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Abstract: It is necessary to determine the volume of water contained in a tank for a wide range of
applications, such as the automation and monitoring of industrial operations. In the context of the
marine industry, the aforementioned information plays a vital role in the effective management of
submerged devices, specifically in relation to their depths and/or inclinations. In these cases, it is not
feasible to quantify the volume of liquid in a tank by means of direct measurements, owing to the
fact that devices can be subjected to changes in their orientation. This variation in inclination could
have a variety of causes, such as the implementation of automated emersion–immersion maneuvers
in a TEC or variations in depth in an AUV. Nevertheless, it can be deduced by considering the level
of the tank and its geometric properties. This paper presents a new methodology-based sensorial
system (composed of three capacitive sensors and an inclinometer) for accurate determination of the
volume of a liquid contained within a cylindrical tank subjected to full variations in its orientation.
The effectiveness of the proposed methodology-based sensorial system has been verified by the
results obtained from experiments conducted on a laboratory platform, thus demonstrating the high
reliability of the model experiment and the relative errors study carried out.

Keywords: methodology-based sensorial system; renewable energy; tidal energy converters; control
ballast system; volume measurement

1. Introduction

Submersible and semi-submerged devices have, in recent times and in the particular
case of the marine sector, proven to be highly valuable instruments for deep-sea applications
of different natures [1–4], and the successful execution of certain tasks requires correct
control of both position and orientation. This can be achieved by employing a control
ballast system (CBS). The CBS operates by manipulating the weight–buoyancy forces of
submerged devices, which is achieved by modifying the volume of the water in a series of
tanks. The CBS is widely known for its compatibility with low fluid velocities and its ability
to minimize energy consumption. However, it is important to note that the CBS is limited
by its capacity to generate exclusively vertical forces. The utilization of this control system
is applicable to semi-submersible platforms equipped with wind turbines [5], enabling
the maintenance of a desired null orientation during the operational phase, regardless
of the presence of wave and/or wind disturbances [6]; autonomous underwater vehicles
(AUVs) [7,8], in order to control their depths and trim when carrying out operations such
as submarine surveys, rescues [1,2], and cable laying [3]; and technologies that use the
kinetic energy of water currents to generate power, usually called tidal energy converters
(TECs), which employ the CBS in order to carry out automated emersion and immersion
maneuvers [9–11].

J. Mar. Sci. Eng. 2023, 11, 2316. https://doi.org/10.3390/jmse11122316 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11122316
https://doi.org/10.3390/jmse11122316
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0001-8778-3375
https://orcid.org/0000-0002-6153-3498
https://orcid.org/0000-0002-7237-9182
https://orcid.org/0000-0002-9327-8030
https://doi.org/10.3390/jmse11122316
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11122316?type=check_update&version=1


J. Mar. Sci. Eng. 2023, 11, 2316 2 of 24

If we focus on the performance of the automated emersion and immersion maneuvers
of TECs, the use of the CBS provides these generators with the possibility of automatically
changing their orientation and depth during the emersion–immersion maneuvers. This
results in a great reduction in costs regarding the installation and operation and mainte-
nance (O&M) tasks of these devices when they operate in marine environments, because
it requires the use of general purpose ships rather than special high-cost vessels [12–16].
If the CBS control required in order to carry out the aforementioned maneuvers is to be
successfully implemented, it is extremely important to obtain an accurate measurement
of the volume of the liquid contained within the ballast tanks of the TEC [17]. This mea-
surement is susceptible to alterations in both the position and orientation of the device
during the execution of these maneuvers. The liquid contained inside the ballast tanks
is, therefore, similarly influenced by these motions, thus leading to challenges regarding
accurate quantification of the volume of water. Furthermore, in other different sectors,
such as transportation, it is important to precisely establish the quantity of liquid main-
tained inside tanks, especially when they undergo changes in their orientations, so as to
estimate and improve the operational capabilities of a variety of vehicles such as automo-
biles [18] or maritime vessels [19–21] when their orientation changes. This area of research
is consequently still being actively studied.

To the best of our knowledge, there are no findings regarding sensors that are capable
of directly measuring the volume of liquid in a non-null orientation tank. However, several
technologies and methodologies with which to quantify the volume of liquid contained
in a tank exist within the industrial sector [22]. For example, continuous-height liquid
measurement [23] considers the geometric characteristics of the tank (cylinders, spheres,
rectangles, squares with semi-spherical ends, etc.) and is employed to calculate the volume
of the liquid contained inside the tank. The selection of a suitable level sensor is contingent
on several factors, including the characteristics of the fluid (e.g., temperature, pressure,
density, or dielectric properties), the specific nature of the process (e.g., foam formation,
bubble generation caused by vibrating agitators, or the presence of suspended materials),
and the installation conditions (e.g., whether the system is open or closed to the atmosphere
and the geometric shape of the storage tank) [24,25]. Furthermore, there are a variety of level
sensors, which can be categorized into three distinct measurement classifications [26,27]:
(i) the displacement method, which involves the utilization of a float, commonly referred to
as a buoy, which undergoes displacement in accordance with the level of the liquid. These
sensors are typically used in unenclosed tanks. They can be classified as either mechanical
or magnetic. Their main limitations include the potential for the movement of the float
to be influenced by turbulence within the liquid [28]; (ii) hydrostatic pressure, which is
produced by the vertical column of liquid contained in the tank. These sensors are typically
employed in enclosed containers. They may take the form of piezo-resistive, diaphragmatic,
or Bourdon tube variants [29]. One disadvantage associated with these sensors pertains to
their ability to produce a proportional assessment of the liquid height on the basis of only
the pressure detected at the base of the tank. This method relies on the assumption that the
density of the liquid remains constant and is known; (iii) the use of the electrical properties
of the liquid, which can make the sensors employed conductive [30] or capacitive [31],
along with materials that have the capacity to absorb or reflect radiation, such as ultrasonic
sensors [32] or radar [33].

With regard to the last measurement category, the conventional methods employed
to measure levels of liquids necessitate the use of capacitive sensors [34]. A metallic
rod that is submerged within the liquid and serves as an electrode is required for the
process of measuring the level of the liquid. The metallic walls of the tank function as the
opposite electrode. The capacitance measured has a clear relationship with the level of
liquid inside the tank as a result of the influence of the dielectric constant of the liquid on
the total capacitance of the system. When studying volume measurement, the capacitive-
type sensor [35] is commonly employed in tanks affected by changes in orientation, as
evidenced in several research works. For example, the analysis presented in [36] examines
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a sensor composed of two concentric cylinders constructed from insulating material. An
additional cylinder separates these cylinders, resulting in an air gap between the inner
and intermediate cylinders. The performance of the sensor was evaluated for various
orientations of the tank. The experiments were conducted at various inclinations with
angles of up to π

6 rad, resulting in an error rate of 20%. A capacitive detecting device
with four electrodes affixed to the inner surfaces of a cylindrical tank was developed
in [37]. The device has the capability to not only determine the quantity of liquid contained
within the container but also estimate the inclination of the tank itself. The most important
limitation observed in the experiments conducted concerns the inadequate measurement
of angle capacities over π

6 rad. There are also specific cases in which the measurement of
levels of liquids and inclinations was found to be difficult when employing the proposed
methodology. The sensor configuration discussed in [38] consists of four electrodes placed
on two parallel flat plates. It takes advantage of three capacitance measurements in order to
determine the level of a liquid. The proposed sensor described in this study is not suitable
for use in cylindrical tanks. Furthermore, as occurs with the sensor designed in the previous
work, there are specific cases in which it can be complicated to use it to take measurements.

Keeping the aforementioned problems regarding the attainment of the accurate mea-
surement of the volume of liquid contained in a tank in mind and with the intention of
dealing with this limiting factor, this paper presents a new methodology-based sensorial
system with which to determine the volume of liquid contained in a cylindrical tank sub-
jected to full variations in its orientation. The main contributions made by this research to
the state-of-the-art method are the following: (i) the proposed solution utilizes a sensory
system consisting of three capacitive-level sensors and an inclinometer to measure the
amount of liquid within a cylindrical tank. The current design has the ability to ascertain
the quantity of water, despite variations in the angle with respect to the horizontal plane;
(ii) calculation of the volume is conducted by analyzing the configuration of the cylindrical
water wedge and categorizing cases based on the data provided by the set of four sensors;
(iii) the utilization of the suggested methodology makes it possible to solve particular cases,
such as those shown in previous studies [37,38]; (iv) the capacitive system described in this
study detects variations in the capacitance by modifying the separation between the capaci-
tor plates rather than changing the dielectric constant, as observed in the studies mentioned
above; and (v) the proposed methodology-based sensorial system accommodates variations
in the tank tilt and provides accurate volume measurement in order to ensure the ability
to control the depths and/or orientations of submerged or semi-submerged CBS-based
devices in a safe and reliable manner.

The remainder of the paper is organized as follows: Section 2 provides a detailed
description of the proposed sensorial system based on the set of four sensors (two capac-
itive circular sensors, a capacitive axial sensor, and an inclinometer), with the objective
of measuring the volume of ballast water in an inclined cylinder. Section 3 presents the
proposed methodology-based sensorial system with which to determine the volume of
liquid contained in a cylindrical tank, including the different situations associated with the
distribution of a water wedge within the inclined cylinder and the redundant measure-
ments. Section 4 defines the prototype, the arrangement of the capacitive sensors, and the
equipment required. The experimental results and relative errors study are presented in
Section 5. Finally, Section 6 shows our conclusions and future research work.

2. Description of the Proposed Capacitive Sensors

Ballast tank management is frequently employed in order to execute the movements
of marine equipment. The appropriate manipulation of these ballast tanks facilitates the
application of forces and/or torques to the device, thus making it possible to control their
depths and/or orientations [39–41]. The accurate measurement of the volume of seawater
contained within the device is necessary. Cylinder-shaped tanks are commonly employed
owing to the need for hydrodynamic external designs. It was necessary to design the
sensorial system described herein in such a way as to measure the volume of seawater
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in a cylindrical tank, regardless of its orientation with respect to its two main axes. This
system consists of an inclinometer and three capacitive sensors. The inclinometer provides
the rotational angle of the cylinder with respect to the horizontal plane. Given that the
configuration of the water within the cylinder is unaffected by the remaining two angles, it
may be concluded that these angles are not necessary. The experimental setup involves the
use of three capacitive sensors, two of which are circular in shape and are positioned on
the flat surfaces of the cylinder, and a third sensor, which is a copper rod positioned along
the longitudinal axis of the cylinder, passing through its covers.

Figure 1 illustrates the Catia [42] exploded view of the proposed circular sensor
for each flat face, and the most important parts are listed. The real implementation of
these parts will be shown in Section 4. The metallic plate (2) located on each cover (1) is
integrated within a fixed polyvinyl chloride (PVC) structure and is covered with a layer
of vinyl (6), which serves as constant dielectric material and is in direct contact with the
seawater. The metallic plate has a radius equivalent to that of the cylinder (4), with a
central hole (5) designed to accommodate the longitudinal rod, which also traverses both
the top and the bottom of the cylinder. It is necessary to include a conductor aluminum
ring (8) in order to facilitate the attachment of the cover to the cylinder. The aluminum ring
incorporates a gap (7) designed to accommodate a rubber gasket (3) to prevent water from
getting out. This space, together with the gasket, serves the purpose of ensuring a secure
and hermetic seal for the cylinder.

Figure 1. Diagram of the cylinder head of the proposed system.

Water inside the tank and the aluminum rings, which are in direct contact with the
seawater, makes up the desired electrical reference (zero mass) comprising the second
fictitious plate of each of the capacitors. The aforementioned electrical properties of the
seawater facilitate the use of this electrical reference.

Measurement of the Wet Surface

The capacitance measurement of the axial sensor makes it possible to determine the
wetted length of the coated rod without the need for any preliminary calculations. However,
the wet, plain surface of each of the circular capacitors, denoted as Swet, can be determined
by placing a metallic plate on each of both sides of the cylindrical construction. This
is determined by considering the height of the water, referred to as Hwet, which makes
contact with the circular metallic plate during the measurement process. In order to build a
correlation between these two variables, which are illustrated in Figure 2, it is necessary
to follow certain intermediary steps. The first step is that of establishing the correlation
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between Hwet, and the angle ζ that surrounds the points of water situated on the periphery
of the cylindrical surface, which is obtained as follows:

Hwet(m) = R ·
(

1 + cos
ζ

2

)
(1)

where R represents the radius of the circular sector.

Figure 2. Main parameters in a circular metallic plate.

The wet surface, Swet(ζ), can be expressed as

Swet(ζ)(m2) = πR2 · 2π − ζ

2π
+ R2 · sin

ζ

2
· cos

ζ

2
(2)

where 0 ≤ ζ ≤ 2π. The above equation can be simplified in the following manner:

Swet(ζ)(m2) = R2 ·
(

π − ζ

2
+

1
2

sin ζ

)
(3)

Expression (3) is then reorganized in order to obtain the following transcendental equation:

2 ·
(

π − Swet(ζ)

R2

)
= ζ − sin ζ (4)

which can be solved numerically and then tabulated by means of iterative methods. The
process of determining the angle ζ from Swet has been implemented as a dichotomic search,
since Swet is a vector that is both ordered and increasing (the graph of the function, ζ − sinζ,
which shows that it is tonically increasing, as can be seen in Figure 3).
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Figure 3. Function ζ − sin ζ for 0 ≤ ζ ≤ 2π (rad).
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Finally, Hwet is determined by combining expressions (1) and (4) and the wet surface,
Swet, measured by the capacitance. This leads to the attainment of the following:

Swet(m2) =
R2

2
·
[

2π − 2cos−1
(

Hwet

R
− 1
)
+ sin

(
2cos−1

(
Hwet

R
− 1
))]

(5)

The relationship between the capacitance of the circular sensor and the wet surface is
well-known to be proportional. In order to calibrate and determine the wet surface area
of each metallic plate, it is important to know the capacitance of the capacitor under both
dry and fully wet conditions. These measurements have been determined by means of
experimental tests on the real platform, as described in Section 4.

3. Proposed Methodology

This section examines the different scenarios into which the water volume within a
cylindrical tank of specified dimensions can be divided, regardless of its inclination angle.
These cases are investigated separately owing to their different analytical requirements.
The measurements are conducted under optimal circumstances, in which the sensors are
assumed to be free from any potential sources of error. The definitions of the variables used
are illustrated in Figure 4 and are the following:

- ϕ (rad): Inclination of the longitudinal axis of the cylinder with regard to the horizon-
tal plane.

- Hwet1 (m): Vertical distance between the water level and the first flat side of the cylinder
(denoted by the subscript 1 to represent the first sensor).

- Hwet2 (m): Measurement of the length of the axial sensor under wet conditions (denoted
by the subscript 2 to represent the second sensor).

- Hwet3 (m): The vertical position of the water level in relation to the second flat surface
of the cylinder (denoted by the subscript 3 to signify the third sensor).

- Hdry1
(m) = 2R− Hdry1

: The vertical distance between the dry area and the first flat
side of the cylinder, where R corresponds to the radius of the cylinder.

- Hdry2
(m) = L− Hdry2

: The dry length of the axial sensor, where L corresponds to the
length of the cylinder.

- Hdry3
(m) = 2R− Hdry3

: The vertical distance between the dry area and the second flat
surface of the cylinder.

- ε→ +0: A mathematical term that represents the smallest expected positive angle for
the inclination of the longitudinal axis.

Figure 4. Lateral view of the half-full cylindrical tank.

The measurements referred to as “dry heights” or “dry lengths” are derived from
the aforementioned data in an indirect manner. The following subsections deal with the
different cases into which the methodology can be separated.
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3.1. Volume of Liquid Contained in a Cylindrical Tank of Infinite Length

This case represents a cylindrical tank of radius R and an infinite length, which is
rotated at an angle ϕ with respect to the horizontal plane. According to the hypothesis
of infinite length, the most straightforward scenario in which to determine the volume of
water within the cylindrical tank occurs when the water does not fully wet the flat side
of the cylinder at the specified angle of inclination. This particular case is analyzed first
and is illustrated in Figures 5 and 6. Figure 5 shows the case in which Hwet1 < R and
depicts the representation of the reference frame as an orthogonal reference defined by
the orthogonal vector set {u, v, w}, which is defined only for the integral calculation of the
volume. The x-axis (defined by vector u) is perpendicular to the wet plain surface of the
circular capacitor and follows the longitudinal axis of the cylinder; the z-axis (defined by
vector w) is vertical and points downwards; and the y-axis (defined by vector v) must form
a right-handed system with respect to the x,z-axis.

u
v

w

Figure 5. Three-dimensional view of the half-full cylindrical tank.

The metallic plate corresponds to the initial flat side of the cylinder and is identified
by the subscript 1. Furthermore, Figure 6 illustrates the case in which Hwet1 > R, and the
two points of interest for the volume calculation are specified in detail below.

- G1(m) =
Hwet1−R

tan ϕ equals the point where the axial sensor detects the water level.
Hwet1 < R⇒ G1 = 0, although the axial sensor does not detect the water level.

- Lwet1(m) =
Hwet1
tan ϕ equals the maximum range of water over the circular contour of

the cylinder.

The volume of liquid enclosed by the cylinder can be determined by evaluating the
following volume integral, which is bounded by

- The water-free surface, which is the horizontal surface that limits the upper part of the
water contained and is located between 0 and w

tan ϕ + G1.

- The cylindrical surface has an infinite length. This surface limits the bottom of the
water contained and is located between −

√
R2 − w2 and

√
R2 − w2.

- The only flat side of the cylinder is partially wet and is located between R− Hwet1

and R.
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V(m3) =
∫∫∫

du · dv · dw =
∫ R

R−Hwet1

∫ √R2−w2

−
√

R2−w2

∫ w
tan ϕ +G1

0
du · dv · dw =

=
∫ R

R−Hwet1

∫ √R2−w2

−
√

R2−w2

(
w

tan ϕ
+ G1

)
· dv · dw =

(6)

=
∫ R

R−Hwet1

2
√

R2 − w2 ·
(

w
tan ϕ

+ G1

)
· dw =

= G1

(
w
√

R2 − w2 + R2 · arcsin
w
R

)
− 2R3

3 tan ϕ

(
1− w2

R2

) 2
3

∣∣∣∣∣∣
R

R−Hwet1

Figure 6. Lateral view of the cylinder.

The expression above makes it possible to determine the volume of liquid enclosed
within a cylindrical tank with a wide range of inclination. A comprehensive analysis of
the expression (6) necessitates the decomposition of this volumetric computation into the
specific scenarios described below.

3.2. Partially Wet Flat Faces

Expression (6) is used twice, once for each of the flat sides of the cylinder when
considering the water volume within a cylinder of diameter 2R and a finite length L that
partially wets both sides owing to their inclinations. The assessment of this specific case is
conducted in accordance with Figure 7. The volume of water contained can be calculated
using expression (6), which is achieved by subtracting the volumes, V1 and V3, obtained
using expression (6) and the wet heights, Hwet1 and Hwet3 , on each flat side of the cylinder.
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V(m3) = V1 −V3 = G1

(
w
√

R2 − w2 + R2 · arcsin
w
R

)
− 2R3

3 tan ϕ

(
1− w2

R2

) 2
3

∣∣∣∣∣∣
R

R−Hwet1

(7)

−

G3

(
w
√

R2 − w2 + R2 · arcsin
w
R

)
− 2R3

3 tan ϕ

(
1− w2

R2

) 2
3

∣∣∣∣∣∣
R

R−Hwet3

Figure 7. Lateral view of the cylinder with partially wet flat faces.

3.3. A Partially Wet Flat Face

The case shown in Figure 8 can be seen as a specific circumstance of the preceding
case, where Hwet3 equals zero. The volume of the associated wedge is consequently zero,
V3 = 0.

V(m3) = V1 −V3 = G1

(
w
√

R2 − w2 + R2 · arcsin
w
R

)
− 2R3

3 tan ϕ

(
1− w2

R2

) 2
3

∣∣∣∣∣∣
R

R−Hwet1

(8)

Figure 8. Lateral view of the cylinder with a partially wet flat face.
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3.4. Horizontal Singularity

When the angle ϕ approaches zero and is limited to a range of −ε ≤ ϕ ≤ ε with
ε 7−→ 0, the tangent function can be approximated as tan ϕ ≈ ϕ. This approximation
leads to badly defined divisions. The volume provided by expression (6) has a high value,
V ≈ ∞, necessitating special consideration in this particular scenario. Figure 9 depicts the
singularity with Hwet1 ≈ Hwet3 > R.

Figure 9. Lateral view of the horizontal cylinder.

The amount of water within the cylinder can be determined immediately for small
angles by calculating the average of the wet surfaces Swet1 and Swet3 , as represented by the
following expression:

V(m3) =
Swet1 + Swet3

2
· L (9)

3.5. One Totally Wet Face, While the Other Face Is Partially Wet

The case in question corresponds to the scenario presented in the Figure 10 and is
similar to Section 3.3. The volume of liquid contained is determined by subtracting the
volume occupied by air, V3, as determined using expression (6), from the total capacity of
the cylindrical tank, Vcyl = πR2L. The vertical extent of the entire water inside the cylinder
is denoted by H. This parameter is required in order to carry out redundant measurements,
as demonstrated in Section 3.7.

V(m3) = Vcyl −V3 = πR2L−

G3

(
w
√

R2 − w2 + R2 · arcsin
w
R

)
− 2R3

3 tan ϕ

(
1− w2

R2

) 2
3

∣∣∣∣∣∣
R

R−Hdry3

(10)

Figure 10. Lateral view of the cylinder when one face is totally wet and the other is partially wet.

3.6. One Totally Wet Face, While the Other Face Is Dry

An analysis of Figure 11 shows that the current case can be characterized as a vertical
cylinder, because the volume of the water wedge displaced in this cylinder is equivalent to
the volume of the dry wedge. This equivalence is owing to the symmetry of the tank. In
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this particular scenario, it is imperative to measure the water level, denoted as Hwet2 , by
utilizing the axial sensor. The volume can subsequently be determined as follows:

V(m3) = Swet1 · Hwet2 (11)

Figure 11. Lateral view of the cylinder when one face is totally wet and the other is dry.

3.7. Redundant Measurements

All possible scenarios regarding how the ballast water is distributed inside the tank
are covered by measuring the inclination angle of the cylinder with respect to the horizontal
plane, ϕ, and employing the three capacitive sensors, as proposed. In certain cases, only one
capacitive sensor assumes the responsibility of determining the volume of water. However,
in other scenarios, the measurements obtained from all or some sensors may be redundant,
which makes it possible to correct errors. These situations are summarized in Table 1,
in which the water levels on either of the flat surfaces of the cylinder are represented by
the variables Hwet1 and Hwet3 , while the measurement obtained from the axial sensor is
represented by Hwet2 .

Table 1. Measurement range of the sensors for ε < ϕ < π
2 with ε→ +0.

Case Hwet1 Hwet2 Hwet3 Redundant Measurement

Section 3.2 (0, R) 0 (0, R) Hwet3 = Hwet1 − L · tan ϕ

Section 3.2 [R, 2R) (0, L) (0, R) Hwet3 = Hwet1 − L · tan ϕ

Hwet2 =
Hwet1−R

tan ϕ

Section 3.2 (R, 2R) L [R, 2R) Hwet3 = Hwet1 − L · tan ϕ

Section 3.3 [R, 2R) (0, L) 0 Hwet2 =
Hwet1−R

tan ϕ

Section 3.5 2R
(

R
tan ϕ , L

)
(0, R) Hwet3 = (H − L) · tan ϕ + 2R

⇒ H = Hwet2 − R
tan ϕ

In the case of an angle ϕ < −ε, the volume can be determined using a comparable
approach, as in the case in which the angle is ϕ > ε through the permutation of Hwet1
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by Hwet3 and the utilization of tan(−ϕ) in the operations. The measurement range of the
sensors for the specific case presented in Section 3.4 is presented in Table 2.

Table 2. Measurement range of the sensors for −ε < ϕ < ε with ε→ +0.

Case Hwet1 Hwet2 Hwet3 Redundant Measurement

Section 3.4 (0, R) 0 (0, R) Hwet3 ≈ Hwet1

Section 3.4 [R, 2R) L [R, 2R) Hwet3 ≈ Hwet1

4. Description of the Experimental Setup

The experimental platform consists of a cylindrical methacrylate tank with the follow-
ing characteristics: 500 mm in length with an external diameter of 200 mm and a thickness
of 2.5 mm. The methacrylate cylinder is transparent, thus facilitating the observation of the
amount of water and allowing an analysis of each particular case of the cylindrical tank.
Figure 12 depicts the laboratory prototype designed, while Figure 13 shows the different
parts of the cylinder head described in Section 2.

Figure 12. Experimental prototype.

(a) (b)

Figure 13. Cont.
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(c) (d)

(e) (f)

(g) (h)

(i)

Figure 13. Main parts of the prototype designed. (a) Outer part of the cylinder cover (1); (b) inner
part of the cylinder cover (1); (c) aluminum ring piece (8); (d) rubber gasket (2); (e) metallic plate (2);
(f) metallic plate fitted in the cover; (g) inner view of the cover with layer of vinyl (4); (h) Inertial
Measurement Unit (IMU); (i) positions of the rod and the IMU.

The cylinder is covered with two round PVC covers (see Figure 13a,b). The covers
are circular, which guarantees their solid and compact attachment to the extremities of the
tank. These covers have a radius of 240 mm and a thickness of 25 mm. These cylinder
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covers are held in place with aluminum rings (see Figure 13c) to which the PVC covers are
screwed. The ring component is structurally linked by an aluminum profile, thus increasing
the stability and rigidity of the prototype. The primary function of this mechanism is to
effectively secure the cylinder within the chassis and, therefore, minimize any superfluous
motions or vibrations that may occur during the rotation process. The ring is attached
to the cylinder electrically, allowing the water to come into contact with it. The primary
objective of the design of the prototype was to establish a stable and regulated setting for
the quantification of water volume and the examination of the case from any inclination
angle ϕ within the range −π

2 ≤ ϕ ≤ π
2 (rad).

Figure 13e shows the appearance of one of the proposed metallic plates, which func-
tions as the first capacitor plate. This consists of a brass plate with a thickness of 5 mm and a
radius equal to that of the cylindrical tank. This metallic plate is securely fitted into the PVC
cover (see Figure 13f). The other capacitor plate for all capacitive sensors is the aluminum
frame that serves as a support for the cylindrical tank and the metal casing of the assembly
of the cylinder, which act as the mass (electrical reference) of the measuring system. It
should be noted that the rod must traverse the circular sensors, resulting in a small area
near the center of the metallic plate that would need to be excluded. However, for the
initial calculations, this area is deemed insignificant. In order to fulfill this need, a brass rod
with a radius of 2 mm was, therefore, selected. Furthermore, the inner sides of each of the
cylinder covers that come into contact with water are coated with vinyl (see Figure 13g).
This coating serves as both a dielectric material and a layer, effectively preventing direct
contact between the disc and the water. Both covers are additionally equipped with a
through hole with a radius of 2 mm, which serves to accommodate the longitudinal rod
used as the third sensor. The rod is encased in a thermorectile ethylene tube, serving as a
dielectric material to prevent direct contact with water, similar to the brass discs. In order
to quantify the rotational angle of the cylinder, an Inertial Measurement Unit (IMU) is
employed (see Figure 13h), which is positioned in the upper central location on the outer
side of the cylinder, as shown in Figure 13i.

4.1. Capacitive Measurement

The experimental capacitance under wet/dry conditions was first determined exper-
imentally by employing the traditional means of measurement consisting of analyzing
the resonance frequency in a LbC circuit [43], where Lb is an audio air coil calibrated with
different values from 1 mH to 10 mH. The capacitances obtained after carrying out a large
set of experiments with the capacitive sensors are summarized in Table 3.

Table 3. Measurement of the capacitive sensors.

Circular Sensor Capacitance 1 Completely Dry C1D = 0.51 nF
Completely Wet C1W = 11.89 nF

Circular Sensor Capacitance 2 Completely Dry C2D = 0.13 nF
Completely Wet C2W = 0.62 nF

Circular Sensor Capacitance 3 Completely Dry C3D = 0.44 nF
Completely Wet C3W = 12.45 nF

4.2. Architecture of Instrumentation

Each of the capacitive sensors is connected to a signal conditioner, the Sitron SC
404 [44], for the purpose of converting the capacitance into a 4 to 20 mA current. The
Iso2-Flex I/V converter [45] converts the current signal into a voltage signal with a range
of 0 to 10 V. Each of the voltage signals obtained is acquired by the NI9215 NI Voltage
Module [46] provided with AD Converters, while the IMU information, Micro Strain
3DM-GX3®-25 [47], is read by the NI9870 Module [48] by means of an RS-232 connection.
The IMU is powered by an Isolated Module DC-DC Converter [49]. Both modules are
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integrated into a cRIO-9074 [50], which is connected to a PC Host [51] using an Ethernet
connection, as illustrated in Figure 14.
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Figure 14. Instrumentation architecture.

The Sitron SC 404 has the ability to detect and interpret many capacity ranges. The
conditioner uses a gain of 1 and subgain of 1, with a read range covering 3750 pF to 5500 pF
for capacitive sensors on the cover. The capacities C1W and C3W are greater than this range,
and it is consequently necessary to adjust the capacitance of each sensor using the topology
serial/parallel configuration, as shown in the following schematic diagram (Figure 15).

Figure 15. Circuit designed to accommodate the capacitive sensor of the reading range of the covers.

This method allows the range of the sensors to correspond with the signal conditioner
span, which obtains the capacitance measurement from the capacitor set, denoted as CT .
The desired variable C represents the capacitance of the circular sensor, which is determined
by the following expression:

C(nF) =
CS · (CT − CP)

CS − CT + CP
(12)

The parallel capacitor, denoted as CP, has a capacitance value of 3.4 nF and serves the
purpose of increasing the capacitance when the sensor is in a dry state. The serial capacitor, CS,
has a capacitance value of 2.3 nF and serves to limit the capacity range of the sensor in order to
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correspond with that of the conditioner. The signal conditioner needs a gain of 2 and a subgain
of 1 for the rod, resulting in a capacitance range spanning from 900 pF to 1500 pF. In this case, it
is necessary to increase the capacity of the rod with a parallel capacitor of 800 pF.

5. Experimental Results

This section presents a selected set of results showing the voltage output data of the
converter V/I, the corresponding wet height values, Hwet, for each of the sensors, and the
resulting volume calculated during the experimental tests using the proposed methodology.
The figures presented show the unprocessed data obtained from the experiments in order to
determine the volume of water inside the prototype at different angles or at the same angle
while it was being filled or emptied. The data have not undergone any form of processing
or filtration, except when indicated.

Figures 16 and 17 represent the signals obtained when the volume of water contained
remained constant at 6 and 10 l, respectively, while assuming different orientations. The graphs
are divided into four different parts, each of which represents the value of a specific angle, in
order to illustrate the cases discussed in Section 3. Region A corresponds with Section 3.4, in
which the angle value is approximately zero. Region B is associated with Section 3.2, in which
the angle has an approximate value of π

18 rad. Furthermore, Region D pertains to Section 3.6, in
which the angle measures around π

3 rad. Region C represents an angle of π
9 rad, as shown in

Figures 16 and 17, corresponding to Sections 3.3 and 3.5, respectively.
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Figure 16. Experimental results for a volume of 6 l for different angles. (a) Voltage signal; (b) wet
height measurement; (c) determined volume; (d) filtered volume.
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Figure 17. Experimental results for a volume of 10 l for different angles. (a) Voltage signal; (b) wet
height measurement; (c) determined volume; (d) filtered volume.

In the regions denoted by “A” presented in Figure 16a,b, both circular sensors provide
similar voltage measurements at the output of the I/V converter and the wet height.
However, the axial sensor obtains a value of zero, because the water level is situated
below it. In the regions denoted by “B”, it is evident that the axial sensor also obtains a
non-zero value, and there is a visible difference among the measurements obtained from
the circular sensors. In the regions denoted by “C”, there is a slight increase in the axial
sensor value, along with the absence of a signal in one circular sensor and an increase in
the other circular sensor when compared to the previous region. In the regions denoted
by “D”, the circular sensor maintains a value of zero, whereas the other sensor attains its
maximum value. Moreover, there is a rise in magnitude for the axial sensor in relation to
its preceding regions.

In Figure 17a,b, the regions denoted by “A” show that the axial sensor produces
the maximum measurement value because of its complete submersion in water. In the
other regions, the aforementioned value has a decreasing tendency until it reaches the
“D” regions, where it obtains its minimum value. In the situation related to circular sensors,
it can be seen that one of the sensors achieves its maximum value in the C region, while the
other sensor undergoes a gradual decrease until it reaches a null value in the D region.

These figures depict that the data obtained from the axial sensor have higher noise
levels. The presence of this phenomenon can be attributed to the undesired performance of
the axial sensor as an antenna, thus resulting in interference with the volume measurements.
The utilization of data from the axial sensor is necessary only in the D region, resulting in
volume measurements with elevated levels of noise, as can be seen in Figures 16c and 17c.
This is why the filtered signal is also presented below. In band C regions, this specific value
could be used as an additional measurement with which to validate the volume obtained
and thus verify this value.

The graphs obtained during the process of filling the tank from a volume of 3 l to 9 l,
with increments of 1.5 l at approximately equal time intervals, are depicted in Figure 18.
The process of filling is carried out while the tank is positioned horizontally, as occurs in
Section 3.4. Figure 18a,b show the variations observed in the measurements of the circular
sensors for the filling intervals. The axial sensor does not detect the presence of water and
provides a null value until the water volume reaches 7.85 l, which corresponds to half the
volume of the tank. Once this level is exceeded, the sensor stays fully submerged and
provides its maximum measurement value.
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Figure 18. Experimental results for the filling process. (a) Voltage signal; (b) wet height measurement;
(c) determined volume.

The process of emptying all the water from the tank, starting from an initial volume of
12 l for a zero orientation of the cylinder, can be observed in Figure 19. The axial sensor
attains a maximum value at the beginning of the emptying process, owing to its complete
submersion. The sensor stops detecting water once the volume reaches 7.85 l, resulting in a
null value. The data obtained from the circular sensors have a minor level of noise, which
can be attributed to the variable water flow observed during the initial emptying process.
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Figure 19. Experimental results for the emptying process. (a) Voltage signal; (b) wet height measure-
ment; (c) determined volume.

Relative Errors

Several tests were carried out in order to determine the inaccuracy undergone dur-
ing volume determination measurements for different volumes and orientations. These
experiments were carried out by using the proposed prototype in three different states:
empty, full, and half-full. The volumes measured varied from 0.25 to 0.5, 1, and 2 l for the
three states, while the range cylinder angles employed were from −π

6 rad to π
2 rad, with

increments of π
12 rad. Expression (13) was used to calculate the relative error in each of the
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test sets, where V corresponds to the average volume for all angles, and Vi to the mean
volume measurement for each angle.

er(%) =
|V −Vi|

V
· 100 (13)

Figure 20 shows that the accuracy of volume measurement decreases significantly
when the cylinder is nearly empty. In contrast, the precision of the system improves upon
filling the cylinder, and the relative error decreases. The measurement of 0.25 l has the
largest relative error value. This small volume results in a substantial increase in the error
owing to minor fluctuations in the volume. The angle of −π

2 rad has the highest inaccuracy,
measuring 8.3%. This angle is unique to Section 3.6 for this volume. As previously indicated
in this situation, the rod measurement exclusively furnishes the data required in order to
compute the volume, and it is for this reason that the magnitude of the inaccuracy increases
as a result of the interference of the rod acting as an antenna. The relative error of the
measurements drops to below 2% from 1 l and further decreases (to less than 1%) when the
volume is greater than 5.85 l.

Figure 20. Relative error value for each volume and angle.

6. Conclusions

This paper presents a new methodology-based sensorial system that can be used to
determine the volume of liquid water contained in a cylindrical tank subjected to large
variations in its orientation, which is supposed to be widely used in TECs. The proposed
sensorial system is based on three capacitive sensors combined with the inclinometer
placed in the cylindrical tank or in the TEC itself. Two circular sensors are responsible for
measuring the wet surfaces on both plates of the cylinder. The axial sensor completes the
measurement when either one or both measurements of the circular sensors become unus-
able, because of the volume of water and/or the rotational angle of the cylinder in relation
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to the horizontal plane. The performance of the proposed methodology-based sensorial
system has been tested on a real laboratory prototype. The experimental tests carried out
on the laboratory platform made it possible to discover the following advantages: (i) the
cost of implementation is minimized owing to the utilization of capacitive sensors. These
sensors are composed of circular brass plates embedded in the covers and acting as circular
sensors, and a rod of the same material acts as an axial sensor; (ii) it is easy to implement
this technology when compared to other types of level sensors, such as those that base their
measurements on the hydrostatic pressure; and (iii) the experiments carried out resulted in
data showing that the volume measurement obtained from the proposed sensory system
has a minimal margin of error. The minimal volume measured in the laboratory has a
maximum relative error of 8.3%. When handling larger quantities of water, the range of
error is reduced to less than 1%; (iv) the proposed methodology includes all potential cases
of the distribution of the cylindrical water wedge, thus limiting the potential measurement
inaccuracies caused by these variations; and (v) it can be robustly applied to diverse real
applications, such as the automation or control operations of maritime devices (including
the buoyancy control of a submerged platform or the control of submerged robotic systems).
This will be the subject of our future research.
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