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Abstract: In this study, a series of resonant-column experiments were conducted on marine clays 
from Bohai Bay and Hangzhou Bay, China. The characteristics of the dynamic shear modulus (G) 
and damping ratio (D) of these marine clays were examined. It was found that G and D not only 
vary with shear strain (γ), but they also have a strong connection with soil depth (H) (reflected by 
the mean effective confining pressure (σm) in the laboratory test conditions). With increasing H (σm) 
and fixed γ, the value of G gradually increases; conversely, the value of D gradually decreases, and 
this is accompanied by the weakening of the decay or growth rate. An intelligent model based on a 
back-propagation neural network (BPNN) was developed for the calculation of these parameters. 
Compared with existing function models, the proposed intelligent model avoids the forward prop-
agation of data errors and the need for human intervention regarding the fitting parameters. The 
model can accurately predict the G and D characteristics of marine clays at different H (σm) and the 
corresponding γ. The prediction accuracy is universal and does not strictly depend on the number 
of neurons in the hidden layer of the neural network. 

Keywords: marine clay; dynamic shear modulus; damping ratio; mean effective confining pressure; 
intelligent model; back-propagation neural network 
 

1. Introduction 
Recently, the increasing exploitation of marine resources has led to an increasing 

number of engineering construction projects in marine and coastal areas, including tun-
nels, bridges, offshore wind power facilities, and offshore oil platforms. In comparison to 
general engineering, marine engineering structures suffer from a greater number of tech-
nical issues concerning seismic resistance. Marine soil is the supporting layer for marine 
engineering, and it is also the transfer medium for seismic waves; its dynamic properties, 
thus, have a direct effect on the seismic responses of marine engineering structures. 

The dynamic behavior of soil is principally characterized by nonlinearity and hyste-
resis in the dynamic stress–strain relationship. This is usually defined using two im-
portant parameters: the dynamic shear modulus G and the damping ratio D. Many pre-
vious experimental and numerical investigations have been conducted to describe the 
variations of G and D with the shear strain γ in different soils. The factors affecting these 
parameters, such as the mean effective confining pressure σm, over-consolidation ratio, 
plasticity index (PI), specimen size, stress anisotropy, saturation condition, grain size, 
mixture, and void ratio (e), have also been examined [1–11]. However, due to the technical 
complexity and high expense of overseas drilling, research into the variation 
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characteristics of G and D in marine soil—particularly in cohesive marine clay—has so far 
been limited and inadequate. 

Koutsoftas and Fisher [12] studied the effect of stress history on marine clay by means 
of resonant column (RC) and cyclic triaxial tests. Vrettos and Savidis [13] systematically 
investigated the effects of e, PI, and σm on marine clays in Greece by means of RC tests. 
Sun et al. [14,15] analyzed the effects of σm, PI, and the experimental apparatus on marine 
clay from China’s Qiongzhou Strait. Banerjee and Balaji [16] investigated the effects of 
anisotropic consolidation (stress ratio Kc) on Chennai marine clay using a series of cyclic 
triaxial and RC tests. Senapati et al. [17] also used a series of cyclic triaxial and RC tests to 
investigate the influence of frequency on marine clay from the Ennore coast of India’s 
Tamil Nadu saturated with various pore fluids. Li et al. [18] explored the influence of σm 
on several types of marine soil containing marine clay in China’s Yellow Sea using dy-
namic triaxial testing. 

On the other hand, geotechnical and earthquake engineering practice requires the 
establishment of empirical relationships that represent dynamic shear modulus degrada-
tion versus shear strain (G/Gmax–γ) and damping ratio growth versus shear strain (D–γ). 
To this end, numerous researchers have analyzed this problem and proposed various 
functions applicable to their data. Hardin and Drnevich [19] published the first function 
model describing the nonlinear and hysteretic behavior of soil. They proposed a hyper-
bolic model to reflect the shear modulus degradation (G/Gmax–γ), as well as an approxi-
mate model for material damping growth (D–γ), which is related to G/Gmax. Much subse-
quent research was influenced by this work, and different considerations have been intro-
duced to perfect their equations [20–24]. A summary of the representative function forms 
used to determine the shear modulus degradation versus shear strain γ (G/Gmax–γ) and 
the damping growth versus shear strain γ (D–γ) are presented in Table 1. These models 
are used to depict the G/Gmax–γ and D–γ curves under certain conditions. They commonly 
use a modified hyperbolic model to represent the G reduction backbone curve, and some 
factors (such as Dmin or Dmax) have been introduced to obtain the best possible fit with the 
target D–γ data. As a result, the existing models are empirical and were developed for 
specific soil types, strain ranges, and other considerations. Some are limited to the data 
used in the fitting, and they fail to provide a good fit for others. Furthermore, these models 
do not directly take into account the variation of G/Gmax–γ and D–γ with H(σm), making it 
impossible to construct a universal model that can be reliably applied to a variety of data 
sets. 

In view of the special conditions of the marine environment and the relative scarcity 
of dynamic parameters for marine clay, the properties of G and D of marine clay still need 
to be further investigated. For this purpose, in this study, a series of RC tests were con-
ducted on marine clay in Hangzhou Bay and Bohai Bay, China. The variation characteris-
tics of G and D with soil depth H (reflected as σm in the laboratory test conditions) were 
studied and analyzed. More importantly, an intelligent prediction model based on a back-
propagation neural network (BPNN) was developed. This model is universal and is not 
affected by differences in fitting parameters, it also takes into account the natural varia-
tions of the dynamic mechanical characteristics of soil with the value of H(σm). It can not 
only accurately predict the values of G and D with various γ and corresponding H(σm) 
values, but it also intelligently describes and predicts the G/Gmax–γ and D–γ curves of ma-
rine clay. Accordingly, this study will advance the understanding of the basic dynamic 
properties of marine clay in Hangzhou Bay and Bohai Bay. The proposed new-intelligent 
model will be able to deeply excavate, learn and predict the dynamic characteristics of 
marine clays. Furthermore, experimental studies and proposed models will provide reli-
able supplementary data for the analysis of soil dynamics and seismic responses in marine 
engineering. 
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Table 1. Summary of representative G/Gmax–γ and D–γ function forms. 

Function Forms Data From Soil Type 
( )max/ 1/ 1 / rG G γ γ= + , max max/r Gγ τ= , where Gmax is the maximum shear modulus; γr 

is the reference strain; τmax is the maximum shear stress. Hardin and Drne-
vich [19] 

Cohesive soil and 
sand 

max max(1 / )D D G G= − , where Dmax is the maximum damping ratio. 

( )( ) ( )( )0.40.272 1 tanh ln 0.000556/0.492
max m/ 0.5 1 tanh ln 0.000102 /G G

γ
γ σ

 −   = +  
, 

Ishibashi and Zh-
ang [20] 

Sandy soil 
{ }2

max max0.333 0.586 / 1.547 / 1D G G G G= − +（ ） （ ） . 

( )( )( ) ( )( ) 1.30.0145PI0.4 0.145PI0.272 1 tanh ln 0.000556/0.492
max m/ 0.5 1 tanh ln (0.000102 PI ) /

e
G G n

γ
γ σ

−− −   = + + ×  
, 

where n(PI) is the function related to the plasticity index of soil. 
Plastic soil 
(Silt and Clay) 

( ) { }1.30.0145PI 2
max max0.333 / 2 1 0.586( / ) 1.547( / ) 1D e G G G G−= × + × − + . 

( )max/ 1/ 1 ( )
cbG G a γ = +  , where a, b, and c are the curvature coefficient. 

Borden et al. [21] 
Piedmont residual 
soil (MH, ML, SM-
ML, SM) ( )2

max20.4 / 1 3.1D G G= − + . 

max/ 1 / 1 ( / )rG G αγ γ = +  , where α is the curvature coefficient. Stokoe et al. [22]  
Darendeli [23] 

Undisturbed soil 
(CH, CL, CL-ML, 
MH, ML, SC, SM, 
SC-SM, SP, SP-SM, 
SW-SC, SW-SM) 

( )0.1
max Masing min/D d G G D D= × × + , where d is the scaling coefficient, Dmin is the small-

strain damping ratio, and DMasing is the modeled masing damping. 
Darendeli [23] 

max/ 1 / 1 ( / )rG G αγ γ = +  ( )1 m a/ k
r r Pγ γ σ= , where γr is the reference strain correspond-

ing to the γ value when G/Gmax = 0.5, α is the curvature parameter, γr1 is the ref-
erence strain at a mean effective confining stress σm of 100 kPa, Pa is the refer-
ence stress at 100 kPa, and k is a stress-correction exponent. Zhang et al. [24] 

Quaternary soil 
Tertiary and older 
soil 
Residual/saprolite 
soil 

2
min max max10.6( / ) 31.6( / ) 21.0D D G G G G= + − +  Torsional shear test, 

2
min max max9.4( / ) 26.5( / ) 17.1D D G G G G= + − +  Resonant column test, 

( ) /2
min min1 m a/ kD D Pσ −= × , where Dmin1 is the small-strain damping at σm of 100 kPa. 

2. Experimental Measurements 
2.1. Materials 

This study examined undisturbed marine clay taken from the seabeds of Bohai Bay 
and Hangzhou Bay at depths ranging from 6.3 m to 70 m. Using an offshore drilling plat-
form, an open thin-walled earth borrower was employed to capture the clay samples from 
four boreholes at the locations indicated in Figure 1. In the drilling area in Bohai Bay (BH), 
the seabed topography is slightly undulating, and the seawater depth varies gently with 
a moderate deepening trend from southwest to northeast and no obvious local undula-
tions. The bottom terrain in the drilling area in Hangzhou Bay (HZ) is relatively flat, and 
the seawater depth varies widely, sloping slowly from west to east. A total of 27 marine 
clay samples were used for this study; 17 samples from Bohai Bay were designated BH1 
to BH17, while 10 samples from Hangzhou Bay were designated HZ1 to HZ10, respec-
tively. According to the Unified Soil Classification System [25] and laboratory assessments 
of basic physical qualities, the undisturbed marine clays were classified as lean clay (CL). 
RC tests were conducted on the marine clays at σm values ranging from 43 to 466 kPa, as 
summarized in Table 2. 
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Figure 1. Geographical locations of the boreholes: (a) Bohai Bay and (b) Hangzhou Bay. 

Table 2. Representative physical parameters of the marine clays. 

Sample Soil Depth H/m Mean Effective Confining 
Pressure σm/kPa 

Specific Grav-
ity Gs 

Water Content 
w/% 

Density 
ρ/g·cm−3 

Plasticity In-
dex PI 

BH 1 6.3–6.5 43 2.67 40.72 1.9 15.99 
BH 2 8.3–8.5 56 2.69 36.45 1.9 17.15 
BH 3 10.8–11.0 73 2.70 38.95 1.95 16.88 
BH 4 15.8–16.0 106 2.68 37.99 1.92 16.23 
BH 5 23.5–23.7 157 2.67 37.87 1.97 16.98 
BH 6 25.5–25.7 171 2.67 35.53 1.96 16.95 
BH 7 29.8–30.0 199 2.67 38.96 1.91 15.00 
BH 8 30.0–30.2 201 2.71 36.17 1.97 15.06 
BH 9 31.8–32.0 213 2.67 39.04 1.92 17.12 

BH 10 33.8–34.0 226 2.68 36.67 1.93 12.64 
BH 11 35.2–35.4 235 2.69 36.82 1.93 17.23 
BH 12 40.3–40.5 269 2.68 30.93 1.9 15.27 
BH 13 43.3–43.5 289 2.70 38.17 1.94 15.95 
BH 14 46.3–46.5 309 2.68 36.08 1.93 15.34 
BH 15 61.8–62.0 413 2.68 33.74 2.04 13.55 
BH 16 67.8–68.0 453 2.68 31.10 1.99 15.57 
BH 17 69.8–70.0 466 2.67 30.84 2.01 13.14 
HZ 1 18.3–18.5 123 2.68 15.52 1.81 15.52 
HZ 2 23.3–25.5 156 2.67 15.64 1.94 15.64 
HZ 3 28.3–28.5 190 2.70 14.37 1.97 14.37 
HZ 4 33.3–33.5 233 2.67 15.07 2.06 15.07 
HZ 5 40.8–41.0 273 2.71 16.57 2.07 16.57 
HZ 6 48.3–48.5 323 2.70 14.76 2.07 14.76 
HZ 7 53.3–53.5 356 2.69 13.35 2.04 13.35 
HZ 8 58.3–58.5 390 2.70 14.76 2.06 14.76 
HZ 9 63.3–63.5 423 2.70 15.97 2.06 15.97 
HZ 10 68.3–68.5 456 2.69 14.08 2.03 14.08 

2.2. Test Apparatus and Procedure 
The specimens were tested using the TSH-100 high-precision fixed–free RC appa-

ratus (Figure 2) from GCTS Testing Systems (Tempe, AZ, USA), which can reliably meas-
ure the G and D values of soil specimens over a wide strain range with stable and repeat-
able results. In the device, the confining pressure is controlled by a pneumatic servo sys-
tem. A fully automatic suspension torsion drive system is used to excite the top of the soil 
specimen. On-specimen axial displacement can be measured by an AC deformation sen-
sor with a range of ±6 mm and 0.1% linearity, and γ can be measured by a fiber optics 
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deformation sensor with a dual-range output: ±0.1 mm low range and ±5.0 mm for high 
range, with a 0–15 kHz flat frequency response and 0.1% linearity. The data-acquisition 
system has eight independent channels with a response frequency of 50 kHz, and it can 
record data at intervals of less than 0.2 ms. 

1 Pressure control panel & volume change device  2 Resonant-column test platform
3 Digital servo controller and acquisition system    4 Computer  

Figure 2. Schematic diagram of TSH-100 resonant column apparatus. 

The test procedure can be divided into three steps. (1) A solid cylindrical specimen 
with a diameter of 50 mm and height of 100 mm is mounted on the device base. (2) After 
the specimen is installed, the top is connected to the floating torsion drive device, the dis-
placement sensor is connected and zeroed, and the pressure chamber is closed to ensure 
a tight seal. (3) The specimens are uniformly consolidated according to the natural stress 
state based on the original marine soil depth, as summarized in Table 2. (4) When the 
average axial-strain rate is less than 1 × 10−3%/min, the consolidation is completed. The 
soil specimen is then excited by the automatic suspension dynamic torsion device, and the 
excitation frequency is steadily increased. (5) Consequently, the value of G is obtained by 
the theory of elastic-wave propagation once the sweep frequency reaches the resonance 
frequency, and the value of D is calculated by the collected free-vibration response decay 
curve [26,27]. 

2
SG Vρ=   (1)

1

1

1 ln
z

A
z A

δ
+

 
=  

 
, 

2

2 2 100%
4

D δ
π δ

= ×
+

,  (2)

where VS is the shear-wave velocity of the soil [28], δ is the logarithmic decrement of the 
decay curve, A1 is the amplitude of free vibration for the first cycle after excitation switch-
off, Az+1 is the amplitude of free vibration for the (z + 1)th cycle of free vibration, and z is 
the number of free-vibration cycles. 

2.3. Experimental Results 
The RC test results of the dynamic shear modulus G and damping ratio D versus 

shear strain γ for marine clay with changes in H (σm) are given in Figure 3 and Figure 4, 
respectively. In line with the phenomena of previous studies, all the marine clays in Bohai 
Bay and Hangzhou Bay showed exhibited decreases in G and increases in D with increas-
ing γ. Furthermore, it is noteworthy that for a given value of γ, the G value progressively 
increases with increasing H (σm), while D gradually decreases. In addition, based on the 
hyperbolic relationship between G and γ under small-amplitude vibrations proposed by 
Hardin and Drnevich [19], a linear relationship between 1/G and γ can be obtained, fol-
lowed by the value of Gmax for marine clay [29], as illustrated in Figure 5. The Gmax values 
of the marine clays also increase with increasing H (σm), which is consistent with the ex-
perimental findings in Figure 3 and Figure 4. For all the present experimental values, the 
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overall dynamic stiffness decays with increasing γ, but it increases with increasing H (σm). 
This also indicates that the G and D values of marine clay are not only directly related to 
γ, but they also have an obvious and strong correlation with H (σm). 
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Figure 3. Experimental results of RC tests on marine clay from Bohai Bay: (a) variation of dynamic 
shear modulus with shear strain; (b) variation of damping ratio with shear strain.  
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Figure 4. Experimental results of RC tests on marine clay from Hangzhou Bay: (a) variation of dy-
namic shear modulus with shear strain; (b) variation of damping ratio with shear strain. 
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Figure 5. Maximum dynamic shear modulus of marine clays from (a) Bohai Bay; (b) Hangzhou Bay. 

3. Intelligent Model 
3.1. Model Framework 

The representative and modified hyperbolic models of G/Gmax–γ normally have more 
than one curve coefficient for the best fit of the data, as shown in Table 1. In contrast, D–
γ models add numerous parameters on the basis of G/Gmax–γ. In this approach, forward 
propagation of errors will unavoidably arise in the fitting process of the formula to the 
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application, especially the forward propagation of errors from the G/Gmax–γ formula to 
the D–γ formula. To solve this problem, an intelligent model based on a BPNN is pro-
posed. The BPNN proposed by Rumelhart et al. [30] features the forward propagation of 
data and the back-tpropagation of errors, and it has the ability to self-identify, learn, and 
model the intrinsic relationships in complex nonlinear data. This makes it particularly 
suitable for modeling the dynamical behaviors of soil. The intelligent BPNN model frame-
work, which uses the information-processing characteristics of the human brain as the 
model reference, is shown in Figure 6. Data processing in the BPNN is performed between 
the input layer (I), the hidden layer (L), and the output layer (O), with each layer consisting 
of multiple neurons. Each neuron is connected by the weights (Wni) and (Wjn), and the 
neurons (Ln) and (Oj) are controlled by the thresholds (TH) and (TO). 

 neuron I1 = H(σm)

 neuron I2 = γ

    Neuron O1 = G

Input layer I
 (neuron Ii = 1, 2 )

Hidden layer L
 (neuron Ln = 1, 2, ···, n )

Output layer O
(neuron Oj = 1, 2, 3 )

...

Wni

    Neuron O3 = D

Neuron O2 = G/Gmax

 neuron L1 T1
H

 neuron L2 T2
H

 neuron L3 T3
H

 neuron L4 T4
H

 neuron Ln Tn
H

T1
O

T2
O

T3
O

Wjn

 
Figure 6. Technical framework for the intelligent model. 

3.2. Model Settings and Procedures 
The model and algorithm can be described as follows: 
(1) Framework: input layer I + hidden layer L + output layer O = 2 + n + 3, as depicted 

in Figure 6. 
(2) Initial process: normalize the data set, and initialize the connection weights and 

thresholds to 1. 
(3) Forward propagation: the input data are passed in from Ii, processed by Ln, and 

then reach Oj. The hyperbolic tangent sigmoid transfer function fTansig(x) was chosen as the 
transfer function from Ii to Ln, and a linear function was chosen as the transfer function 
from Ln to Oj: 

3

1
( )n ni i

i

H
nL f w I T

=

= + , 2Tansig (
1

) 1 1xf x
e−= −

+
,  (3)

where x is the input values in the function fTansig(x), and 

1

n

j
O

jn
n

jnO w L T
=

= +   (4)

(4) Back-propagation: if the output value does not match the actual value, it is trans-
ferred to the backward-propagation stage of the error. The error is apportioned to all the 
neurons in each layer and is used as the basis for correcting the weights and thresholds in 
the training and learning process. 

(5) Training and learning: the weights and thresholds are continuously updated us-
ing the Bayesian regularization back-propagation and gradient-descent momentum algo-
rithm. According to the Levenberg–Marquardt method [31], the Bayesian regularization 
back propagation minimizes a linear combination of squared errors and weights so that 
at the end of the training, the resulting network has good generalization qualities [32]. The 
gradient-descent momentum algorithm is used to increase the learning rate of weights 
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and thresholds [33]. The principles of these algorithms are not repeated in this paper, and 
they can be implemented on multiple platforms, including Python, Octave, and MATLAB. 
The main process of training and learning can be expressed as follows: 

( ) 2

1

1 K

E e k
K

=  , 1m m
m

EW W
W

η+
∂= +

∂ , 1m m
m

ET T
T

η+
∂= +
∂   (5)

where e(k) represents the difference between each output value and the training value, E 
represents the total error, K represents the total number of values in the training set, and 
m represents the current iteration of the training process. 

(6) Finally, when E is reduced to the expected training error, or the number of learn-
ing iterations reaches the pre-set maximum, the training of the intelligent model is com-
pleted. The trained model can then be applied to the prediction of the dynamic shear mod-
ulus G and damping ratio D characteristics of marine soils 

3.3. Model Performance 
In this study, about 70.7% of the experimental measurements from Bohai Bay and 

70.0% of the experimental measurements from Hangzhou Bay were used as training data; 
this allowed the model to intelligently identify, excavate, and learn the intrinsic G and D 
characteristics of the marine clays. The remaining data were used as a prediction set for 
model validation and error calculation [34]. The number of training trials was set to 1 × 
106, the learning rate was set to 10−6, and the training target’s minimum error was set to 1 
× 10−10. The total number n of neurons in the hidden layer L was set in the range 3 to 18. 
No human intervention or additional curvature coefficient setting was required during 
the process, and machine learning was achieved entirely by the model itself. 

The prediction performance of the trained, intelligent model with different n values 
is shown in Figure 7. It is assessed by the statistical performance indicators obtained by 
comparing the predicted and measured data in the prediction set. Mean absolute error 
(MAE), root mean square error (RMSE), and coefficient of correlation (R) were incorpo-
rated into the statistical performance indicators to analyze the prediction performance of 
the model better [35,36]. The MAE of G, G/Gmax, and D for marine clays are presented in 
Figure 7a–c, respectively. It is evident that the MAE for marine clays is at a relatively well-
desirable level for the intelligent model with different n. In particular, the MAE shows a 
decreasing trend with the increase in n, and a significant inflection point occurs when n is 
greater than 6. Subsequently, the MAE fluctuates at a lower level. Moreover, a similar 
phenomenon is also observed in Figure 7d–f of the RMSE values. Furthermore, the R of 
the predicted and measured data are presented in Figure 7g–i, where the R is greater than 
0.9 for the predicted performance of the intelligent models with different n. It is worth 
noting that all prediction results correlate well with the measured data, despite the fact 
that the prediction error fluctuates with n. This further confirms that intelligent models 
can excavate, learn and predict the G and D values of marine clays. Therefore, the intelli-
gent model has a good prediction performance for the G and D values of the marine clays, 
and the prediction accuracy does not strictly depend on n. The detailed prediction results 
of the intelligent model will be further evaluated and discussed in the following section. 
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Figure 7. Prediction performance of the intelligent model with different n: (a-c) the MAE of G, 
G/Gmax, and D for marine clays; (d-f) the RMSE of G, G/Gmax, and D for marine clays; (g-i) the R of G, 
G/Gmax, and D for marine clays. 

4. Evaluation and Discussion 
4.1. Evaluation of Prediction Results 

To further investigate the effectiveness of the model for identifying, learning, and 
predicting the dynamic behaviors of marine clay, the values of the prediction set calcu-
lated using the intelligent model were compared with the measured data. That is, when 
both H (σm) and γ are known, the prediction effect can be assessed by the difference be-
tween the measured value and the predicted value. The results of this comparison are 
shown in Figure 8 and Figure 9, respectively, with n = 8. It can be seen that the relative 
errors between the predicted and measured values of G and D are generally within ±8%. 
It should be noted that this error range is quite precise, considering the large uncertainties 
and complex internal structures of soils. 
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Figure 8. Comparison of predicted and measured values of the dynamic shear modulus G of ma-
rine clays from (a) Bohai Bay; (b) Hangzhou Bay. 
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Figure 9. Comparison of predicted and measured values of the damping ratio D of marine clays 
from (a) Bohai Bay; (b) Hangzhou Bay. 

An important difference between soils and general engineering materials is their 
nonlinear and hysteretic dynamic behavior. To deeply explore and evaluate the abilities 
of the intelligent model for prediction of the dynamic properties of marine clay, predicted 
curves of the normalized dynamic shear modulus G/Gmax and damping ratio D versus 
shear strain γ over a wide shear strain range (1 × 10−6 ≤ γ ≤ 5 × 10−4) are presented in Figure 
10 and Figure 11, respectively. Combining in Figure 10 and Figure 11, it can be seen that 
the experimental data are largely in agreement with the predicted curves, and they are 
also corroborated by the predicted results of G/Gmax and D in Figure 8 and Figure 9. Spe-
cifically, before the line-elastic threshold shear strain (γLE = 1 × 10−5), the G/Gmax value of 
marine clay decays slightly with increasing γ, while the value of D increases slightly with 
increasing γ; when the γLE is reached, the G/Gmax value starts to decay at a faster rate with 
increasing γ, and the value of D increases at a faster rate with increasing γ. Until the non-
linear-elastic threshold shear strain (γNE = 1 × 10−4) is exceeded, the value of G/Gmax decays 
rapidly with increasing γ. Meanwhile, the value of D grows rapidly with increasing γ. 
Furthermore, the G/Gmax value increases with increasing H (σm) for a given γ value, and 
this is accompanied by a decreasing recession gradient. Conversely, the D value decreases 
with increasing H (σm) at a given shear strain γ, and this is followed by a decrease in the 
growth rate. 
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Figure 10. Comparison of measured values and predicted G/Gmax–γ curves for marine clays from (a) Bohai 
Bay; (b) Hangzhou Bay. 
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Figure 11. Comparison of measured values and predicted D–γ curves for marine clays from (a) Bohai Bay; 
(b) Hangzhou Bay. 

In addition, The overall G/Gmax–γ curves show a “low to high” change tendency; in 
contrast, the overall D–γ curves show a “high to low” trend. This means that the dynamic 
properties of the marine clay gradually change from non-linear to linear with increasing 
H (σm), and this is accompanied by weakening hysteresis. Thus, it can be said that the 
intelligent model can quite effectively describe and predict the nonlinear and hysteretic 
dynamic properties of marine clay. More importantly, it is not only able to accurately pre-
dict the G and D values of marine clays at different H (σm) and γ, but it can also intelli-
gently predict the variation of the decay of G and the growth of D with H (σm). This will 
present a solution to a key challenge in geotechnical engineering. 

4.2. Comparison with Function Models 
It should be noted that most of the formulas in Table 1 do not directly consider the 

variation of soil dynamic characteristics with H (σm), which is an extremely important is-
sue in geotechnical engineering. Hence, the proposed intelligent model was compared 
with representative mathematical models proposed by Ishibashi and Zhang [20] and 
Zhang et al. [24] to evaluate its performance. As a control, the evaluation data were used 
from the prediction set, and the value of n in the model was kept at 8. 

Figure 12 and Figure 13 show the performance of the three methods for G/Gmax and 
D prediction using the evaluation data. Compared with the mathematical formulas pro-
posed by Ishibashi and Zhang [20] and Zhang et al. [24], the proposed intelligent model 
has the best performance for the evaluated data. Ishibashi and Zhang’s [20] formula over-
estimates the dynamic stiffness of the soil and is not applicable to marine clay; Zhang et 
al.’s [24] formula has satisfactory performance for G/Gmax, but the prediction of D is rela-
tively poor. This is mainly because, to achieve the best fit to the data, their technique nor-
mally leads to uncertainty and dispersion of the fitted parameters, and this, in turn, pro-
motes the forward propagation of errors from G/Gmax–γ to D–γ. Simultaneously, the in-
trinsic complex nonlinear dynamic characteristics of the marine clay enhance this error-
propagation phenomenon. As a result, the proposed intelligent model has a very good 
match for the G and D properties of the marine clays. Especially for the prediction of D. 

Thus, compared to the mathematical functions, the proposed intelligent model has 
very good adaptability to the dynamical characteristics of marine clay from Bohai Bay and 
Hangzhou Bay, China. This means that it is eminently suitable for application to geotech-
nical research and earthquake engineering. However, as mentioned before, sampling of 
the in-situ marine soil is very difficult, especially in different depths. This experimental 
study and the proposed model in this paper only focus on marine clay in two sea areas. 
Research on the dynamic properties of undisturbed marine soils is rarely available and 
still needs to be advanced. More types and locations of marine soils should be studied in 
further investigation, and an intelligent database should be constructed based on the pro-
posed model. 
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Figure 13. Comparison of the predicted performance of D values: (a–b) the performance of the 
proposed model; (c–d) the performance of the Ishibashi & Zhang’s [20] model; (e–f) the perfor-
mance of the Zhang et al.’s [24] model. 

5. Conclusions 
In this study, a series of RC tests were conducted to investigate the variation feature 

of the G and D with H (σm) for marine clays from Bohai Bay and Hangzhou Bay. An intel-
ligent model was constructed that provides a great match for the G and D characteristics 
of marine clay. The main conclusions can be summarized as follows. 
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The dynamic properties of marine clays are not only directly related to the γ, but they 
also have a strong correlation with H (σm). The G decay nonlinearly with increasing shear 
strain γ, and D increases nonlinearly with increasing γ. Meanwhile, the G decay curve 
G/Gmax–γ gradually changes from non-linear to linear with increasing H (σm), and this is 
accompanied by a weakening hysteresis in the D growth curve D–γ. 

Based on a back-propagation neural network (BPNN), the proposed intelligent 
model can sufficiently excavate, learn and predict the G and D characteristics of marine 
clay. It has a good prediction performance for the G, G/Gmax, and D values of the marine 
clays with various γ and H (σm). Moreover, it can further produce intelligent predictions 
of the decay of G and the growth of D. 

Compared with existing mathematical functions, the intelligent model has a better 
prediction performance for the G and D properties of the marine clays. It avoids the for-
ward propagation of errors and the need for human intervention regarding the fitting 
parameters, and the prediction accuracy does not strictly depend on n. 
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Nomenclature 
G = dynamic shear modulus 
Gmax = maximum dynamic shear modulus 
G/Gmax = normalized dynamic shear modulus 
D = damping ratio 
Dmax = maximum damping ratio 
Dmin = small-strain damping ratio 
γ = shear strain 
γr = reference strain 
τmax = maximum shear stress 
a, b, and c = curvature coefficients 
α = curvature coefficient 
d = scaling coefficient 
DMasing = modeled masing damping 
H = soil depth 
σm = mean effective confining pressure 

γr1 = reference strain at σm of 100 kPa 
Pa = reference stress of 100 kPa 
k = stress correction exponent 
Dmin1 = small-strain damping at σm of 100 kPa 
w = water content of soil 

ρ = density of soil 

PI = plasticity index 
e = void ratio 
δ = logarithmic decrement of the decay curve 
VS = shear wave velocity of soil 
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A1 = amplitude of free vibration for the first cycle after excitation switch-off 
Az+1 = amplitude of free vibration for (z + 1)th cycle of free vibration 
z = number of free-vibration cycles in resonant-column test 
I = input layer 
L = hidden layer 
O = output layer 
Ii = input layer neurons 
Ln = hidden layer neurons 
Oj = output layer neurons 
i = the number of neurons in the input layer 
n = the number of neurons in the hidden layer 
j = the number of neurons in the output layer 
Wni = connection weights from the input layer to the hidden layer 
Wjn = connection weights from the hidden layer to the output layer 
TH = thresholds in hidden layer neurons 
TO = output layer neurons 
x = input value in function 
E = total error 
e(k) = difference between each output value and the training value 
K = total number of values in the training set 
m = current number of the training process 
MAE = mean-absolute-error 
RMSE = root-mean-square error 
R = coefficient of correlation 
γLE = line-elastic threshold shear strain 
γNE = nonlinear-elastic threshold shear strain 
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