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Abstract: An effective path-following controller is a guarantee for stable sailing of underactuated
unmanned surface vehicles (USVs). This paper proposes an event-triggered robust control approach
considering an unknown model nonlinearity, external disturbance, and event-triggered mechanism.
The proposed method consists of guidance and dynamic control subsystems. Based on the tracking
error dynamics equations, the guidance subsystem is designed to achieve the guidance law. For the
dynamic control subsystem, the radial basis function neural networks (RBFNNs) are designed to
approximate the unknown model nonlinearity and external disturbances to improve the robustness
of the proposed method. In addition, an event-triggered mechanism is constructed to reduce the
triggering times. The closed-loop system is proven to be stable, and the effectiveness of the proposed
method is illustrated through simulation results.

Keywords: path-following control; unmanned surface vehicle; event-triggered mechanism; neural
network

1. Introduction

An unmanned surface vehicle (USV) is a kind of autonomous waterborne platform that
can autonomously complete tasks, such as environmental perception and target detection,
and has autonomous identification, autonomous planning, and autonomous navigation
capabilities [1–3]. It has the advantages of small size, low cost, good maneuverability, and
no casualties [4]. The USV can independently perform tasks in areas where manned ships
are not suitable for dispatch, thereby expanding the scope of water operations. Therefore,
it has become an important tool in carrying out civilian and military tasks such as marine
environmental monitoring, water search and rescue, ship escort, firepower strike, and
anti-submarine tasks [5].

In complex marine environments, ensuring the safety, stability, and accuracy of au-
tonomous navigation for USVs is a major challenge for USV control systems. The overall
issues of motion control for USVs include set-point regulation, trajectory tracking, and path
following [6].

In the motion control system of USVs, the existing propulsion system usually consists
of the main thruster and rudder or the double thrusters at the stern of the ship, without
side thrusters. This power configuration means that the USVs have only two control inputs.
However, there are three degrees of freedom (DoF) for USVs, including surge, sway, and
yaw, which means that the number of control inputs is less than the DoF of the USVs. This
type of USV has underactuated characteristics. Because of the low maneuverability, it is
more suitable to study the path following control of underactuated USVs.

Path following refers to USVs tracking a predetermined path. The USV does not
need to reach a certain position on the path at the specified time, and the reference path
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is independent of time. In other words, the spatial constraints of path following problem
take precedence over time constraints. As shown in Figure 1, the path following control of
USVs divides the control system into two parts: the guidance subsystem and the control
subsystem. Based on the path information and environmental information, the guidance
subsystem generates the expected reference signals. Then, the control subsystem will
track the reference signal generated by the guidance subsystem to achieve path tracking.
Path tracking control is similar to the actual behavior of crew maneuvering ships, and
the modular design concept allows it to directly apply mature guidance technology and
heading maintenance control theory, which has strong practical application value and has
become a commonly used solution for USV path following.

Figure 1. Schematic diagram of path following control framework.

Over the last several years, promising results on the path following control of USVs
have been proposed.

From the perspective of guidance subsystem, the commonly used guidance algorithms
are line-of-sight (LOS)-based methods [7–11].

In [7], a LOS-based guidance law was designed for target enclosing control of an USV,
and the effectiveness of the proposed method was verified by simulations and experiments.
However, when the tracking error is large, the speed of LOS method converging to the
desired path is relatively slow. In addition, when the USV is influenced by the environment
disturbance, the sideslip angle will occur, which limits the application of the LOS method.
In order to deal with the above-mentioned problem, Fossen et al. proposed an integral LOS
in [8] using additional integral terms to offset the sideslip angle. Moreover, there are many
improvement methods based on LOS. In [9], an adaptive LOS guidance law was proposed
for the finite-time path following control of USVs, which can keep the tracking error
within the constraint range. In [10], the fuzzy rules were used to determine the forward
looking distance of the LOS guidance to increase the convergence speed. In [11], based on
sliding mode theory, a robust LOS guidance law was designed for the underactuated ships.
Except for LOS-based approaches, the vector field guidance is also widely used in USV
control [12–14].

From the perspective of control subsystem, there are many approaches applied to
the USV control field and that have achieved good control results. The approaches in-
clude proportional integration differentiation (PID) [15–17], trajectory linearization control
(TLC) [18–20], sliding mode control (SMC) [21–23], backstepping [9,24–26], and intelligent
control [27–31].

As a most widely used algorithm applied to USV path following control, PID controller
has the advantages of simple structure, good economy, and high control accuracy. However,
when external disturbances exist, such as wind, waves, and currents, the adaptability of
the PID controller is insufficient and its control stability will decrease. Currently, researches
on PID control method have mainly focused on its improvements. For instance, in [15]
the authors proposed an improved PID control method by using optimization theory,
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and this method can obtain the optimal control parameters. In [16], the fuzzy rules were
used to realize the self adjustment of PID parameters to improve its robustness. In [17], a
modified incremental PID was proposed to deal with the influence of the marine currents.
Trajectory linearization can simplify the problem of path following control. However,
linearization processing will lead to system errors and reduce control accuracy. Similar
to other algorithms, we can combine it with robust control approaches improve control
performance. In [18], to improve the robust performance of the TLC approaches, the
neural network (NN) is used to estimate the model uncertainties. In [19], the linear
extended state observer was designed to approximate the unknown disturbances, and by
combining with the TLC approach, a robust controller was proposed for USVs. In [20], a
finite-time disturbance observer was designed to observe disturbance and uncertainties
to improve the robustness of TLC method. SMC has robustness to parameter changes
and external disturbances; however, it has the disadvantage of chattering. In [21], by
using hyperbolic tangent function, a SMC-based path following controller was proposed
for the USV, which can deal with the chattering problem. In [22], the SMC was used to
structure an observer. Then, it was combined with the adaptive law, and a nonlinear
surge controller was proposed. In [23], to achieve fast converge speed, a nonsingular
terminal SMC was designed for the USV control in the present of model uncertainties. The
backstepping method is greatly influenced by the motion model, and in order to achieve
good control performance and robustness, it is necessary to establish an accurate model—
which is difficult to obtain. Therefore, for the backstepping approach, combinations with
other techniques (for instance, tracking error compensation [9], SMC [26]) to improve its
robustness performance have been a research hotspot. Intelligence control methods have
unique advantages in dealing with nonlinear and complex system problems. Fuzzy logic
control converts expert knowledge into fuzzy rules, which can effectively deal with the
impact of model uncertainty and interference in the path following control of USVs [27].
In addition, NN can be used to approximate the uncertainty and external interference
terms of the USV model, so as to improve the anti-interference ability and robustness
of the controller [28,29]. In recent years, machine learning theory has developed rapidly,
and reinforcement learning has been widely applied in the field of USV control [30,31].
Reinforcement learning theory does not require the establishment of accurate mathematical
models, and has a self-learning ability in unknown environments. Therefore, it has great
research value for solving model uncertainty and unknown interference problems in
USV control.

Although fruitful research results have been reported, we need to note that limitations
and challenges still exist:

• The control methods in most existing works on path following control of USVs are
time triggered (e.g., [15,26]), which means that the control signals should update
at every sampling instance, and it is unnecessary from the perspective of resource
allocation;

• The USV model is highly nonlinear and coupled, which poses great difficulties in the
design of path following controllers. Currently, although there are many papers study-
ing the nonlinear controller design of USVs, most methods still require knowledge of
partial or complete model information (e.g., [9,25]).

Inspired by the existing literature discussed above, this paper proposes a event-
triggered robust path following controller subject to unknown model nonlinearity and
disturbances. Specifically, based on the relative position between the USV and the expected
path, a dynamic equation for its path tracking error is established in the Serret–Frenet
coordinate system. According to the backstepping technique and Lyapunov stability theory,
the guidance law and control signals are achieved. Then, to deal with the unknown
model nonlinearity and disturbances, radial basis function neural networks (RBFNNs) are
designed. Finally, on the basis of the above mentioned control signals, an event-triggered
mechanism is structured to obtain the final control inputs. The contributions of this paper
are summarized as follows:
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• An event-triggered based path following controller is proposed for the underac-
tuated USVs. Because of the event-triggered mechanism, there is no need to up-
date the control inputs at every sample instance. Therefore, this can decrease the
computational burden;

• The RBFNNs are designed to approximate the model nonlinearity and disturbances,
which makes the proposed controller not rely on the USV mathematical model and
improves the robustness performance of the controller.

The organization of the rest is as follows. In Section 2, several useful lemmata are
provided. In Section 3, the USV model and the control objectives are given. The guidance
subsystem is presented in Section 4, and the design process of an event-triggered robust
controller is proposed in Section 5. Then, the closed-loop system is proved to be stable in
Appendix A. The effectiveness is verified in Section 6 by simulations. Finally, the conclusion
and potential future studies are given in Section 7.

2. Preliminary

For the following nonlinear system,

ẋ = F (x), x(t0) = x0 (1)

where x is the system state, and the equilibrium point is x = 0.

Lemma 1. Define H(x) as the Lyapunov function about state x of system (1), and it is radially
bounded. If the following two conditions are satisfied: (1) H(x) > 0, ∀x| x 6= 0; (2) Ḣ(x) ≤ 0;
(3) Ḣ(x) is uniformly continuous, then, we can say that the system is globally asymptotically stable.

Lemma 2. If the Lyapunov function H(x) about state x of system (1) meets with
Ḣ(x) ≤ −κ1H(x) + κ2, where κ1, κ2 > 0, then, we can say that the system is globally uni-
formly ultimately bounded (GUUB).

Lemma 3. The nonlinear term F (x) of system (1) can be approximated by the RBFNN with
arbitrary accuracy:

F (x) = ωTh(x) + δ (2)

where ω is the m× 1 weight vector of the RBFNN, h(x) is the m× 1 vector consists of Gaussian

function hi(x) = exp
(
− ||x−ci ||2

2b2
i

)
, i = 1, 2..., m, and the approximation error δ and weight ω are

all bounded.

3. Problem Formulation

In this section, the mathematical model of the USV and the control objectives are given.

3.1. USV Model

The kinematics model of the USV is
ẋ = ucosψ− vsinψ

ẏ = usinψ + vsinψ

ψ̇ = r

, (3)

where Q = [x, y]T is its position, ψ is the yaw angle, u is its surge velocity, v is its sway
velocity, and r is its yaw angular velocity.

The dynamics model of the underactuated USV is [4,6]
m1u̇ = m2vr− d1u + τu + τu

w

m2v̇ = −m1ur− d2v + τv
w

m3ṙ = (m1 −m2)uv− d3r + τr + τr
w,

(4)
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where mi and di, i = 1, 2, 3 are the model parameters of the USV, τu is the force in the surge
channel, τr is the yaw torque in the yaw channel, and τu

w, τv
w, and τr

w are the disturbances in
each DoF.

3.2. Control Objectives

The purpose of this paper is to propose a path following control approach for underac-
tuated USV considering unknown model nonlinearity, disturbances, and an event-triggered
mechanism. The following conditions should be satisfied:

1. The underactuated USV can converge to a desired path P, which means
lim
t→∞

xe = 0; lim
t→∞

ye = 0, where xe and ye are the position tracking errors defined

in the following content;
2. The underactuated USV can sail along the desired path at a predefined surge velocity

ud, which means lim
t→∞

u = ud;

3. The controller can guarantee the USV moves stably under the influence of unknown
model nonlinearity and disturbances;

4. A suitable event-triggered mechanism should be designed.

4. Guidance Subsystem Design for Path Following Control of Underactuated USV

In this section, the tracking error dynamic equations are given, and the guidance law
is derived.

As shown in Figure 2, Q = [x, y]T is the position vector of the USV in the inertial
coordinate system {I}, and the velocity vector can be Q̇ = [ẋ, ẏ]T . The course angle can be
calculated by

χ = arctan
(

ẏ
ẋ

)
(5)

Figure 2. Path following diagram of the underactuated USV.

From Figure 2, we have
χ = ψ + β (6)

where β is the sideslip angle of the USV.
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Therefore, the kinematics model of the USV can be re-expressed in a Serret–Frenet
coordinate system {S} as 

ẋ = Ucosχ

ẏ = Usinχ

χ̇ = r + β̇

, (7)

where U =
√

u2 + v2.
It is assumed that P is a point moving along the path P = [xd(θ), yd(θ)]

T at a designed
velocity vp, where θ is the path parameter to be designed.

Then, the course error is
χe = χ− χd (8)

where χd is the course angle of point P.
The displacement vector between Q and P is d = [xe, ye, 0]T ; therefore, the relative

velocity can be calculated by ḋ = [ẋe, ẏe, 0]T . The angular velocity of P can be expressed as
ωp = [0, 0, c(ρ)ρ̇]T , where c(ρ) is the path curvature and ρ is the parameter to be designed.

In the {S} frame, we have

R(χe)UQ = UP + ḋ + ωp × d (9)

where R(χe) =

cosχe −sinχe 0
sinχe cosχe 0

0 0 1

 is the rotation matrix, UQ = [U, 0, 0]T ,

UP =
[
vp, 0, 0

]T , and ωp × d =

∣∣∣∣∣∣
i j k
0 0 c(ρ)ρ
xe ye 0

∣∣∣∣∣∣ =
−c(ρ)ρ̇ye

c(ρ)ρ̇xe
0


Then, we can obtain {

ẋe = Ucosχe + yec(ρ)ρ̇− vp

ẏe = Usinχe − xec(ρ)ρ̇
. (10)

The derivation of Equation (8) is

χ̇e = χ̇− χ̇d = r + β̇− c(ρ)ρ̇ (11)

Therefore, the tracking error dynamic equations can be
ẋe = Ucosχe + yec(ρ)ρ̇− vp

ẏe = Usinχe − xec(ρ)ρ̇

χ̇e = r + β̇− c(ρ)ρ̇

. (12)

To achieve objective 1 in Section 3.2, we define the following Lyapunov function as

H1 =
1
2

[
x2

e + y2
e + (χe − χε)

2
]

(13)

where χε = −kεye and kε > 0.
Then, Ḣ1 is presented as

Ḣ1 = ẋexe + ẏeye + (χe − χε)(χ̇e − χ̇ε)

= xe
(
Ucosχe + yec(ρ)ρ̇− vp

)
+ ye(Usinχe − xec(ρ)ρ̇) + (χe − χε)(χ̇e − χ̇ε)

= xe
(
Ucosχe − vp

)
+ yeUsinχe + (χe − χε)(χ̇e − χ̇ε)

(14)

The speed vp can be designed as

vp = ρ̇ = k1xe + Ucosχe (15)
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where k1 > 0.
Then, Ḣ1 can be rewritten as

Ḣ1 = −k1x2
e ++yeUsinχe + (χe − χε)(χ̇e − χ̇ε)

= Π1 + (χe − χε)

[
r + β̇− c(ρ)ρ̇− kεxec(ρ)ρ̇ + kεU

sinχe

χe
(χe − χε) + Π2

] (16)

where Π1 = −k1x2
e − kεy2

e U sinχe
χe
≤ 0 and Π2 =

(
1− k2

ε

)
yeU

sinχe
χe

. We choose kε = 1 here,
then Π2 = 0.

Finally, the desired yaw angular velocity can be designed as

rd = −
[
β̇− c(ρ)ρ̇− kεxec(ρ)ρ̇ + k2(χe − χε)

]
(17)

where k2 = kεU + kc = U + kc, and kc > 0.
If r = rd, by substituting Equation (17) into (16), we can obtain

Ḣ1 ≤ (χe − χε)

[(
kεU

sinχe

χe
− k2

)
(χe − χε)

]
= −kc(χe − χε)

2 ≤ 0 (18)

Based on Lemma 1, the system is globally asymptotically stable.
To sum up, if the yaw angular velocity of the USV r changes according to Equation (17),

and the path parameter ρ and the velocity of guidance point P change according
Equation (15), then the tracking errors xe, ye and χe will converge to zero, which means that
objective 1 in Section 3.2 will be achieved.

5. Control Subsystem Design for Path Following Control of Underactuated USV

In this section, the dynamic controller is designed.

5.1. Backstepping-Based Dynamic Controller Design

Define the tracking error of the surge velocity as

ue = u− ud (19)

where ud is the desired surge velocity.
To achieve objective 2 in Section 3.2, we define the following Lyapunov function as

H2 =
1
2

u2
e (20)

Differentiating Equation (20), we can obtain

Ḣ2 = ueu̇e = ue(u̇− u̇d) = ue

(
Gu +

1
m1

τu − u̇d

)
(21)

where Gu = m2
m1

vr− d1
m1

u + τu
w

m1
, which contains the nonlinear term and the disturbance.

The control signal in the surge channel can be

τu = −m1(Gu + k3ue − u̇d) (22)

where k3 > 1
2 .

For yaw channel, to track the desired yaw angular velocity rd, we define the following
Lyapunov function

H3 = H2 +
1
2

r2
e (23)

where re = r− rd.
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Differentiating Equation (23), we can obtain

Ḣ3 = Π3 + re(χe − χε) + re ṙe = Π3 + re

[
Gr +

1
m3

τr − ṙd + (χe − χε)

]
(24)

where Π3 = Π1 − kc(χe − χε)
2, and Gr =

m1−m2
m3

uv− d3
m3

r + τr
w

m3
.

In the same way, the control signal in yaw channel can be

τr = −m3(Gr + k4re − ṙd + χe − χε) (25)

where k4 > 1
2 .

Therefore, if the control inputs are given by the following equations, the underactuated
USV can track the desired path P.{

τu = −m1(Gu + k3ue − u̇d)

τr = −m3(Gr + k4re − ṙd + χe − χε)
. (26)

The objectives 1 and 2 in Section 3.2 can be achieved under control input given
by Equation (26).

However, it should be noted that the control signals contains nonlinearities and
disturbances where it is very difficult to obtain their accurate expressions. Therefore, to
achieve objective 3 in Section 3.2, the RBFNNs are designed to approximate the nonlinear
terms and disturbances in Equation (26).

Remark 1. By using a backstepping approach, we can decompose the USV system into two subsys-
tems, with one handling the position variable and the other handling the velocity variable. Virtual
control laws are designed for each subsystem to achieve stability, and Lyapunov stability analysis is
performed to ensure the overall system stability. Specifically, in Section 4, the position tracking of
the USV is achieved by designing the desired velocity variables ud and rd. The control laws τu and
τr are then designed in Section 5 to ensure the USV can navigate with the desired velocities.

5.2. Radial Basis Function Neural Networks Design

To estimate the term Gu, we define the following RBFNN:

Gu = WT
u Hu(iu) + δu (27)

where Wu is the ideal weight vector of the NN, Hu(iu) is the vector consists of Gaussian
functions, iu is the NN input, and δu is the error.

Because the ideal weights are very difficult to obtain, then we define the estimated
value of Gu as

Ĝu = ŴT
u Hu (28)

where Ŵu is the estimated value of Wu, and Hu is short for Hu(iu).
Then the control input Equation (22) can be

τu = −m1
(
Ĝu + k3ue − u̇d

)
(29)

Define the following Lyapunov function as

H4 = H2 +
1
2

W̃T
u L−1

u W̃u (30)

where W̃u is the estimation error of the weights vector and Lu is a positive defined matrix.
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Differentiating Equation (30), we can obtain

Ḣ5 = −k3u2
e + ueG̃u − W̃T

u L−1
u

˙̂Wu = −k3u2
e + ue

(
W̃T

u Hu + δu

)
− W̃T

u L−1
u

˙̂Wu

= −k3u2
e + W̃T

u

(
ueHu − L−1

u
˙̂Wu

)
+ ueδu

(31)

Then, the updating law of Ŵu can be

˙̂Wu = Lu
(
ueHu − k5Ŵu

)
(32)

where k5 > 0.
In the same way, to estimate the term Gr, we define the following RBFNN:

Gr = WT
r Hr(ir) + δr (33)

where Wr is the ideal weight vector of the NN, Hr(ir) is the vector consists of Gaussian
functions, ir is the NN input, and δr is the error.

Because the ideal weights are very difficult to obtain, then we define the estimated
value of Gr as

Ĝr = ŴT
r Hr (34)

where Ŵr is the estimated value of Wr, and Hr is short for Hr(ir).
Then the control input Equation (25) can be

τr = −m3
(
Ĝr + k4re − ṙd + χe − χε

)
(35)

Define the following Lyapunov function as

H5 = H3 +
1
2

W̃T
r L−1

r W̃r (36)

where W̃r is the estimation error of the weights vector and Lr is a positive defined matrix.
Differentiating Equation (36), we can obtain

Ḣ5 = Π3 − k4r2
e + reG̃r − W̃T

r L−1
r

˙̂Wr = −k4r2
e + re

(
W̃T

r Hr + δr

)
− W̃T

r L−1
r

˙̂Wr

= Π3 − k4r2
e + W̃T

r

(
re Hr − L−1

r
˙̂Wr

)
+ reδr

(37)

Then, the updating law of Ŵr can be

˙̂Wr = Lr
(
re Hr − k6Ŵr

)
(38)

where k6 > 0.
Therefore, considering the unknown nonlinearity and disturbances, the control inputs

below can guarantee the USV to track along the desired path P, which means that the
control objectives 1 to 3 in Section 3.2 can be achieved under the control input given
by Equation (39). 

τu = −m1
(
Ĝu + k3ue − u̇d

)
τr = −m3

(
Ĝr + k4re − ṙd + χe − χε

)
Ĝu = ŴT

u Hu, ˙̂Wu = Lu
(
ueHu − k5Ŵu

)
Ĝr = ŴT

r Hr, ˙̂Wr = Lr
(
reHr − k6Ŵr

)
. (39)

However, the controller is time triggered, which means the control input should update
at every sampling instance. To deal with this problem, an event-triggered mechanism is
designed in the following subsection.
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5.3. Event-Triggered Mechanism Design

The event-triggered mechanism in surge channel can be designed as{
τu(t) = ηu(ti), ∀t ∈ [ti, ti+1)

ti+1 = in f {t ∈ R||αu| > βu}
. (40)

where βu > 0, αu = ηu(t)− τu(t), and ti is the ith triggered instance. ηu(t) is the virtual
signal to be designed. During the period from ti to ti+1, the control signal τu(t) will hold
constant as ηu(ti). The next event will be triggered when |αu| > βu, and the control signal
τu will become ηu(ti+1).

Based on Equation (40), for t ∈ [ti, ti+1), we have |ηu(t)− τu(t)| ≤ βu. Therefore, the
following equation is obvious

ηu(t) = τu(t) + γu(t)βu (41)

where γu(t) is a time-varying parameter satisfying |γu(t)| ≤ 1, γu(ti) = 0 and
γu(ti+1) = ±1.

Recalling Equation (30), we have

Ḣ4 = ue

(
Gu +

1
m1

τu − u̇d

)
− W̃T

u L−1
u

˙̂Wu (42)

By substituting Equation (41) into (42), we have

Ḣ4 = ue

[
Gu +

1
m1

(ηu(t)− γu(t)βu)− u̇d

]
− W̃T

u L−1
u

˙̂Wu

= ue

[
Gu +

1
m1

ηu(t)− u̇d

]
− 1

m1
γu(t)βuue − W̃T

u L−1
u

˙̂Wu

(43)

Then, the virtual control signal ηu(t) can be designed as

ηu(t) = −m1
(
Ĝu + k3ue − u̇d

)
− βutanh

(
βuue

µu

)
(44)

where βu > βu and µu > 0.
In the same way, for the yaw channel, the event-triggered mechanism can be

designed as {
τr(t) = ηr

(
tj
)
, ∀t ∈

[
tj, tj+1

)
tj+1 = in f {t ∈ R||αr| > βr}

. (45)

where βr > 0, αr = ηr(t)− τr(t), and tj is the jth triggered instance. ηr(t) is the virtual
signal to be designed. During the period from tj to tj+1, the control signal τr(t) will hold
constant as ηr

(
tj
)
. The next event will be triggered when |αr| > βr, and the control signal

τr will become ηr
(
tj+1

)
.

Based on Equation (45), for t ∈
[
tj, tj+1

)
, we have |ηr(t)− τr(t)| ≤ βr. Therefore, the

following equation is obvious

ηr(t) = τr(t) + γr(t)βr (46)

where γr(t) is a time-varying parameter satisfying |γr(t)| ≤ 1, γr
(
tj
)

= 0, and
γr
(
tj+1

)
= ±1.
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Recalling Equation (36), we have

Ḣ5 = Π3 + re(χe − χε) + re ṙe − W̃T
r L−1

r
˙̂Wr

= Π3 + re

[
Gr +

1
m3

τr − ṙd + (χe − χε)

]
− W̃T

r L−1
r

˙̂Wr
(47)

By substituting Equation (46) into (47), we have

Ḣ5 = Π3 + re

[
Gr +

1
m3

(ηr(t)− γr(t)βr)− ṙd + (χe − χε)

]
− W̃T

r L−1
r

˙̂Wr

= Π3 + re

[
Gr +

1
m3

ηr(t)− ṙd + (χe − χε)

]
− 1

m3
γr(t)βrre − W̃T

r L−1
r

˙̂Wr

(48)

Then, the virtual control signal ηr(t) can be designed as

ηr(t) = −m3
(
Ĝr + k4re − ṙd + χe − χε

)
− βrtanh

(
βrre

µu

)
(49)

where βr > βr and µr > 0.
Therefore, the proposed event-triggered RBFNN-based controller for the surge channel

is as follows 

τu(t) = ηu(ti), ∀t ∈ [ti, ti+1)

ti+1 = in f {t ∈ R||αu| > βu}

ηu(t) = −m1
(
Ĝu + k3ue − u̇d

)
− βutanh

(
βuue

µu

)
Ĝu = ŴT

u Hu, ˙̂Wu = Lu
(
ueHu − k5Ŵu

)
(50)

The controller for the yaw channel is as follows

τr(t) = ηr(ti), ∀t ∈
[
tj, tj+1

)
tj+1 = in f {t ∈ R||αr| > βr}

ηr(t) = −m3
(
Ĝr + k4re − ṙd + χe − χε

)
− βrtanh

(
βrre

µu

)
Ĝr = ŴT

r Hr, ˙̂Wr = Lr
(
reHr − k6Ŵr

)
(51)

At this point, all the control objectives 1 to 4 in Section 3.2 are achieved.
Based on the above content, we can draw the following theorem.

Theorem 1. For the under-actuated USV whose kinematics model and dynamics model given by
Equations (3) and (4), it can track the desired path P under the proposed event-triggered robust
path following the controller consisting of Equations (50) and (51), with velocities given by ud
and Equation (17).

The proof of Theorem 1 can be found in Appendix A.

6. Simulation Results

To verify the effectiveness of the proposed controller, simulations are carried out. The
model parameters are listed in Table 1, which can also be found in [4,6].
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Table 1. Parameters of the USV.

m1 (kg) m2 (kg) m3 (kg) d1 (kg/s) d2 (kg/s) d3 (kg/s)

28.135 45.568 131.423 100 200 150

Two cases are included in this section. In case 1, the control performances with
different controller parameters are evaluated, which helps us choose appropriate controller
parameters. In case 2, comparisons with other methods are made to reflect the superiority
of the proposed method.

The simulation platform used in this paper is MATLAB and the equation solver is a
fourth–fifth-order Runge–Kutta algorithm (ODE45).

6.1. Case 1: Performance with Different Controller Parameters

In this case, the desired path is given by{
xd(ρ) = R ∗ cosρ

yd(ρ) = R ∗ sinρ

where R > 0.
The initial position of the USV is Q0 = [50m, 0m]T , its initial yaw angle ψ0 = π

2 rad,
its initial surge velocity u0 = 0.01 m/s, its initial lateral velocity v0 = 0 m/s, its initial
yaw angular velocity is r0 = 0 rad/s, the simulation time is 120 s, the simulation step
∆t = 0.01 s, and no external disturbances are considered in this case.

The states u ∈ [0, 2.5 m/s], v ∈ [−0.5 m/s, 0.5 m/s], and r ∈ [−0.2 rad/s, 0.2 rad/s]
are selected as the input of the RBFNNs; the node number of each NN is 21; the Gaussian
function width of the RBFNN in the surge channel is 0.5, the width of the RBFNN in the
yaw channel is 0.1, and the center is uniformly distributed; and the initial weights are
all 0.1.

The simulation results are shown in Figures 3–6 (take k1, kc, neuron number, and βu
for example). Please note that in these figures, R is set as 40 m.

As shown in Figure 3a, we can see that even though the value of k1 is different, the
USV can still track the desired path with high accuracy. However, the smaller the value
of k1, the slower the USV converges to the desired path, as illustrated in Figure 3b. It
can be found that the event-triggered mechanism plays a role in the path-following of the
USV, where the control inputs are only updated when the event is triggered as shown in
Figure 3c. By comparison, the value of k1 is ultimately chosen as 0.1.

-40 -30 -20 -10 0 10 20 30 40 50

-40

-30

-20

-10

0
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20

30

(a) Trajectories of the USV. (b) Tracking errors.
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(c) Control inputs.

Figure 3. Tracking results with different k1 values (R = 40).

From Figure 4a, it can be seen that the USV is still able to accurately tack the desired
path even when different values of kc are selected. Different from k1, the value of kc not
only affects the convergence speed to the desired path, but also affects the tracking accuracy
of the surge velocity, which is illustrated in Figure 4b. The smaller the value of kc is, the
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smaller the surge velocity tracking error ue will be. However, the smaller the value of kc
is, the slower the USV converges to the desired path. In addition, It can be found that the
value of kc will also affect the number of event triggers. The larger the value of kc, the more
times the event will be triggered as shown in Figure 4c. By comparison, the value of kc is
ultimately chosen as 0.1.

-40 -30 -20 -10 0 10 20 30 40 50

-40
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-10

0
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20

30

40

(a) Trajectories of the USV. (b) Tracking errors. (c) Control inputs.

Figure 4. Tracking results with different kc values (R = 40).

The node number of the RBFNN is determined by comparing the control performance
with different node numbers. As shown in Figure 5, we can find that when the number
of neurons is five, although the USV can move along the desired path, it exhibits a signifi-
cant forward velocity tracking error. However, when the number of neurons is 21 or 50,
their control performances are similar. Since a larger number of neurons requires more
computational time, the final number of neurons is chosen to be 21.

A illustrated in Figure 6a, it can be observed that the value of βu has little impact on the
accuracy of path tracking for the USV. The value of βu primarily affects the event-triggered
times in surge channel, which in turn affects the tracking precision of surge velocity. It is
clear that the smaller the βu, the more times the event will be triggered. By comparison, the
value of βu is ultimately chosen as 15.
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(a) Trajectories of the USV. (b) Tracking errors.
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(c) Control inputs.

Figure 5. Tracking results with different neuron numbers (R = 40).

Finally, all the controller parameters are listed in Table 2.

Table 2. Controller parameters.

k1 kε kc k2 k3 k4 k5

0.1 1 0.1 kεU + kc 1 1 0.5

k6 βu βu µu βr βr µr

0.5 15 17 0.5 4 6 0.5
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The simulation is carried out to verify the vehicle behavior for a smaller R = 10 m.
In this condition, four different initial states are selected: [x1, y1, ψ1] = [15 m, 0, π

2 rad],
[x2, y2, ψ2] = [0, 15 m, π rad], [x3, y3, ψ3] = [−15 m, 0, 3π

2 rad], and
[x4, y4, ψ4] = [0, −15 m, 0]. The controller parameters are listed in Table 2. The results
are shown in Figure 7.

As shown in Figure 7a, for a smaller R = 10 m, the proposed controller can still
guarantee that the USV will track the desired path well, the tracking errors are bounded as
illustrated in Figure 7b, and the event-triggered mechanism works, as shown in Figure 7c.
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(a) Trajectories of the USV. (b) Tracking errors. (c) Control inputs.

Figure 6. Tracking results with different βu values (R = 40).
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(a) Trajectories of the USV.
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(b) Tracking errors.
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(c) Control inputs.

Figure 7. Tracking results with different initial states (R = 10).

6.2. Case 2: Comparison With Other Approaches

In this case, other two approaches including backstepping and time triggered RBFNN-
based backstepping are involved. The control laws of these two controllers are given by
Equations (26) and (39).

The initial states of the USV, the desired path, the set of the RBFNNs are all the
same as case 1. The desired surge velocity in this case is ud = 1.5 m/s, and the exter-
nal disturbance is [τu

w, τv
w, τr

w] = [5 + 10sin(0.3t)cos(0.15t)N, 2 + 6sin(0.3t)cos(0.05t)N, 3 +
sin(0.05t)cos(0.01t)Nm].

The simulation results are shown in Figures 8 and 9, and the control performance
comparisons are listed in Table 3.
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Table 3. Performance comparison.

Approach Backstepping RBFNN-Based
Backstepping Proposed Method

Model-free No Yes Yes

Robust No Yes Yes

IAE 350.00 252.88 256.58

RMSE 14.93 9.14 9.35

Triggering time 12,000, 12,000 12,000, 12,000 77, 293
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(a) Trajectories of the USV. (b) Tracking errors. (c) Control inputs.

Figure 8. Tracking results with different control methods (R = 40).
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Figure 9. Weights of the RBFNNs, triggering time intervals, and the estimated values of the RBFNNs.
(a) Weights of the RBFNNs. (b) Triggering instants and time intervals in each channel. (c) Estimated
value of the RBFNN in each channel.

Integral absolute error (IAE) can be calculated by IAE =
∫ T

0 |e(t)|dt, where
e(t) =

√
x2

e + y2
e and T is the simulation duration. Root mean square error (RMSE) can be

calculated by RMSE =
√

1
T
∫ T

0 e(t)2dt.
Integrating the errors in IAE captures the cumulative effect of position tacking errors

over the entire interval, providing a quantitative measure of the overall error. RMSE evalu-
ates the root mean square of the errors, which measures the dispersion between the desired
position and the true position of the USV, providing an overall understanding of the error
distribution. Therefore, the selection of IAE and RMSE as evaluation metrics is aimed
at comprehensively considering the cumulative effect and distribution characteristics of
position tracking errors. They provide a thorough assessment of the differences between
the desired position and the actual position of the USV and help compare the performance
of the algorithms.

From Figures 8a,b, it can be observed that the control accuracy of the backstepping
method tends to decrease significantly due to the external disturbances. However, for
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RBFNN-backstepping and the proposed method, due to the robustness of the NN, the
USV can still track the desired path with high accuracy. As shown in Figure 8c, the control
inputs only update when the event is triggered.

As shown in Figure 9a, each weight of the RBFNN in the surge and yaw channels is
bounded. The triggering time intervals in each channel are illustrated in Figure 9b. It can
be found that the maximum time intervals can reach up to 5.16 s and 5.59 s. Considering
the unknown model nonlinearity and external disturbances, Gr = m1−m2

m3
uv− d3

m3
r + τr

w
m3

.
Submitting the model parameters listed in Table 1, we can obtain Gr = −0.1326uv −
1.1414r + 0.0076sin(0.05t)cos(0.01t) + 0.0228. After the system stabilizes, the lateral velocity
and yaw angular velocity of the USV are relatively small. Hence, the actual value of Gr
will also be small (taking the example at t = 60 s, the actual value of Gr is only −0.0348).
Therefore, the weights of the RBFNN in the yaw channel are very small as shown in
Figure 9c.

From Table 3, we can find that, for the backstepping method, the IAE and RMSE of
position are much bigger than the ones of RBFNN-based backstepping approach or the
proposed method (backstepping: 350.00 >, proposed method: 256.58 >, and RBFNN-based
backstepping: 252.88). The fundamental reason for this situation is that the traditional
backstepping technique is a model-based method and its robustness is poor, while the
RBFNN can improve the robustness of the other two approaches. Comparing the proposed
method with RBFNN-based backstepping, the difference between the IAE and RSME of the
proposed method and the ones of the RBFNN-based backstepping are very small. However,
the triggering times of the proposed method in both the surge and yaw channels are much
less than the ones of the RBFNN-based backstepping method (proposed method: 77 times
in the surge channel and 293 times in the yaw channel; RBFNN-based backstepping:
12,000 times in both channels).

Above all, it is clear that the proposed method can guarantee the USV to track the
desired path accurately even if the unknown model nonlinearity and disturbances exist. In
addition, profiting from the designed event-triggered mechanism, which is different from
the time-triggered control approaches, there is no need for the proposed method to update
the control inputs at every sampling instant.

Although the control method proposed in this paper ensures stable navigation of the
USV under the influence of unknown nonlinearity and external disturbances, there is still
room for further improvement. For example, the method does not consider control input
constraints, the neural network structure parameters are manually set without optimization,
and it does not take into account the consideration of optimal performance criteria.

Remark 2. In Appendix A, the closed-loop system is proven to be GUUB, and we obtain the
following inequality:

Ḣ ≤ −λ1H+ λ2

By solving the above inequality, we can obtain the following results:

0 ≤ H ≤ λ2

λ1
+

(
H(0)− λ2

λ1

)
e−λ1t

whereH(0) denotes the initial value ofH.
Therefore, the tracking error satisfies:

||E || ≤

√
2λ2

λ1
+ 2
(
H(0)− λ2

λ1

)
e−λ1t

where E =
[
xe, ye, χe − χε, ue, re, W̃u, W̃r

]
Based on the above analysis, it can be concluded that the tracking error is bounded as time

progresses. Therefore, it is possible that there are some errors that do not converge to zero.
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7. Conclusions

In this paper, we proposed an event-triggered robust controller for underactuated
USVs to enhance their path-following capabilities. The guidance law is derived based on
the dynamic equations of the tracking error. To enhance the robustness of our approach,
we employed RBFNNs to approximate unknown nonlinearities and external disturbances.
Furthermore, we introduced event-triggered mechanisms that update control inputs only
when specific events occur. The simulation results demonstrated the effectiveness of
the proposed event-triggered robust controller and exhibited a strong robustness and a
significant reduction in triggering times.

In future research, we aim to address additional challenges, such as actuator saturation,
state constraints, and energy optimization. These aspects will be incorporated to further
enhance the performance and applicability of the proposed controller.
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Appendix A. Stability Analysis

Proof of Theorem 1. Consider the following Lyapunov function:

H =
1
2

[
x2

e + y2
e + (χe − χε)

2 + u2
e + r2

e + W̃T
u L−1

u W̃u + W̃T
r L−1

r W̃r

]
= H4 +H5 (A1)

By differentiating Equation (A1), we can obtain

Ḣ = ue

[
Gu +

1
m1

ηu(t)− u̇d

]
− 1

m1
γu(t)βuue − W̃T

u L−1
u

˙̂Wu

+ Π3 + re

[
Gr +

1
m3

ηr(t)− ṙd + (χe − χε)

]
− 1

m3
γr(t)βrre − W̃T

r L−1
r

˙̂Wr

= ue

[
Ĝu +

1
m1

ηu(t)− u̇d

]
− 1

m1
γu(t)βuue + W̃T

u

(
ue Hu − L−1

u
˙̂Wu

)
+ ueδu

+ Π3 + re

[
Ĝr +

1
m3

ηr(t)− ṙd + (χe − χε)

]
− 1

m3
γr(t)βrre

+ W̃T
r

(
reHr − L−1

r
˙̂Wr

)
+ reδr

(A2)

Substituting Equations (50) and (51) into (A2), we have

Ḣ = Π3 − k3u2
e −

1
m1

βuuetanh

(
βuue

µu

)
− 1

m1
γu(t)βuue + k5W̃T

u Ŵu + ueδu

− k4r2
e −

1
m3

βrretanh

(
βrre

µr

)
− 1

m3
γr(t)βrre + k6W̃T

r Ŵr + reδr

(A3)
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Because

0 ≤
∣∣βuue

∣∣− βuuetanh

(
βuue

µu

)
≤ 0.2785µu

0 ≤
∣∣βrre

∣∣− βrretanh

(
βrre

µr

)
≤ 0.2785µr,

(A4)

Equation (A4) can be re-expressed as

Ḣ ≤ Π3 − k3u2
e − k4r2

e −
1

m1

(
βu|ue|+ γu(t)βuue − 0.2785µu

)
+ k5W̃T

u Ŵu + ueδu

− 1
m3

(
βr|re|+ γr(t)βrre − 0.2785µr

)
+ k6W̃T

r Ŵr + reδr

(A5)

If ue < 0, we can obtain

βu|ue|+ γu(t)βuue =
(
γu(t)βu − βu

)
ue > 0

If ue ≥ 0, we can obtain

βu|ue|+ γu(t)βuue =
(
γu(t)βu + βu

)
ue ≥ 0

It should be noted that no matter what value ue takes, the value of
βu|ue|+ γu(t)βuue ≥ 0. In the same way, βr|re|+ γr(t)βrre ≥ 0.

Therefore, we have the following equation:

Ḣ ≤ Π3 − k3u2
e − k4r2

e +
0.2785µu

m1
+ k5W̃T

u Ŵu + ueδu +
0.2785µr

m3
+ k6W̃T

r Ŵr + reδr (A6)

Note that

k5W̃T
u Ŵu ≤

k5||Wu||2

2
−

k5
∣∣∣∣W̃u

∣∣∣∣2
2

; k6W̃T
r Ŵr ≤

k6||Wr||2

2
−

k6
∣∣∣∣W̃r

∣∣∣∣2
2

Therefore,

Ḣ ≤ Π3 − k3u2
e − k4r2

e −
k5
∣∣∣∣W̃u

∣∣∣∣2
2

−
k6
∣∣∣∣W̃r

∣∣∣∣2
2

+
0.2785µu

m1
+

k5||Wu||2

2

+
0.2785µr

m3
+

k6||Wr||2

2
+ ueδu + reδr

(A7)

Based on Young’s inequality, it is clear that

ueδu ≤
1
2

u2
e +

1
2

δ2
u; reδr ≤

1
2

r2
e +

1
2

δ2
r

Therefore,

Ḣ ≤ Π3 −
(

k3 −
1
2

)
u2

e −
(

k4 −
1
2

)
r2

e −
k5
∣∣∣∣W̃u

∣∣∣∣2
2

−
k6
∣∣∣∣W̃r

∣∣∣∣2
2

+
0.2785µu

m1
+

k5||Wu||2

2
+

0.2785µr

m3
+

k6||Wr||2

2
+

1
2

δ2
u +

1
2

δ2
r

(A8)
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Because

Π3 = Π1 − kc(χe − χε)
2 = −k1x2

e − kεy2
e U

sinχe

χe
− kc(χe − χε)

2

≤ −k1x2
e − kεUy2

e − kc(χe − χε)
2 ≤ 0,

then we can obtain

Ḣ ≤ −k1x2
e − kεUy2

e − kc(χe − χε)
2 −

(
k3 −

1
2

)
u2

e −
(

k4 −
1
2

)
r2

e −
k5
∣∣∣∣W̃u

∣∣∣∣2
2

−
k6
∣∣∣∣W̃r

∣∣∣∣2
2

+
0.2785µu

m1
+

k5||Wu||2

2
+

0.2785µr

m3
+

k6||Wr||2

2
+

1
2

δ2
u +

1
2

δ2
r

= −λ1H+ λ2

(A9)

where λ1 = min{k1, kεU, kc, k3 − 1
2 , k4 − 1

2 , 1
2 k5, 1

2 k6} > 0, and λ2 = 0.2785µu
m1

+ k5||Wu ||2
2 +

0.2785µr
m3

+ k6||Wr ||2
2 + 1

2 δ2
u +

1
2 δ2

r > 0.
From Lemma 2, Wu, Wr, δu, and δr are all bounded; therefore, λ2 is bounded. Based

on the above content, the closed-loop system is GUUB according to Lemma 3.

Remark A1. Based on Lemma 2, to guarantee that the closed-loop system is GUUB, the Lyapunov
functionH should meet with Ḣ ≤ −λ1H+ λ2, where λ1 and λ2 are all positive constants. In this
paper, λ1 is the minimum value among k1, kεU, kc, k3 − 1

2 , k4 − 1
2 , 1

2 k5, and 1
2 k6. To ensure that λ1

is always a positive constant, the values of k3 − 1
2 and k4 − 1

2 should be positive. Therefore, both k3

and k4 should be greater than 1
2 .

In addition, the event-triggered based controller should avoid the Zeno behavior.
For the surge channel, by recalling αu = ηu(t)− τu(t), we have

d
dt
|αu| =

d
dt
(αu ∗ αu)

1/2 ≤ |η̇u(t)| =

∣∣∣∣∣∣∣−m1

(
˙̂Gu + k3u̇e − üd

)
−

βuu̇e

cosh2
(

βuue
µu

)
∣∣∣∣∣∣∣ ≤ $u (A10)

It is clear that ˙̂Gu, u̇e and üd are bounded; therefore, a positive constant $u exists, such
that |η̇u(t)| ≤ $u.

Because αu(ti) = 0 and lim
t→ti+1

αu(t) = βu, the time interval ∆tu = ti+1 − ti ≥
βu
$u

> 0,

which means the Zeno behavior is avoided.
In the same way, it is easy to prove that the Zeno behavior in the yaw channel can also

be avoided.
At this point, the proof of Theorem 1 is completed.
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