collision avoidance methods have been proposed in the 

field of MASS, such as the artificial potential field (APF) method, the velocity obstacle 

(VO) method, the A* method, particle swarm optimization (PSO) path planning, and the 

inference of the time of collision avoidance algorithm [3–8]. However, the model-based 

method does not have self-learning ability, and the model complexity is too high [9]. Alt-

hough the model-based ship collision avoidance method has a good effect on the known 

model problems, it is difficult to establish a complete anti-collision model for numerous 

problems due to the complexity of real sea conditions. Most model-based algorithms have 

difficulty predicting the uncertainty in practical applications. 
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In recent years, with the rapid development of machine learning, especially reinforce-

ment learning, artificial intelligence technology has been applied to ship collision avoid-

ance decision-making. Model-free RL methods have strong self-learning ability, which is 

the most suitable method to solve those problems. The RL has the advantage that it does 

not depend on model construction. Relying on the state transition information collected 

through interaction with the environment, bypassing the complex problems such as sys-

tem modeling, the RL agent can implement sequential decision-making through the Q-

tables updates. Although fruitful research results based on the RL have been presented, 

there are still some problems to be solved in RL-based research. In previous studies, the 

model via RL algorithm, which is applied to the collision avoidance process, might in-

crease the state transition chain length and lead to an explosion in computation complex-

ity. Furthermore, the RL algorithm relies heavily on the input of the observation state, 

which directly affects the learning speed of the agent. In previous studies, the ship kine-

matic, dynamic, and environmental information, such as own ship’s and target ships’ 

course, speed, distance to the target, bearing, and so on, have usually been used as the 

input of the behavior decision-making Q-table model. That leads to a multi-dimensional 

Q-table structure to solve this problem. All the more so, the quantity of target ships might 

result in “dimensionality curse“ of observed states. In addition, in previous studies, most 

RL-based collision avoidance models make decisions that conform to COLREGs by de-

signing complex reward functions. Due to the overly complex model, this method will 

lead to model learning difficulties. Motivated by the above analysis of the previous re-

search problems, the contributions of this paper can be concluded as follows: 

(1) The GBDM model trained via RL algorithm is only used in the collision avoidance 

behavior decision-making stage, which reduces the model computation burden and 

improves the efficiency of the model executive performance. 

(2) Based on the virtual sensor called the grid sensor, the grid sensor is quantified as the 

input to the RL agent, which determines the dimensionality of the observation state 

of the GBDM model and clusters similar ship collision avoidance scenarios. 

(3) When designing the reward function of RL, COLREGs are taken into account so that 

the ship’s collision avoidance operation is mainly starboard side alteration. 

(4) With the introduction of the navigational situation judgement, the ship can be recog-

nized to be the give-way vessel or the stand-on vessel before the GBDM model makes 

an avoidance decision, which makes the decision-making more compliant with 

COLREGs without the increase in model complexity. 

2. Literature Review and Motivation 

So far, the issue of automatic collision avoidance in ships has attracted the attention 

of numerous researchers, and related theories and techniques have been continuously up-

dated and developed. Generally, two major methods are divided: the model-based 

method and the model-free method. Before the rapid development of machine learning, 

model-based collision avoidance algorithms such as the APF method, the VO method, the 

A* method, PSO path planning, and inference of the time of collision avoidance algorithm 

were proposed. Based on the general requirements of COLREGs and APF method, Lee et 

al. proposed a multi-ship collision avoidance and route generation algorithm [3]. The sim-

ulation results showed that the proposed anti-collision formulation can safely avoid colli-

sions within a pre-determined distance. Lyu et al. proposed an improved APF, which con-

tained a new improved repulsive potential field function and the corresponding virtual 

force to solve the collision avoidance problem between dynamic obstacles and static ob-

stacles. Simulation results highlighted that the proposed method could quickly determine 

path planning in complex situations and take into account the unpredictable strategies of 

different ships [4]. Wang et al. proposed a ship collision avoidance decision-making sys-

tem based on the improved VO method. The improved VO method had good robustness 

and effectiveness in various ocean scenarios [5]. Liu et al. proposed an improved A* 
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algorithm that considers COLREGs and ship maneuverability, and the automatically gen-

erated path was economical and safe [6]. E Krell et al. proposed an improved PSO to solve 

the problem of the PSO algorithm falling into local optimum [7]. In order to evaluate the 

risk of collision avoidance, Wang et al. proposed a risk assessment system based on TCPA 

and DCPA to estimate the risk of ship collision [8]. 

Although some studies have demonstrated the ability of the model-based method to 

ship collision-free paths, several challenges must be addressed. As the marine traffic be-

come more complex, model-based methods cannot be effectively extended to deal with a 

large number of target ships in dense traffic. In addition, the model-based methods make 

the model overly complex for considering all possible situations. Hence, minor changes 

in the environment may cause failure. Since model-based methods do not have self-learn-

ing ability, most algorithms cannot predict uncertainty in practical applications. The 

model-free RL algorithm can excellently adapt to complex systems and has good self-

learning ability, which provides an effective way to solve extremely complex systems and 

find the optimal policies from unknown environments through trial and error interaction 

[10–12]. 

In recent years, many scholars have focused on multi-ship obstacle avoidance deci-

sion problems based on RL algorithm. Shen et al. proposed an automatic collision avoid-

ance algorithm based on deep Q-learning (DQN). Through experiments, it is proved that 

the DQN-trained model has the possibility of achieving ships automatic collision avoid-

ance [13]. Based on the Deep Neural Network (DNN), Zhao et al. proposed a multi-ship 

collision avoidance method that could directly map the states of encountered ships to the 

steering rudder angle via the decision model. Moreover, the ship encounter situations are 

classified into four regions based on COLREGs, and only the nearest ships in each region 

are considered as the target ships. The simulation results indicated that the trained DNN 

model can avoid collision in the most encounter situations [14]. Guo et al. designed a DQN 

algorithm using environmental state information as the training space, which could be 

quantified according to the actual navigation environment and COLREGs. Shipping nav-

igation safety could be guaranteed by setting a series of collision avoidance reward func-

tions [15]. Sawada et al. presented an automatic collision avoidance algorithm based on 

proximal policy optimization (PPO). Then, they proposed a novel virtual sensor based on 

the obstacle zone by target (OZT). Simulation results indicated that the model could han-

dle up to three target ships [16]. Woo et al. presented a new grid map representation based 

on the visual recognition ability of convolutional neural network (CNN). The DRL was 

applied to the model training for the USV collision avoidance problem. The experiments 

and simulations indicated the collision avoidance ability of the trained model [17]. Chun 

et al. proposed a collision risk assessment method based on the ship domain and the clos-

est point of approach (CPA). The results indicated that the improved algorithm could ef-

fectively avoid collision and enhance navigation safety [18]. Li et al. utilized the APF al-

gorithm to improve the action space and reward function of the DRL algorithm and set 

the collision avoidance zone based on the COLREGs. The simulation results showed that 

the improved DRL could achieve automatic collision avoidance and conform to COLREGs 

[19].  

In summary, although fruitful research results based on the RL have been presented, 

the problems of complicated models and excessive input of observation states are also 

prominent. Related issues are shown in Table 1. 

In this study, a GBDM model based on reinforcement learning, namely the Q-learn-

ing algorithm, is proposed. The grid sensor is quantified as the input of the RL algorithm, 

which reduces the input of observation states. The OZT algorithm is used for detection 

and clustering. In order to realize automatic collision avoidance of multiple ships, ship 

maneuverability is considered. The study also uses a three-degree-of-freedom (3-DOF) 

Nomoto ship motion mathematical model to simulate ship maneuvering, and the model’s 

action space is discrete rudder angles. This study also simplifies the reward function and 

introduces the navigation situation judgement to comply with the COLREGs. Finally, the 
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trained GBDM model is only used in the collision avoidance behavior decision-making 

stage to improve the efficiency of the ship autonomous navigation system.  

Table 1. The Simple Summary of the Literature Review. 

Type Reference Technique Disadvantages 

COLREGs-

compliant 

multi-ship 

collision 

avoidance 

based on 

DRL 

[13] 

DQN algorithm and 

detection line similar 

to LiDAR 

The detection line is radially extended and sparse, which makes it 

difficult to identify other long-distance ships and can only identify 

ships closer in the same direction. 

[14] 

Policy-gradient 

based on DRL algo-

rithm 

Too much observation state input leads to convergence difficulty. 

[15] 

DQN algorithm and 

traditional reward 

function optimized 

in three aspects 

RL model is applied to the entire collision avoidance process and 

might increase the state transition chain length and lead to an in-

crease in computation complexity. 

[16] 

DRL algorithm and 

virtual sensor based 

on OZT 

There is no distinction between give-way vessels and stand-on ves-

sels. In addition, designing a complex reward function to conform to 

the rules leads to slower convergence. 

[17] 

DQN algorithm and 

DNN for identifying 

visual image infor-

mation 

Using visual image information as input to DQN will result in exces-

sive input of observation states, which will reduce convergence 

speed. 

[19] 

Utilizing the APF al-

gorithm to improve 

DRL 

There is no distinction between give-way vessels and stand-on ves-

sels and the input of observation state is excessive. 

The organizational structure of this paper is as follows: Section 3describes the prin-

ciple and application of reinforcement learning algorithm. In Section 4, the method of de-

tecting collision risk is given firstly. Then, the ship motion model as the basis of ship col-

lision avoidance is described. Furthermore, the design of the reward function is explained. 

Sections 5 and 6 contain the simulation results of the multi-ship collision avoidance. In 

Section 7, we discuss the experimental results and potential applications. Section 8 is the 

conclusion of this paper.  

3. Preliminary 

3.1. Reinforcement Learning 

The reinforcement learning is a branch of artificial intelligence. The concept of the 

Markov Decision Process (MDP) is introduced here. The reinforcement learning process 

is modeled as MDP quintuples, which consist of state, action, transition model, rewards, 

and policy. In a reinforcement learning model, decision-makers observe the environment 

and action according to the observation results and obtain rewards after action. Agent and 

environment receive maximum cumulative reward through real-time interaction mecha-

nism and error judgment mechanism. Finally, the algorithm obtains the optimal action 

decision sequence through training. For the ship collision avoidance decision-making 

problem, the intelligent ship can select an action A according to the current state and re-

ceive reward R according to the interaction with the ship sailing environment. The intel-

ligent ship selects the next action, according to the environment, based on the principle 

that the maximum reward value can be obtained by the intelligent ship [20]. 

As shown in Figure 1, the Q-learning algorithm in RL is applied to GBDM model. 

The reward signal received from the model is a reward given to the ship by the environ-

ment in the form of a function. The policy is the collision avoidance decision-making 

method. The choice of obstacle avoidance action is usually based on the policy function. 
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Figure 1. Configuration of GBDM model via the reinforcement learning algorithm. 

The Q-learning algorithm is an off-policy, so the action is determined by the action 

value function. The action value function is obtained by Q-table update iteration. The en-

vironment modeling process uses the ship motion model and the ship position transition 

probability model to predict the position and motion state of target ships and then calcu-

lates the observation state of the GBDM model at the next moment. The GBDM model 

observes the current observation state in the environment and then calculates the values 

corresponding to all the action spaces in the current observation state through the action 

value function. Finally, the GBDM model selects the action randomly or selects the action 

with the maximum action value function value in the exploration stage. In order to avoid 

falling into the local optimal, random selection selects the optimal action with probability 

P  and randomly selects the action with probability 1 P  according to the greedy strat-

egy [21]. Then, the GBDM model takes action, and the environment updates the observa-

tion state and provides rewards to the agent through the reward function. At the same 

time, the GBDM model updates the action value function in the Q-table according to the 

relevant information. The action value function is updated as Equation (1). The GBDM 

model continuously circulates the above process until it reaches the waypoint or collides. 

        , , max ', ,Q S A Q S A a R Q S a Q S A     (1)

where a  is the learning rate. R  is reward, and   is discount factor.  ,Q S A  repre-

sents the action value function of the current observation state.  ',Q S a  represents the 

action value function of the next observation state. 

3.2. Ship GBDM Model Design 

The flow chart of the ship GBDM model via the reinforcement learning is shown in 

Figure 2. Firstly, we initialize the initial coordinates of the ship in the scenario. Then, the 

system calculates the relevant information and determines whether the OZT region enters 

the detection range of the grid sensor. If the target ships (TSs) do not enter the detection 

range of the grid sensor, the ship will continue to maintain its sailing course and speed. If 

the TSs enter the detection range of the grid sensor, it will determine whether the OS is a 

stand-on vessel. If the OS is a stand-on vessel, the OS will continue to maintain its heading; 

otherwise, the observation state is input into the GBDM model to make collision avoid-

ance decisions. The resulting steering rudder combines the ship motion model to update 

the dynamic information of the ship. Finally, the model determines whether the end 
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condition is satisfied: when the distance between the OS and the TS is less than the thresh-

old (collision) or the distance to the target is less than the threshold without any collision 

risk (collision avoidance success), the ship is terminated; otherwise, the training cycle con-

tinues. 

 

Figure 2. Flow chart of GBDM model for collision avoidance. 

4. GBDM Model Design 

4.1. The Concept of OZT 

For clustering similar ship collision avoidance scenarios, the OZT is defined as a cap-

sule-shaped area for the assessment of collision risk. The process of calculating OZT using 

the collision course OC  is shown in Figure 3. Equation (2) could be used to calculate the 

collision course oC , which indicates the possibility of the OS’s collision with the target 

ship in the future [22]. 
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Figure 3. The concept of OZT. 
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where  arcsin /sa r d . sr  is the safe passing distance, and d is the distance between 

the OS and the TS. OV  is the OS’s speed, and TV  is the TS’s speed. ZA  is the azimuth 

of the TS’s position from the OS. TC  is the course of the TS. When the ship is on a collision 

course, OC  the relative motion is computed as follows. 
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T T O O

T T O O
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Y
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
 


 

 (4)

where RV  and RC  are the relative speed and course of the TS with respect to OC , re-

spectively. Then, TCPA and DCPA for each OC  can be obtained as follows. 

 sin R ZDCPA d C A   
 

(5)

 cos R Z

R

d C A
TCPA

V

 
  (6)

When the ship is actually operating at sea, passing in front of the target ship is usually 

avoided. However, if the distance between the own ship and the target ship is large 

enough, it may pass in front of the target ship. This paper introduces a simple method to 

extend the area of the OZT via subtracting the safe passage distance from the bow crossing 

range. To detect the collision and bow crossing range corresponding to the OZT distribu-

tion, an additional area, such as the ship domain for collision detection, is defined. 

As shown in Figure 4, the bow range is the area that is enclosed by the solid line, 

corresponding to the definition of OZT. When the OS enters the area of the TS, it will be 
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judged as a collision. In this paper, the OZT area is a capsule-shaped area with a safe 

passage distance as the radius and the bow crossing range as 1.0 n mile. 

 

Figure 4. Domain for collision detection. 

4.2. Observation State 

Since the input of the RL algorithm can only be a fixed-dimensional vector, the algo-

rithm should be able to process multiple ships at the same time [23]. Therefore, in order 

to deal with this problem, we use a virtual sensor called the grid sensor to vectorize the 

predicted dangerous areas to ensure that the observation vectors can maintain the same 

dimension regardless of the number of TSs [24]. The diagrammatic drawing of using a 

grid sensor to detect the OZT is shown in Figure 5. The grid sensor extends from the center 

of the OS and is separated by a uniform angle and radius interval in the form of a polar 

grid. When the OZT overlaps with the grid cell, it is judged that the OZT is detected on 

the grid sensor. 

 

Figure 5. Detection of OZT by the grid sensor. 

If the OZT area overlaps with the grid cell, the component with the largest overlap 

area of the state vector is set to 1; otherwise, it is set to 0. Furthermore, if multiple grid 
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cells completely overlap with the OZT, the state vector closest to the OS is set to 1, 0. As 

shown in Figure 5, the orange and blue capsule-shaped area represents the OZT, and the 

yellow zone represents OZT overlaps with the grid cell. The red cell represents the grid 

cell with the largest overlap area. Suppose the information of grid sensor is provided by 

AIS. Based on the practical range of shipborne AIS and the ship model used in this paper, 

the radius of the grid sensor could be determined [25]. Additional information about the 

grid sensor is shown in Table 2. Therefore, the input dimension of the proposed algorithm 

is designed as 20 8 . 

Even more importantly, this method has the ability to cluster similar scenarios. As 

shown in Figure 5, the yellow ship represents the OS; the orange and blue ships and the 

capsule-shaped areas represent the TS and OZT, respectively. Figure 5 simulates the cross 

situation between the OS and two TSs. According to COLREGs, the OS and the two TSs 

all constitute a pair of two-ship crossing situations. Through this input observation 

method, it is obvious that the observation state between the OS and the two TSs is the 

same, indicating that the OS can identify the encounter situations with the two TSs as one, 

which improves the learning ability of the algorithm. 

Table 2. Configurations of environment. 

Parameters Value 

Safe passing distance (km) 0.5 

Grid Sensor  

Angle of detection (°) 360 

Grid space on angular direction (°) 22.5 

Radius of sensor (km) 3 

Grid space on radius direction (km) 0.3 

Remark 1. In a previous study, Zhao et al. [14] proposed a total of 15 navigation parameters as 

the input of the model. This method could only consider one TS at each decision, resulting in limited 

applicable scenarios. Secondly, because the input of observation states completely used the actual 

navigation data, it would lead to the difficulty of model convergence. Woo et al. [17] proposed visual 

image information as input of observation states, which would also reduce the convergence speed 

of the model. Shen et al. [13] proposed a LiDAR-like detection line to collect environmental infor-

mation, but there were also corresponding problems, as shown in Table 1. This paper improves the 

grid sensor proposed by Sawada as a state input [24]. The grid sensor is used to detect the sur-

rounding navigation information, and the 20 8  matrix is formed by the one-hot encoding 

method as the state input of the model. The method proposed also solves the problem of complex 

input of observation states and can make decisions after considering multiple TSs. 

Remark 2. Compared with the grid sensor proposed by Sawada et al., an improved grid sensor is 

proposed in this paper, which is shown in Section 3.2 [16]. It can be used for RL models without 

deep neural networks and will reduce the quantity of the model parameters. 
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4.3. Action Space  

As shown in Figure 6, a complete ship collision avoidance process usually includes 

four stages. 

(1) Environmental perception. 

(2) Collision avoidance behavior decision-making. 

(3) Course and speed changing/holding. 

(4) Planned route returning. 

 

Figure 6. A complete ship collision avoidance process. 

However, the phase of obstacle avoidance behavior decision-making, which is the 

most important part of ship collision avoidance, requires the least time in the four pro-

cesses. 

In order to reduce the complexity of the model and improve the convergence of the 

RL algorithm, only the rudder angle is operated to steer the ship to avoid collision, which 

is a series of discrete steering instructions to change course. Thus, this paper uses the 

Nomoto three-degree-of-freedom (3-DOF) model [26]. The coordinated system of the ship 

motion and the ship principal dimensions are shown in Figure 7 and Table 3, respectively.  

 

Figure 7. Coordinate systems used for ship motion description. 
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Table 3. principal dimensions of the ship. 

Parameters Value 

Length (m) 52.5 

Beam (m) 8.6 

Draft (m) 2.29 

Rudder area (m2) 1.5 

Max rudder angle (deg) 15 

Max rudder angle rate (deg/s) 10 

Nominal speed (kt) 15 

K index −0.085 

T index 4.2 
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 (7)

The ship motion model can be expressed by Equation (7), where  and E  are the 

actual steering rudder angle and the command rudder angle, respectively, ET  is the time 

constant of the steering gear, and V is the ship’s speed over ground. 

In the process of ship collision avoidance operation, the collision avoidance actions, 

including steering course and changing speed, should be taken. However, in actual navi-

gation, the high inertia of the ship makes it difficult to change the speed. Therefore, the 

RL algorithm’s action space is discrete rudder angles. If we define the port steering rudder 

as negative (-−) and starboard steering as positive (+) at intervals of 1  from 15   to 

15  , the action space is expressed as the following Equation (8). 

 15 , ,0 , , 15ta        (8)

Remark 3. Woo and Guo et al. [15,17] proposed an RL model for decision-making in the entire 

collision avoidance process, which would also make the model difficult to converge. In this paper, 

the collision avoidance algorithm is only used in collision avoidance behavior decision-making stage 

(stage 2) and can reduce the computation burden of the ship autonomous collision avoidance sys-

tem. 

4.4. Reward Function 

The reward function can be defined as the sum of accumulative rewards in each train-

ing episode, and its value is an important criterion for evaluating the action quality. The 

objective of this study is to maneuver the OS for collision avoidance while ensuring that 

the OS can arrive at the target point. Thus, the reward function should be defined to en-

courage the intelligent ship to travel to the target point and avoid collision with the TSs, 

while making the ship comply with COLREGs. However, the objectives of the two re-

wards are contradictory. When the OS is determined to avoid collision with the TSs, it will 

deviate from the traveling direction to the target point. To solve this problem, this paper 

defined the reward function by switching two modes: target driving and collision avoid-

ance. Firstly, in the case of collision-free, the OS should maintain her course and sail to the 

target. If the collision danger scenario is as illustrated in Figure 5, the collision avoidance 

mode will be triggered, and TSs which are invading the grid sensor of the OS can be 
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detected. Therefore, the four collision avoidance reward functions are used to update the 

action value function, as shown in Figure 8. 

 

Figure 8. The flow chart of the reward function value updates. 

In collision avoidance situation, the goal reward function can drive the OS to the tar-

get point. The heading-error reward function can promote the OS to alter her course to-

ward to the target point. The reward functions can be expressed mathematically as 

max( / )goal oR d V   (9)

/ 3
=

0          / 3
goal o goal o

goal o

    

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  


 

，

，
 (10)

(0.5 2 / ) headR        (11)

where   is the guiding weight, od  is the distance between the current intelligent ship 

and the target point, maxV  represents maximum speed,  represents the orientation of 

the target point, o  is the current course of the ship, and head  represents the directional 

weight. 

During the navigation, COLREGs should be complied by all marine vessels. Thus, 

this paper integrates the COLREGs into the reward function of the model [27]. It means 

that, during the model training, the OS should alter her course to starboard as much as 

possible when the OS needs to make collision avoidance decisions. The collision avoid-

ance reward function, including collision reward function and COLREGs reward func-

tion, are defined as follows: 

2 2

2 2 2 2

100                                  ( ) ( ) 10
=

15 ( ) ( ) /10 0 ( ) ( ) 60

t

t t

o t o

avoid

o t o o t o

x x y y
R

x x y y x x y y

     


        

， 

， 
 (12)
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=

0.01 | |              0
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u
R

 

 
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
    

，

，
 (13)
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where ox  and oy  are the coordinates of the OS, and tx , 
t
y  are the coordinates of 

the other TSs which are entering the safety detection range of the OS.   is the heading 

angle difference between the OS and the TS. 

5. Simulation and Analysis 

In this paper, it is assumed that the multi-ship encounter situations are at open sea 

without obstacles such as coastlines and buoys. The Imazu problem is treated as a learning 

scenario [28]. The Imazu problem includes basic one-to-one ship encounter situations and 

different multi-ship encounter situations. As shown in Figure 9, the number of cases for 

the Imazu problem is represented. Each circle represents the initial coordinates of the ship, 

and each bar represents the velocity vector of the ship. In addition, in order to improve 

the generalization performance of the GBDM model, this paper sets 60 different ship en-

counter situations based on the Imazu problem. The environment consists of OS and TSs. 

All intelligent ships in the encounter situations are intelligent ships and use the same 

GBDM model. The OS shall sail to the target points while avoiding target ships. Each in-

telligent ship updates the action value of the corresponding action on the Q-table during 

the training process. After finishing the multi-ship encounter situations training, the 

trained GBDM model (Q-table) is imported into the test environment to verify the training 

effectiveness. The test scenarios are shown in Figure 10. The four scenes contain two ship-

to-ship crossing situations and two multi-ship encounter situations. 

 

Figure 9. Imazu problem. 
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Figure 10. The trained GBDM model collision avoidance test scenario: (a) Crossing scenario, (b) 

Crossing scenario, (c) The scenario of four ships encountering, (d) The scenario of four ships en-

countering. 

In this section, the training process based on the risk assessment of the COLREGs is 

presented. The intelligent ship is trained in 60 scenarios, and a total of 60 training envi-

ronments are trained in one episode. Furthermore, each scenario is trained two rounds, 

and one round is trained 100 times. In order to test the trained GBDM model, scenario (a), 

scenario (b), scenario (c), and scenario (d) are simulated. The simulation scenario of the 

ship distribution is shown in Figure 10, and the coordinates of the ship starting and target 

points are shown in Table 4. 

Table 4. The setting of GBDM model test scenarios: (a) Crossing scenario, (b) Crossing scenario, (c) 

The scenario of four ships encountering, (d) The scenario of four ships encountering. 

Scenario Ship  Start (km) Target (km) 

Test scenario (a):  
A (0, −9) (0, 9) 

B (9, 0) (−9, 0) 

Test scenario (b):  
A (−8, −4.5) (8, 4.5) 

B (8, −4.5) (−8, 4.5) 

Test scenario (c):  

A (0, −9) (0, 9) 

B (9, 0) (−9, 0) 

C (0, 9) (0, −9) 

D (−9, 0) (9, 0) 

Test scenario (d):  

A (9, 2) (−9, 2) 

B (9, −2) (−9, −2) 

C (−9, 2) (9, 2) 

D (−9, −2) (9, −2) 

To inspect the effect of the GBDM model on the decision-making of ship collision 

avoidance after training different episodes, this paper conducted experimental simulation 

verification after training 4000, 8000, and 12,000 episodes in four scenarios, respectively. 

The results are shown in Figure 11. The four graphs in each row represent the results after 

different training episodes in scenarios (a–d). Scenario (a) is a two-ships head-on situation, 

scenario (b) is a two-ships crossing situation, and scenario (c) and scenario (d) are four-

ships encounter situations. The initial settings of the ships in four different scenarios are 

shown in Table 4. The first four graphs (a–d) are the results of 4000 training episodes. It 

can be seen that the trained GBDM model could not pass the scenarios test. Graphs (e–h) 

are the results of 8000 training episodes. The trained GBDM model barely passes the sce-

narios test, the ships are oversteered, and the path is not smooth. It is indicated that the 

collision avoidance behaviors are not optimal. After 12,000 training episodes, the results 
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are shown in graphs (i–l). It is obvious that the trained ship GBDM model can provide a 

better collision avoidance decision. The trained model scenarios tests demonstrate the 

GBDM model’s ability of safety navigation and collision avoidance, but it is necessary to 

further test and verify whether the trained model conforms to COLREGs. 

 

Figure 11. The training process of ship collision avoidance GBDM model for the different test sce-

narios: (a–d) 4000th episodes, (e–h) 8000th episodes, (i–l) 12,000th episodes. 

Figure 12 is the Q-learning algorithm comparison experiment results with and with-

out the OZT. The orange line represents the average reward value per ten iterations with 

the OZT, and the blue line represents the average reward value per ten iterations without 

the OZT. It can be concluded that compared with non-OZT, the Q-learning algorithm can 

converge faster with the introduction of the OZT. 

 



J. Mar. Sci. Eng. 2023, 11, 273 16 of 23 
 

 

Figure 12. Comparison of changes of the average reward during learning with and without OZT. 

6. COLREGs Compliance Test 

In order to verify whether the trained GBDM model comply with the COLREGs, a 

series of COLREGs compliance tests are conducted in different encounter scenarios. The 

performance evaluation of the ship collision avoidance GBDM model includes two as-

pects. The first is whether the collision avoidance action complies with the COLREGs, and 

the second is whether the ship can reach the target point with a collision-free path. 

6.1. Two-Ship Encounter Situation 

In order to make the GBDM model better conform to the rules, this paper introduces 

the concept of navigation situation as described in Table 5. As shown in Figure 13, the 

navigation information received by the sensor determines the avoidance responsibility of 

the ship through the navigation situation. If it is a stand-on ship, the speed and course will 

remain unchanged. If it is a give-way ship, observation state will be input into the GBDM 

model to output the steering rudder. Before the two ships encountering and making col-

lision avoidance behavior decision, the give-way ship and the stand-on ship should be 

distinguished. As shown in Table 5 and Figure 14, according to the head-on situation in 

(COLREGs) rule 14 and the crossing situation in (COLREGs) rule 15, the give-way ship 

and the stand-on ship should be recognized. Additionally, according to the COLREGs, 

there is no distinction between a stand-on ship and give-way ship in the multi-ship en-

counter situations. 

 

Figure 13. Navigation situation judgment diagram. 
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Figure 14. Encounter situations defined by COLREGs: (a) Head-on, (b) Crossing stand-on, (c) Cross-

ing give-way. 

Table 5. The navigation situation understanding and division. 

Target Ship Orientation Relative Bearing t o   Responsibility 

bow ~
8 8

 


 

7 9
~

8 8

 

 
give-way vessel 

starboard 
5

~
8 8

 

 
~2   give-way vessel 

port 
11 15

~
8 8

 

 
0 ~  stand-on vessel 

stern 
5 11

~
8 8

 

 

3
~ 2

2




 
stand-on vessel 

Remark 4. Compared with the reward function in Shen, Li, Guo, and Woo et al., there are 

two main advantages in the proposed algorithm:  

(1) This paper designs a navigation situation judgement method, which will be more 

accurate in distinguishing between stand-on vessels and give-way vessels to comply 

with the rules. 

(2) We combine the recognition method based on the navigation situation with the bias 

starboard-side-alteration reward function Equation (13), which can comply with the 

COLREGs well and does not increase the complexity of the reward function. 

6.1.1. Head-On Situation 

According to COLREGs, there is no concept of the give-way ship and stand-on ship 

in the case of head-on. When collision avoidance is needed, the two ships should alter 

their courses to starboard, respectively. As shown in Table 6, the starting and target points 

of ship A are (−9, 0) and (9, 0), and those of ship B are (9, 0) and (−9, 0). The two ships sail 

in straight lines at 90° and 270°, respectively. In this situation, ship A and B are located in 

another ship’s head-on region. When collision avoidance operation is required, the two 

ships can maintain a speed of 7.5 m/s and alter their course to starboard to avoid collision. 

The simulation results are shown in Figure 15. 

Table 6. Head-on situation. 

Ship Start Target Heading 

A 

B 

(−9, 0) 

(9, 0) 

(9, 0) 

(−9, 0) 

90° 

270° 
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Figure 15. Collision avoidance in the head-on situation based on COLREGs: (a) Enter the obstacle 

avoidance decision-making stage, (b) Obstacle avoidance decision process, (c) Reach the target 

point. 

In Figure 15, the two ships are sailing in the head-on situation. At a distance of about 

4 km, the two ships begin to alter course to starboard to avoid each other and pass port-

to-port. As shown in Figure 16, the steering rudder angles of the two ships are almost the 

same in the process, both of which begin to steer at about the 750 s. The rudder angle 

varies from [ −15°, 15°]. At about the 1500 s, the rudder angle is turned to 0°, and the two 

ships successfully complete the collision avoidance operation and drive toward to the tar-

get. 

 

Figure 16. Steering rudder angle of ship A and ship B in a head-on situation. 

6.1.2. Crossing Situation 

In the crossing situation, the ships should be distinguished between the give-way 

ship and the stand-on ship for compliance with COLREGs. As shown in Table 7, the initial 

coordinates of the two ships are (0, -9) and (9, 0), the target points are (0, 9) and (-9, 0), and 

the initial headings are 0° and 270°. The maximum speed is set to 7.5 m/s. The simulation 

results of the crossing situation are illustrated in Figures 17 and 18. 

Table 7. Crossing Situation. 

Ship Start Target Heading 

A 

B 

(0, −9) 

(9, 0) 

(0, 9) 

(−9, 0) 

0° 

270° 
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Figure 17. Collision avoidance with crossing situation based on COLREGs: (a) Enter the obstacle 

avoidance decision-making stage, (b) Obstacle avoidance decision process, (c) Reach the target 

point. 

 

Figure 18. Steering rudder angle of ship A and ship B in a crossing situation. 

In Figure 17, it can be seen that ship A is the give-way ship and ship B is the stand-

on ship according to COLREGs. Therefore, when the two ships are close to each other and 

are required to avoid collision, ship B should maintain her heading and speed, and ship 

A should alter her course to starboard. Finally, ship A can pass safely from the stern of 

ship B and sail straight toward to the target point. As shown in Figure 18, ship B’s rudder 

angle remains at 0°, and ship A’s rudder angle starts to change at 650 s and returns to 0° 

after around 1650 s. The range of the steering rudder angle of ship A is [−15°, 15°]. 

From the above ship-to-ship encounter situations experiments, it can be seen that the 

trained GBDM model can take collision avoidance action well with the conformity to the 

COLREGs. 

6.2. Multi-Ship Encounter Situation 

As shown in Table 8, the initial coordinates of four ships are (0, −9), (−9, 0), (0, 9), and 

(9, 0), and the target points are (0, 9), (9, 0), (0, −9) and (−9, 0). The initial headings are 0°, 

90°, 180°, and 270°. The maximum speed is set to 7.5 m/s. The simulation results of the 

multi-ship encounter situation are illustrated in Figures 19 and 20. 

Table 8. Multi-ship encounter situation. 

Ship Start Target Heading 

A 

B 

C 

D 

(0, −9) 

(−9, 0) 

(0, 9) 

(9, 0) 

(0, 9) 

(9, 0) 

(0, −9) 

(−9, 0) 

0° 

90° 

180° 

270° 
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Figure 19. Collision avoidance with four-ships encounter situation based on COLREGs: (a) Enter 

the obstacle avoidance decision-making stage, (b) Obstacle avoidance decision process, (c) Reach 

the target point. 

 

Figure 20. Steering rudder angle under four-ships encounter situation. 

As shown in Figure 19a, the four ships sail along the pre-determined straight line in 

the beginning. When the collision danger is detected, the four ships alter their course to 

starboard, respectively, to avoid each other. In Figure 19b, the four ships sail into a round-

about to avoid collision. In Figure 19c, the four ships advance toward the target point after 

passing each other. It is shown that when multiple ships encounter, the trained GBDM 

model can still provide each ship with an effective collision avoidance decision and drive 

her to the target point with the nearest route, complying with the COLREGs. Figure 20 

illustrates the four ships’ steering rudder angle change. 
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7. Discussion 

This study simplifies the input of observation states and improves the convergence 

rate by introducing grid sensors and OZT, as shown in Figure 11. The experimental results 

show that, with introducing the navigation situation into dividing the avoidance respon-

sibility, the GBDM model can distinguish the give-way vessel and the stand-on vessel 

under the premise of complying with COLREGs as shown in Figures 16 and 17. Further-

more, the input of observation states, the reward functions, and the action stages of the 

model are simplified by relevant methods in this paper. Finally, the experimental results 

demonstrate that the trained model can achieve multi-ship collision avoidance on the 

Imazu problem and converge faster. In some previous studies, Shen et al. [13], Zhao et al. 

[14], and Woo et al. [17] used complex input of observation states to perceive the sur-

rounding navigation environment. By contrast, the method in this paper shows that using 

the grid sensor as the input of observation states can simplify the input and also well per-

ceive the surrounding environment. In this paper, based on the improved grid sensor pro-

posed by Sawada et al. [24], the observation state generated by the grid sensor can be 

applied to reinforcement learning without a complex neural network structure. In addi-

tion, in previous studies, Guo et al. [15] and Li et al. [19] designed complex reward func-

tions to distinguish between the give-way vessel and the stand-on vessel. By contrast, this 

paper introduces the concept of navigation situation to judge the avoidance responsibility. 

The research results show that the GBDM model can distinguish between the give-way 

vessel and the stand-on vessel without increasing the complexity of the model. Compared 

with the previous experimental results, this paper improves the convergence speed of the 

model and obtains good experimental results in different collision situations.  

The potential of this study is as follows: This paper provides a good research idea for 

designing a generalized ship collision avoidance decision-making model that complies 

with COLREGs without a complex reward function design. Since the proposed model is 

only used in the collision avoidance behavior decision-making stage, the proposed model 

has small computation burden. Due to the simple structure and low input dimension, the 

proposed GBDM model has strong real-time executive capability in the face of a complex 

navigation environment. In addition, the good convergence of the proposed GBDM model 

is highlighted. Future research is planned to use more complex scenarios and real marine 

traffic data to check the validity of the proposed model. 

8. Conclusions 

In this paper, an GBDM model via RL algorithm is proposed. Firstly, grid sensor de-

tection OZT is used to reduce the complexity of GBDM model input information. Moreo-

ver, combining with the OZT detection technique and reinforcement learning algorithm, 

the proposed grid sensors can cluster the different ship-to-ship and multi-ship encounter 

situations. The convergence speed of the RL algorithm was also improved obviously. Fur-

thermore, since the interaction between the designed GBDM model and the environment 

only occurs in the collision avoidance decision-making stage, the generalization and self-

learning ability of the trained GBDM model is significantly improved. Moreover, the ac-

tions generated by the GBDM model can distinguish between a give-way ship and a 

stand-on ship without increasing the complexity of the model. Finally, a variety of colli-

sion avoidance scenario tests were carried out to evaluate the validity of the trained 

GBDM model. The simulation results indicate that the multiple ships could determine 

their collision avoidance actions simultaneously and in a timely manner to avoid each 

other and drive to the target point safely and effectively. In addition, it is prominent that 

the proposed method has a good generalization ability and can be applied to many dif-

ferent tasks, from ship-to-ship collision avoidance to multi-ship collision avoidance. 

Although the method proposed in this paper can make collision avoidance decisions 

well in multi-ship encounters, there are still some problems to be explored in future re-

search. 
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(1) The ship detection area does not explore the stern area of the ship; thus, the ship’s 

overtaking situation has not been considered. 

(2) The interference of the ship navigation environment has not been considered in the 

collision avoidance decision-making model training, which might be necessary for 

practical implementation of the proposed method. 
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