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Abstract: Adaptive sampling of the marine environment may improve the accuracy of marine
numerical prediction models. This study considered adaptive sampling path optimization for a
three-dimensional (3D) marine observation platform, leading to a path-planning strategy based on
evolutionary deep reinforcement learning. The low sampling efficiency of the reinforcement learning
algorithm is improved by evolutionary learning. The combination of these two components as a
new algorithm has become a current research trend. We first combined the evolutionary algorithm
with different reinforcement learning algorithms to verify the effectiveness of the combination
of algorithms with different strategies. Experimental results indicate that the fusion of the two
algorithms based on a maximum-entropy strategy is more effective for adaptive sampling using a 3D
marine observation platform. Data assimilation experiments indicate that adaptive sampling data
from a 3D mobile observation platform based on evolutionary deep reinforcement learning improves
the accuracy of marine environment numerical prediction systems.

Keywords: marine environment observation; evolutionary learning; reinforcement learning; path
planning; deep learning

1. Introduction

Adaptive sampling is an important component of marine environment monitoring,
which plays an important role in improving the accuracy of marine environment numerical
prediction systems [1–3]. The limited coverage and high cost of direct observations make it
unrealistic to carry out large-scale, long-term observations, and limited resources are the
main obstacle to the development of complex regional marine observation and prediction
technologies. Adaptive sampling of regional ocean data using mobile observation platforms
(MOPs) in a complex and dynamic underwater setting with limited resources is a challenge
in the field of marine monitoring [4,5].

Marine observation path-planning technology has been advanced in recent decades.
Due to the complexity and temporal variability of the marine environment, as well as the
diversity of autonomous underwater vehicle (AUV) planning tasks [6,7], adaptive sampling
with MOPs requires efficient path-planning technology to ensure the smooth completion
of tasks. Algorithms currently applied in path planning include the Dijkstra [8], Bellman
Ford [9], Floyd–Warshall [10], A-star [11], Dynamic Programming [12], Artificial Potential
Field [13], and Linear Quadratic [14] algorithms. Heuristic algorithms have also been
applied, including the Genetic [15], Ant Colony [16], and Particle Swarm Optimization [17]
algorithms.

Many researchers have used neural networks (NNs) in the path planning field to deal
with nonlinearities and uncertainties in the environment [18]. Recently, they have been
widely applied to path planning problems [19,20]. As can be seen, 2D path planning based
on NNs is not a novelty [21]. For instance, Tamar et al. [22] proposed the Value Iteration
Network (VIN) algorithm to approximate the Bellman update using a convolutional neural
network (CNN). Ref. [23] was the first introduced the bioinspired neural network (BNN)
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method to solve the path planning problem of mobile robots in 1998. Compared with other
NN algorithms, BNN algorithms do not need to be learned [24]. The dynamic activation
value function of each neuron cell can be solved through information transfer between
neurons. Godio et al. [25] described an approach based on bio-inspired neural networks that
can solve the coverage planning problem for unmanned aerial vehicle formations exploring
critical areas. An approach that combines a bio-inspired neural network and the potential
field was suggested in [26] to address the safety issue of autonomous underwater robot
path planning in dynamic and uncertain situations. In this method, a bio-inspired neural
network uses the environment to determine the best course for an autonomous underwater
robot. The path of the bio-inspired neural network is modified by the potential field function
such that the autonomous underwater robot can avoid obstructions [27]. The experimental
findings demonstrated that the strategy strikes a balance between autonomous underwater
robot safety and path logic. The intended routes can accommodate the need for navigation
in dynamic and unpredictable surroundings. It should be noted that although 3D path
planning plays a vital role in autonomous robots, it is rarely handled by NNs because of
their drawbacks of high complexity, hyperparameters, and non-optimization [28].

With the development of artificial intelligence algorithms, applied reinforcement learn-
ing (RL) has been introduced to path planning and navigation. Wang et al. [29] proposed a
distributed deep reinforcement learning (DRL) algorithm for unmanned surface vehicle
(USV) formations based on the learning of two key abilities, adaptability and scalability,
such that the formation can arbitrarily increase the number of USVs or change the forma-
tion’s shape. A path-planning strategy based on DRL and collision-avoidance functions
was found to solve path-planning problems associated with unmanned craft in uncertain
environments [30]. A continuous hybrid model-free RL method based on a determinis-
tic policy gradient [31] has been applied to adjust the framework of SMC parameters to
control the course of AUVs. A model-based RL method for organizing unmanned surface
vessels (USV) when searching for multiple moving targets has been proposed [32]. Zheng
and Liu [33] improved the deep deterministic policy gradient (DDPG) method, added a
mean field network to maximize multi-agent return, and achieved good crowd-evacuation
path-planning results in a crowded simulation system. Muse and Wermter [34] applied
actor-critical algorithms to platform-independent robot control for navigation tasks in com-
plex environments. Lachekhab and Tadjine [35] fused fuzzy and actor-critical algorithms,
added heuristic methods to improve the robustness of the system, and achieved the smooth
navigation of a robot.

There has also been progress in multi-agent path planning. Etinkaya et al. [36] pro-
posed a multi-agent path-planning method based on DRL to provide real-time solutions for
path-planning problems. For meal delivery and the virtual service market, this method en-
ables such services to quickly meet different needs. For real-time solutions of the dynamic
MAPF problem, multi-agent path optimization has been applied [37] with a decentralized
multi-agent reinforcement learning framework based on a multi-step pre-tree search strat-
egy to improve decision-making efficiency. This algorithm can be extended to a wide range
of multi-agent environments within an acceptable response time. Multi-agent navigation
in a dynamic environment has important practical implications for the deployment of
large-scale robot fleets.

Recent studies have integrated RL and evolutionary reinforcement (ER) algorithms,
combining their respective advantages to develop new algorithms. For example, Liu et al. [38]
proposed a decentralized and locally observable multi-agent path-planning method based
on an ERL algorithm. The method learns the local planning strategy in a hybrid dynamic en-
vironment to improve the stability and performance of multi-agent training. Qiu et al. [39]
combined a traditional optimization algorithm and RL methods to produce a new multi-
agent collision-avoidance framework where the agent learns whether to adopt a navigation
strategy or autonomous action to avoid obstacles through a deep neural network with in-
tensive learning at each step. In airport management or warehouse automation, a problem
occurs where an agent is assigned a new goal immediately after reaching the previous
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goal. To solve this problem, Sartoretti et al. [40] proposed a distributed RL framework by
introducing RL and imitation learning. In this algorithm, the agent learns a completely de-
centralized strategy and plans the path online and in real time in observable environments.

The observation path planning of an MOP is a sequential decision optimization prob-
lem with multiple constraints, involving the sampling of environmental data in selected
marine areas based on the marine environment’s numerical-prediction field and the as-
similation of sampling data to verify the sampling effect. In this process, it is necessary to
model the path-planning process of ocean MOPs and to clarify data acquisition and result
evaluation methods. In the present study, an RL algorithm is used to solve the problem of
adaptive observation path planning with MOPs. RL is a type of sequential decision-making
algorithm that learns through interaction with the environment. Compared with traditional
optimization algorithms, RL has the characteristics of intelligence and autonomy. In theory,
RL can serialize the path point selection of an MOP, although it has the disadvantage of low
sampling efficiency. Evolutionary neural networks (ENN) use an evolutionary algorithm to
update the parameters of a neural network [41,42]. Combined with RL, this type of net-
work can further improve the ability of the RL algorithm to interact with the environment,
improving sampling efficiency and enabling its application to the adaptive observation
path planning of MOPs [43,44]. Notably, in recent years, much effort has been devoted
to improving prediction accuracy by combining data assimilation and machine learning
techniques [45], and good performance has been achieved [46–48]. However, this is not the
focus of this paper and will not be expounded upon here.

To summarize, RL is currently used for the path planning of carriers where the focus
is mainly on navigation problems, i.e., the avoidance of obstacles, finding the shortest path,
and minimizing energy consumption. There is no way to plan an observation path based
on the marine environment field, and although RL path planning has developed rapidly,
problems remain, such as effective reward function design and exploration utilization
balance. The current development trend is to integrate RL with other methods to improve
the efficiency of algorithm exploration and accelerate convergence.

The traditional RL algorithm has the disadvantages of low sampling efficiency and
poor robustness. Taking advantage of the adaptability of the ENN to dynamic environments,
RL and ENN can be combined for adaptive path planning of MOPs based on the ERL
algorithm. The coupling of data assimilation methods based on EAKF aids the assimilation
of adaptive sampling and results in verifying the effect of a mobile observation path that is
planned on the basis of the ERL algorithm and the analysis and prediction ability of the
coupled environment numerical prediction system.

To address the shortcomings of low sampling efficiency and poor robustness in the
traditional RL algorithm, this study applied the adaptability of an ENN to dynamic en-
vironments, combining it with RL for the adaptive observation path planning of MOPs
through coupling data assimilation methods using EAKF to assimilate adaptive sampling
results. The project included the following aspects.

1. The RL algorithm was applied to sample the path planning of MOPs in a 3D dynamic
ocean environment, and research on coupled modeling of ocean observations incor-
porating a priori environmental information was carried out. We took advantage of
the fact that RL algorithms enable direct interaction between MOPs and the marine
environment to solve the problems that arise when using heuristic algorithms, such as
the difficulty of modeling the tight coupling between the environmental information
and the observation process, the difficulty of solving the optimal observation paths,
and the low efficiency of observation.

2. The ERL algorithm was introduced to overcome the low sampling efficiency and
robustness of traditional RL in MOP path planning, and an adaptive path plan-
ning method for MOPs based on the ERL algorithm was designed. We conducted
an analysis of the fusion of the evolutionary algorithm and two strategic gradient-
reinforcement learning algorithms (DDPG and Soft Actor-Critic with maximum en-
tropy (SAC)), termed EDDPG and ENSAC. Path-planning simulation results based
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on the ENSAC, EDDPG, SAC, and DDPG algorithms in a 3D environment field were
compared, and the advantages of the ERL algorithm were highlighted.

3. By conducting data assimilation experiments with the sampling results of the four
algorithms, we verified that the ENSAC and EDDPG are more effective than the
SAC and DDPG, and in particular, the ENSAC is able to effectively improve the
observational efficiency and analytical forecasting capability of marine environmental
elements.

4. Moreover, single-platform, dual-platform and five-platform observation experiments
were conducted, and the results were assimilated. The assimilation results show that
an increase in the number of platforms improves the accuracy of numerical predictions
of the marine environment, but the effect diminishes with more than two platforms.

The remainder of this paper is organized as follows. Section 2 describes the adaptive
sampling mathematical model of the MOP and the RL method. Section 3 introduces the
adaptive sampling method of MOPs based on ERL, including the simulation environment
model, action space, state space, return function design, and agent model. Section 4
describes the simulation experiment and result analysis. Finally, the conclusions and
suggestions for future work are provided in Section 5.

2. Methods
2.1. Adaptive Model of the 3D Ocean MOP

Self-adaptive mathematical modeling of the observation path of an MOP refers to the
process of self-adaptive observation in a specific observation area. An ocean MOP network
comprises one or more MOPs. The MOP used here can perform observation tasks alone
or as part of a homogeneous or heterogeneous marine environment mobile observation
network. Areas with high temperature gradients in the background field affect the analysis
and prediction ability of the coupled environmental numerical prediction system, and the
target system here is the temperature gradient in the regional ocean.

To improve the analysis and prediction ability of the coupled environmental numerical
prediction system, the observation path of the marine MOP must be optimized according to
field information. Here, the area 124° E–129° E and 16° N–21° N was selected as the marine
observation area. In regional marine environmental observation tasks, path planning for
MOPs is carried out on a large scale, so that the MOP can be considered an observation
point for the whole observation sea area [49].

Figure 1 provides a schematic diagram of adaptive sampling of MOPs. The path of
the ith MOP from Si(xi, yi, zi) to Si+1(xi+1, yi+1, zi+1) is expressed as follows:

xi+1 = xi + vi+1 ∗ t ∗ cos θi+1
yi+1 = yi + vi+1 ∗ t ∗ sin θi+1

zi+1 = zi + vi+1 ∗ cos φi+1
vi+1 = vi ∗ κ

(1)

where θi+1 is the heading angle of the MOP in the X−Y plane at path point (i + 1), φi+1 is
the heading angle of the MOP in the X − Y plane at path point i + 1, vi+1 is the speed at
path point (i + 1) , κ is the variation coefficient of velocity (= 1 here), and t is the time step.

The objective function of the adaptive sampling path of the MOP can thus be modeled
as follows:

max f = f (T) =
N

∑
i=1

∆Ti

s.t.


d = d(ti)
vl ≤ vi ≤ vu
θl ≤ θi ≤ θu
ϕl ≤ ϕi ≤ ϕu

(2)
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where d is the endurance constraint of the MOP; vl , θl , and ϕl are the lower limits of the
speed and heading angle of the MOP; and vu, θu, and ϕu are the upper limits.

Figure 1. Schematic diagram of adaptive sampling by the observation platform.

The DRL algorithm was applied to observation path planning for a 3D MOP in a
continuous-state space and used to simulate MOP performance in complex observation
tasks. To solve the observation task, the observation problem was modeled as a Markov
decision process [50]. An MDP is generally defined by 〈S ,A,P ,R, γ〉, where S is the
state space, P is the state transition probability matrix,R is the reward function, γ is the
discount factor, and A represents a finite set of actions. The next state of the agent, st+1,
is related only to the current state, st. The process of moving from one state to another is
termed a policy π. The policy function is defined as π(a | s) = P[At = a | St = s]. In the
training process, the goal of the agent is to maximize the cumulativeR.

Value functions and the Bellman equation are important formulae in solving Markov
decision processes. The state value function represents the expected return obtained by
following policy π from state s, defined as follows:

vπ(s) = Eπ [Gt | St = s] (3)

The action value function represents the expected return obtained by the agent per-
forming action a on the current state s when following π, defined as follows:

qπ(s, a) = Eπ [Gt | St = s, At = a] (4)

The relationship between the state and action value functions is expressed as:

vπ(s) = ∑
a∈A

π(a | s)qπ(s, a) (5)

The Bellman expectation equations of the state and action functions are as follows:

qπ(s, a) = Ra
s + γ ∑

s′∈S
P a

ss′vπ

(
s′
)

(6)

qπ(s, a) = Ra
s + γ ∑

s′∈S
P a

ss′ ∑
a′∈A

π
(
a′ | s′

)
qπ

(
s′, a′

)
(7)

In this observation task, the observation state of the marine MOP is modeled as a multi-
stage Markov decision-making process. At each stage, the deep learning dataset includes
marine environment prediction data from the coupled environmental numerical analysis
and prediction system, allowing environment analysis and prediction for the next 5 days,
the data of which can be used as background field prior information for the observation
path planning of the MOP. The time step of the agent is 6 h, i.e., the MOP observes the
marine environment every 6 h. The agent obtains information for the environmental field to
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be tested by interacting with the environmental background field to obtain the return value
of the agent. After obtaining the environmental field information, the agent records the
current state information and performs actions (according to the forward angle and speed
of the agent), observing the next point to be measured. At the end of each observation,
the background field is updated according to prediction information. The agent repeats this
process as an observation round over 20 sampling points (i.e., 20 observation rounds) to
complete the observation strategy. RL is intended to yield an optimal observation strategy
such that the MOP carries out observation sampling with continuous interaction with the
dynamic background field to accumulate the optimal long-term return.

2.2. Deep Reinforcement Learning

RL is a type of machine learning [51] that integrates relevant knowledge in statistics,
control, psychology, and computers. Due to the benefits of RL in sequential decision
making, it is widely used in many fields of application. RL is similar to human learning
and is based on interactions and trial and error between the agent and environment to
achieve autonomous learning. In interactions with the environment, the agent acts first,
and the environment updates the next state and gives reward feedback. The agent trains
the strategy according to the reward to obtain more rewards and selects actions according
to the strategy, entering a cycle. In each cycle, the agent can learn strategies from the results
of the interactions with the environment to maximize rewards and stores the strategies in
a certain representation form such that RL can realize autonomous learning. The general
framework of RL is shown in Figure 2.

Figure 2. General framework of reinforcement learning.

Mapping from state to action is strategy π(a | s). The state of the agent at time t is
st+1, and action at’s execution is selected in the action set of this state using the strategy
function π(at | st). The environment gives the reward rt, and the state changes to st+1.

In the actual environment, the states and actions of practical problems are complex
and cannot be solved by traditional RL. To overcome this problem, the deep learning
representation ability must be fully exploited so the agent can perceive the complex envi-
ronmental state and establish more complex action strategies.

DRL combines the respective advantages of deep learning and RL to establish an
artificial intelligence system [17,52] . It uses the powerful data expression ability of deep
neural networks in RL. For example, the value function can be approximated by a neural
network to realize end-to-end optimization learning.

At present, most DRL models use both strategy and value networks in approximating
strategy and value functions. The actor-critic algorithm combines strategy and value
networks. Silver [53] extended the concept of a policy gradient to a deterministic policy
gradient and proposed a deterministic policy gradient algorithm to reduce data variance
and to improve the convergence of the algorithm. Based on the deterministic gradient
function, the DDPG algorithm was proposed. This algorithm can be applied to both
continuous and action spaces. Although it is an off-line strategy to improve sampling
efficiency, its training is unstable with poor convergence, so it is difficult to adapt to
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different complex environments [54] . Haarnoja et al. [55] proposed a more stable off-line
SAC algorithm, which is a type of maximum-entropy RL. The algorithm uses an actor to
represent the strategy function, overcoming the difficulty of solving the strategy function
in continuous space, and is a very efficient model-free RL algorithm, with a framework as
shown in Figure 3.

Figure 3. SAC algorithm framework.

This study focused on the adaptive sampling of MOPs, which is a continuous-action
task. The DDPG and SAC algorithms suitable for continuous-action space tasks were
selected to solve the adaptive sampling problem for MOPs. Here the focus is mainly on
improving the SAC algorithm, with the DDPG algorithm being used for comparison.

Entropy is a measure of the degree of randomness of a random variable. In RL, entropy
is used to represent the randomness of strategy π in state s. Maximum-entropy RL involves
maximizing the cumulative reward when the strategy is random, and is defined as follows:

π∗ = arg max
π

∑
t
E(st ,at)∼ρπ

[
γt(r(st, at) + αH(π(· | st)))

]
(8)

where H(π(· | st)) is the entropy function and α is the regularization coefficient, which
controls the importance of the entropy. The larger the α, the more exploratory it is, which is
conducive to subsequent strategy learning, reducing the possibility of poor local optimiza-
tion.

The soft Bellman equation is as follows:

Qsoft(st, at) = r(st ,at + γESt+1∼ps [V
∗
soft(st+1)] (9)

where the state value function is:

V∗soft(st) = Eat∼π [Q∗soft(st, at)− α log π∗MaxEnt(at | st)] (10)

In the SAC algorithm, there are two action value functions, Q. When using a Q
network, a network with a small Q value is selected to alleviate the problem of the overesti-
mation of Q. The loss function of action value function Q is as follows:

LQ(φ) = E
[(

Q(St, At)− r(St, At)− γESt+1

[
Vφ(St+1)

])2
]

(11)
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Because an SAC algorithm is an off-line strategy algorithm, R is the data collected
previously by the strategy. The loss function of strategy π is obtained from KL divergence,
as follows:

Lπ(θ) = Es∼D
[
Ea∼πθ

[
α log πθ(a | s)−Qφ(s, a)

]]
(12)

For a continuous-motion space environment, the re-parameterization technique is
used to ensure the sampling process of a Gaussian distribution is derivable, and the loss
function is modified as follows:

Lπ(θ) = Es∼D,ε∼N
[
α log πθ( fθ(s, ε) | s)−Qφ(s, fθ(s, ε))

]
(13)

The SAC algorithm also provides automatic adjustment of the regularization parame-
ter, α, as follows:

L(α) = Ea∼πθ
[−α log πθ(a | s)− ακ] (14)

where κ is a super parameter that can be understood as the target entropy. This updating
method is termed the automatic entropy adjustment and employs the dual form of the
original strategy optimization problem under the constraint that the average entropy of
each step is at least κ.

2.3. Evolutionary Reinforcement Learning

The RL algorithm has achieved good results in path planning, but many problems
remain, such as low exploration efficiency and convergence being greatly affected by super
parameters. The high sampling efficiency and robustness of the evolutionary algorithm
enable improvement of exploration efficiency by considering the agent as a population
individual and performing crossover and mutation operations on it, and the strategy
algorithm based on gradient update and the heuristic neural evolutionary algorithm
improve the robustness of the RL algorithm.

The evolutionary algorithm is a feature-search algorithm whose abilities include the
generation of new solutions, solution change, and solution selection. With many candidate
solutions, these operations result in new solutions and the retaining of better solutions
according to probability, which is indicated by the fitness of the solution; the higher the
fitness, the better the solution quality and the greater the probability of being selected.
The quality of the retained solution increases with multiple iterations. An ENN was used
in this study. In the algorithm, the neural network is combined with the evolutionary
algorithm, and the deep neural network is regarded as the individual in the evolutionary
population. Crossover and mutation operations between individuals in the population
are then the crossover and mutation operations of the neural network. Crossover between
neural networks refers to the exchange of weights at the same neuron between different
individuals, while genetic variation is the random disturbance of the weight parameters
of the neural network. A schematic diagram of the ENN is shown in Figure 4. The main
concepts of the ERL algorithm are as follows. (1) The use of multiple strategy algorithms
allows us to form an algorithm set (here, each strategy algorithm is termed a ‘learner’).
The advantage of using multiple learners is that each learner explores the whole action
space, improving exploration efficiency and the vision of the underlying Markov decision-
making process. In addition, the use of multiple learners together greatly reduces the
destabilizing effects of differences in super parameters or random seeds relative to single-
learner exploration, thereby improving algorithm robustness. (2) A strategy-generator actor
is used in the strategy algorithm as an individual to form a population with an evolutionary
function. The reward obtained by each actor in the environment is evaluated as its fitness,
data generated in the evaluation process are added to the memory pool, and actors of
the population are cross-mutated according to the principle of the ENN to retain actors
with high fitness. (3) Learner and population actors interact regularly, with the former
considered part of the population and participating in the cross-mutation process of the
population. The evolutionary strategy gradient algorithm is formed by integrating the
exploration advantages of the evolutionary algorithm and RL learning ability.
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Figure 4. Schematic diagram of evolutionary neural network.

3. ERL Adaptive Sampling Path Planning for 3D Ocean MOPs

ERL was applied to adaptive sampling path planning for a 3D MOP, verifying that
adaptive sampling results improve the prediction accuracy of regionally coupled environ-
mental data assimilation and numerical prediction systems. The overall process is shown
in Figure 5.

Figure 5. Adaptive sampling process of a mobile observation platform.

3.1. Acquisition of Marine Environmental Background Fields and Verification of Observations

The marine environment background field is an a priori environment for the adaptive
observation path planning of the MOP. MOP adaptive observation path planning must
first output the marine environment prediction information of the area to be measured
through the coupled numerical prediction system as prior information pertaining to the
background field. Then, marine environment sampling data are obtained along the planned
observation path, and assimilation estimation and analysis are undertaken through the
coupled data assimilation method based on a set of adjusted Kalman filters to update the
marine environment analysis and prediction information. To update the observation path
of the MOP, this process is looped to realize the adaptive planning and adjustment of the
observation path of the MOP network.

Based on the ocean numerical model [52] used here, the Princeton Ocean Model(POM)
involves a completely physical process and is a general operational physical oceanography
model. This model simulates atmospheric forcing and the characteristics of sea surface
temperature and currents of complex oceans. The POM was therefore selected as the
background model in this study.
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The coupled environment numerical analysis and prediction system based on the POM
was first selected to obtain the environment analysis and prediction information of the sea
area to be monitored over the following 5 days. This information is used as the background
field of prior information for the observation path planning of the MOP. The energy
conservation characteristics of the POM mean it has advantages in the simulation and
evolution of atmospheric, ocean, and land temperature data. The horizontal resolution of
the study area was improved to 1/6° by applying four-layer nesting technology, and the
vertical profile was divided into 15 layers. The area 124°–129° E/16°–21° N was selected as
the ocean observation area. The temperature gradient was taken as the observation target
for the design of the adaptive observation scheme of the regional ocean MOP. In addition,
with the POM adjusted by nesting technology, an adjusted Kalman filter data assimilation
method was used for the assimilation of observation data.

3.2. Simulation Environment Modeling

In our MOP adaptive observation path planning process in a dynamic environment
field, initial marine environment background data were first obtained, and initial sampling
points were selected according to constraints. In the selection of subsequent sampling
points, the points must be selected according to the obtained background data (Figure 5).

The data used in the dynamic environment field included 20 groups of marine envi-
ronment time-gradient field data, including the Rankgauss gradient field. Five sets of data
are shown in Figure 6 out of the 20 sets of data. Environment construction in the adaptive
observation path planning of the MOP based on RL must include the reward function
and the state and action spaces in the dynamic environment field. The reward function
is the weighted sum of the spatial gradient of the environmental field to be measured,
including the time gradient of the environmental field, measurement constraints of the
MOP, and obstacle avoidance constraints. The state of the environment includes global
and local, time-gradient, spatial-gradient, obstacle, and current location field information.
The agent of the dynamic environment field provides speed and heading.

Compared with the traditional RL algorithm, all actors in the ERL algorithm interact
simultaneously with the population to obtain empirical data, so it is necessary to build
a parallel running environment. Here, multi-process technology was used to explore the
actors of the agent and evolutionary population in parallel, making full use of hardware
resources to increase the speed of evaluating the individuals of the evolutionary population
and obtaining actor exploration data. The use of a multi-process resource manager to
synchronize exploration data from multiple processes avoids conflict caused by the reading
and writing of data. Communication methods used in Python multi-process programming
generally include pipes, signals, message queues, semaphores, and shared memory, and the
manager module of multi-process library multiprocessing is advanced and encapsulated.
With multi-process programming, the above basic communication methods can be ignored,
and direct use can be made of the data type list and Dict Namespace with secure data
communication between multiple processes.

3.2.1. Data Collection and Processing

RL is an artificial intelligence algorithm for sequential decision optimization in
which agents and the environment learn interactively. The optimized extraction of
features from original data can speed up the convergence of the algorithm and model.
A reasonable data preprocessing method is conducive to planning the optimal adaptive
observation path of the MOP. Original data cannot reflect the relative positional rela-
tionship between points, which is meaningless for the task of path planning. Therefore,
the original data were reorganized into evenly distributed marine environment field
data according to the coordinated data information. Figure 7 shows a data schematic
diagram of the original background field of the 3D marine environment to be measured
in the study area (124°–129° E/16°–21° N).
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Figure 6. The processing of 3D marine environmental data fields.
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Figure 7. The data schematic diagram of the original background field of the 3D marine environment.

When using DRL to plan the observation path of the MOP, it was first necessary to
obtain in advance a set of marine environment numerical prediction field data at a fixed
time. Training could then include a round of decision-making processes by the agent based
on this dataset. The preprocessing of marine environment prediction field data affects the
path-planning results of MOPs. To improve the generalization of different field data by
agents, it is necessary to eliminate differences between field datasets as much as possible.
In this study, the RankGauss data preprocessing method [56] was used to process marine
field data.

In the RankGauss data standardization method, data are not Gaussian, and their
sorting information is retained. The overall process in RankGauss normalization is as
follows. First, all data are sorted into groups over a range including all field data. To restore
the final data to grid data, the position of each data point must be recorded while sorting.
Second, the sorted data scale is converted to a [−1, 1] format. Third, data from the original
relative size relationship are converted to the size relationship determined by the location.
Fourth, the original data distribution is converted to a normal distribution, with only the
relative data size relationship retained. The environment after processing is shown in
Figure 6 (third column).

3.2.2. State Space

The main task of the MOP is to observe areas with steep temporal and spatial gradients
in seawater temperature, taking note of measurement attribute and obstacle avoidance con-
straints. Marine environment background field data are a type of grid data, and positions
in the grid represent the positional relationship with the actual environment. The spatial
gradient of seawater temperature represents the difference between data at a certain point
and the surrounding environment. Therefore, it was assumed that the neural network
of the agent can treat the background field as the basis for decision making with spatial
gradient information. The time gradient indicates the change in temperature at a certain
point with time. It was assumed that the time gradient field of the marine environment
can be used as the basis for time-gradient decision making. In addition, considering the
balance between the rewards of the overall and step tasks, the local environmental field in a
certain area around the current observation platform should also be considered part of the
state. Finally, to deal with obstacle avoidance, obstacle information in the observation area
is also considered part of the state. The state of the environment includes mainly global
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and local marine environment, time-gradient and obstacle field information, and position
information regarding the MOP (Figure 8).

Figure 8. State space design.

3.2.3. Action Space

All actions performed by the agent constitute the environmental action space. A rea-
sonable design of this space aids the agent in taking action and accelerating convergence.
The exploration scope of the agent affects whether the algorithm can achieve global opti-
mization, so it cannot make the action space large and comprehensive or make it too simple.
Here, when the MOP plans the path for the sampling area, it must consider its speed and
heading. Therefore, the design of the action space should include reasonable speed and
heading ranges.

Specific values for heading and speed were continuously output. The SAC, PG,
and DDC decision-making algorithms were applied to the network, and actions taken by
the MOP agent included heading and speed.

The design concept for the action space is shown in Figure 9. The decision-making
area of the agent was formed by limiting the ranges of heading and speed.

Figure 9. Agent action design.

3.2.4. Reward Function

The goal of RL is to maximize the cumulative expected reward. The reward function
affects the training speed and direction of agents. Multiple factors must be considered
when sampling with the MOP, such as the ocean temperature gradient of the area to be
studied, measurement attributes of the MOP, and obstacle information. Therefore, when
designing the reward function, it is necessary to determine and integrate the weight of each
factor so that the agent model converges more rapidly. In this study, the reward function
was set as the weighted sum of the space–time gradient of the environmental field to be
measured to enable the agent to accurately collect target samples while considering the
measurement constraints of the MOP and obstacle avoidance constraints.

The main task of the ocean observation network is to collect sensitive information
about the regional ocean. Here, we consider mainly locations with large temperature
changes. With limited observation resources, the design of optimal acquisition paths
minimizes the waste of resources and improves sampling efficiency. In designing the reward
function, we considered changes in the time and space gradients of the environmental
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field at the sampling point of the MOP. The measurement attributes of the MOP itself
affect its observation range, and here, we focus mainly on the measurement range, time
step, and endurance mileage of MOPs. The MOPs must not collide when sampling, so
the location of the MOP and the locations of unknown obstacles must be considered
when designing the reward function. Regarding the collision avoidance constraint, when
the distance between the MOP and an obstacle or another MOP is twice the step size,
punishment is incurred. The reward function considered here is shown in Equation (15),
where the first term is the sum of the time and space gradients and the second term is the
sum of the measurement range, endurance mileage, and time step.

R = ∑
grad

grad(R1) + ∑
meas

plat(R2) (15)

3.3. Regional Marine Environment Mobile Observation Network Model

The ERL model algorithm is quite different from that of general RL as follows. (1)
The RL algorithm generally contains only one agent for learning the optimal strategy by
interaction with the environment. ERL includes multiple agents learning at the same time.
By evaluating the learning effect, each agent is allocated computing resources. Finally,
the agent with the best learning effect is selected to make up for the poor robustness of
the RL algorithm caused by the problem of parameter initialization. (2) In addition to
intelligence, the ERL algorithm includes an ENN, and an evolutionary algorithm is used to
update the population in exploring the environment to obtain diversified data and enhance
the exploration efficiency of agents.

The adaptive sampling process of the MOP based on the ENSAC algorithm is shown
in Figure 10.

Figure 10. Schematic diagram of evolutionary reinforcement learning algorithm.
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4. Experiment and Analysis

The experiment was run under the Microsoft Windows 10 system of the Anaconda
configuration module, which used an Intel Core i9 10900K Ten-Cores 3.7 GHz processor and
an NVIDIA GeForce RTX3080 graphics card. The software environment used to develop
the algorithmic models was Python 3.8 combined with PyTorch.

4.1. Parameter Setting

Four algorithms based on DDPG, EDDPG, SAC, and ENSAC were applied to verify
the effectiveness of MOP observation path planning. The hyperparameters for algorithmic
models were initially based on references, i.e., based on the hyperparameters of the SAC
algorithm primarily referenced [57–59], while the hyperparameters of the ENN network
mainly referenced [43,60]. Moreover, the learning rate controls the size of each parameter
update. Too high a learning rate can cause problems, such as too many updates and
unstable convergence; conversely, it can make convergence slow and lead to lower learning
performance. The Adam optimizer with gradient clipping at 10 and a learning rate of 1e−3

was used for the actor learning rate and critic learning rate. The discount factor determines
how much the agent focus on future rewards and was set to 0.9. The crossover probability
mainly affects the search performance and was set to 0.01 after many experiments and
adjustments. The mutation probability mainly prevents the model from falling into the
local optimal solution while maintaining the diversity of the population and was usually set
to 0.2. The proportion of elites in the population was set to 0.2. The batch size is the number
of samples randomly selected from the experience playback buffer each time. Larger values
indicate that more samples are used in training, and the model will be updated more
consistently, but too large a value will cause a computational burden and a long training
time. In this experiment, the batch size was set to 64 based on the memory resources of
the computer used. After the experiments, results tended to be stable after 8000 sessions
of agent training, so the total number of training rounds was set to 10,000 to verify the
performance of different algorithms in path planning. After repeated experiments and
historical experience, the main parameter settings of the algorithm are shown in Table 1.

Sea surface temperature field data over the next 5 days were output as initial data
of the experiment through the regional coupled environmental numerical prediction
system (Section 2). There were 100 experimental groups for the observation area of
124°–129° E/16°–21° N, and the observation time interval of the MOP was 6 h.

Table 1. Algorithm’s main hyperparameter settings.

Parameter Value Description

minibatch size 64 Make the gradient descent direction more accurate
buffer size 10,000 Buffer capacity

discount factor 0.9 Attenuation coefficient
rollout_size 3 Size of learner rollouts

init_w 1 Whether the neural network parameters are initialized
actor_lr 1e−3 Actor learning rate
critic_lr 1e−3 Critic learning rate

noise_std 0.1 Gaussian noise exploration std
ucb_coefficient 0.9 Exploration coefficient in UCB

pop_size 7 Population size
elite_fraction 0.2 Proportion of elites in the population

crossover_prob 0.01 Probability of crossing
mutation_prob 0.2 Probability of variation

4.2. Adaptive Sampling Results, Data Assimilation Results, and Analysis of Observation Platform

The DDPG, EDDPG, SAC, and ENSAC algorithms were used to observe path coor-
dinate points in the static environment field with the highest reward function for data
assimilation. The specific steps involved the input of path coordinate points into the data
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assimilation system and the calculation of the root-mean-square error (RMSE) between the
true and predicted values. The results are shown in Table 2, where bold data indicate the
algorithm with better data assimilation results in a given simulation environment.

Table 2. RMSE comparison of sampling and assimilation results of observation path of platform,
where RMSEramdom = 0.18201.

Platform ENSAC EDDPG DDPG SAC

single 0.16539 0.17408 0.17938 0.16775
dual 0.12013 0.13619 0.13052 0.13284
five 0.16952 0.17350 0.17213 0.17151

Reward values for the four adaptive observation paths in the sampling area are shown
in Figure 11, where red represents the ENSAC algorithm, purple represents the EDDPG
algorithm, green represents the SAC result, and orange represents the DDPG algorithm.

In the single ocean environment observation platform experiment, the reward function
curves of the four algorithms indicate that the reward values of the ENSAC and EDDPG
algorithms were much higher than those of the SAC algorithm. The observation data
of MOPs thus improve the prediction accuracy of ocean data prediction systems after
observation path planning. In the adaptive observation path planning of MOPs in dynamic
environments, the observation results of the SAC and DDPG algorithms based on the ERL
were better than those of the DDPG algorithm based on the SAC algorithm. The results
indicate that the strategy gradient algorithm based on the ERL is suitable for the adaptive
observation of MOPs in dynamic environments. The adaptive observation result of the
strategy gradient algorithm fused with the ERL is generally superior to the assimilation
result of the other two algorithms and randomly selected path points, which indicates that
the adaptive observation path planning of MOPs based on the strategy gradient algorithm
of the fusion algorithm enables more effective observations.

Analysis of the number of platforms indicates that the degree of improvement in the
double-platform observation experiment is greater than that in the single-platform and
five-platform experiments, which indicates that an increase in the number of platforms
improves prediction accuracy, but with more than two platforms, the effect diminishes.

From the above results, we conclude that the strategy gradient algorithm based on
ERL is more suitable for the adaptive observation path planning of MOPs in dynamic
environment fields than the traditional strategy-gradient algorithm. The evolutionary
algorithm improves the sampling efficiency of RL and the exploration efficiency of an
intelligent body. The adaptive observation path planning of MOPs based on ERL also
improves the analysis and prediction ability of the coupled environmental numerical
prediction and DDPG algorithms, enabling more rapid convergence of the reward curves of
the ENSAC and EDDPG algorithms. This indicates that integration of the ERL and strategy-
gradient algorithms improves the agent’s ability to explore the environment and accelerates
convergence of the algorithm. Figure 11 also indicates that although the reward curve of
SAC is lower than that of DDPG, the reward curve of the ENSAC algorithm is higher than
that of the EDDPG algorithm after integration of the ERL algorithm. The ERL algorithm
thus has a stronger role in the improved SAC algorithm than the DDPG algorithm.

After the above discussion, it can be concluded that the strategy-gradient algorithm
based on an evolutionary algorithm is more suitable for the adaptive observation path
planning of mobile observation platform in a dynamic environment field than the tradi-
tional strategy-gradient algorithm. The evolutionary algorithm can effectively improve
the sampling efficiency of reinforcement learning and the exploration efficiency of the
intelligent body. The adaptive observation path planning of mobile observation platform
based on evolutionary reinforcement learning can effectively improve the analysis and
prediction ability of the coupled environmental numerical prediction system’s algorithm
and the DDPG algorithm, and the reward curves of the ENSAC algorithm and the EDDPG
algorithm can approach convergence speed faster. This shows that the integration of the
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evolutionary algorithm and strategy-gradient algorithm can effectively improve the agent’s
ability to explore the environment and accelerate the convergence speed of the algorithm.
At the same time, it can be seen from Figure 11 that although the reward curve of SAC is
lower than DDPG, the ENSAC algorithm after integrating the evolutionary algorithm is
higher than the EDDPG algorithm. This shows that the role of the evolutionary algorithm
in the improved SAC algorithm is greater than that of the DDPG algorithm.

(a) single platform

(b) dual platform

(c) five platform

Figure 11. Comparison of average rewards of ENSAC, EDDPG, SAC, and DDPG in single-platform,
dual-platform and five-platform experiments.
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In the double-platform marine environment observation experiment, before 1500 train-
ing sessions, the average reward value of the EDDPG algorithm was higher. After 1500 train-
ing sessions, the average reward of the ENSAC algorithm exceeded that of the EDDPG
algorithm and gradually increased until the end of training. The EDDPG algorithm fluctu-
ated widely during the training process and did not reach its optimum output. Although the
DDPG algorithm output increased throughout the training process, its average reward
value did not reach the optimal state. The SAC algorithm performed similarly to the ED-
DPG algorithm. In the adaptive sampling experiment of five MOPs, the ENSAC algorithm
reached the optimal state after 1000 training sessions and remained stable until the end of
training. However, the EDDPG, DDPG, and SAC algorithms fluctuated, especially in the
first 4000 training sessions.

The above experimental analysis indicates that in the four comparative experiments,
the hybrid algorithm maintains stable efficiency in the marine environment adaptive
observation task. Therefore, the hybrid algorithm combining the ERL and RL algorithms
improves the observation efficiency of agents in marine environment observation.

Adaptive sampling paths of the experiments with single, dual, and five MOPs are
shown in Figure 12 based on the ENSAC algorithm and showing views from the front,
side, and top. It is clear that the MOP conducts adaptive observation in areas of large slope
change, and the planned path meets the requirements for sensitive sea areas, i.e., targets
with large temperature differences.

The four algorithms (ENSAC, EDDPG, SAC, and DDPG) were used to assimilate
sampled data of the observation path coordinate points with the highest reward values.
The specific steps were to input the path coordinate points into the assimilation system and
to calculate the RMSEs of the true and predicted values. The results are shown in Table 2,
with bold data representing the algorithm with better data assimilation results under the
given simulation environment.

The average RMSE of results for single, dual, and five platforms increased, respectively,
by 9.13%, 33.99%, and 7.55% for the ENSAC algorithm; 4.35%, 25.17%, and 4.88% for the
EDDPG algorithm; 1.44%, 28.28%, and 5.50% for the DDPG algorithm; and 7.83%, 27.01%,
and 6.25% for the SAC algorithm.

These results indicate that observation data of MOPs improve the accuracy of ocean
data prediction systems after observation path planning. With the adaptive observation
path planning of MOPs in dynamic environments, the observation results of the SAC
and DDPG algorithms based on the ERL algorithm were better than those of the DDPG
algorithm based on the SAC algorithm. The strategy-gradient algorithm based on the ERL
algorithm is thus suitable for the adaptive observation of MOPs in dynamic environments.
In general, the adaptive observation result of the strategy-gradient algorithm fused with
the ERL algorithm is superior to the assimilation results of the other two algorithms with
randomly selected path points. The adaptive observation path planning of the MOP, based
on the strategy-gradient algorithm of the fused algorithm, enables more effective observa-
tion. Regarding the number of platforms, the degree of improvement with double-platform
observations is greater than that for single- and five-platform observations. An increase in
the number of platforms thus improves the accuracy of numerical prediction of the marine
environment, but the effect diminishes with more than two platforms.



J. Mar. Sci. Eng. 2023, 11, 2313 19 of 23

front view

side view

top view
(a)single platform

front view

side view

top view
(b)dual platform

front view

side view

top view
(c)five platform

Figure 12. Adaptive observation path map for single platform, dual platforms, and five observation
platforms using ENSAC.

5. Conclusions and Future Work

Due to the wide range of 3D dynamic ocean areas, the variety of marine environmental
elements over time and space, and the limited observation resources that can be utilized,
how to efficiently complete observation path planning is a key issue in ocean observation
research. When heuristic algorithms are used for the path planning of MOPs, they face the
challenges of difficultly in modeling the tight coupling between environmental information
and the observing process and difficulty in solving for the optimal observing paths, which
limits the observing efficiency of ocean observing platforms. Aiming at the above problems,
this paper applies RL algorithms to the sampling path planning of MOPs in a 3D dynamic
ocean environment. Using the advantage that RL algorithms can realize direct interactions
between MOPs and the ocean environment for autonomous learning, we conducted re-
search on the coupled modeling of ocean observation incorporating a priori environmental
information.

On the other hand, the ERL algorithm was introduced to overcome the low sampling
efficiency and robustness of traditional RL in MOP path planning, and an adaptive path
planning method for MOPs based on the ERL algorithm was designed. Simulation results
for adaptive path planning for MOPs based on two strategy algorithms and evolutionary
learning fusion were discussed. Path-planning simulation results based on the ENSAC,
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EDDPG, SAC, and DDPG algorithms in a 3D environment field were compared, and advan-
tages of the ERL algorithm were highlighted. The sampling results of the four algorithms
were assimilated. Compared with random sampling, the sampling results obtained through
MOP path planning improved the accuracy of the data prediction system, verifying that
the ENSAC and EDDPG algorithms used here are more effective than the SAC and DDPG
algorithms. The results indicated that the ENSAC and EDDPG algorithms improve sam-
pling efficiency and RL convergence. The reward-function and data assimilation results of
the ENSAC algorithm were better than those of the EDDPG algorithm, indicating that the
fusion of the ERL and RL algorithms based on a maximum-entropy strategy achieves an
improvement over the deterministic strategy algorithm. In addition, we conducted obser-
vation experiments on a single platform, dual platform, and five platforms and assimilated
the experimental results. The assimilation results show that an increase in the number
of platforms improves the accuracy of numerical predictions of the marine environment,
but the effect diminishes with more than two platforms.

There is still much work to do in the future. Firstly, the proposed method will be used
to carry out practical experiments to verify the feasibility of the algorithms in practical
applications and to enhance the robustness of the findings. In addition, further validation
of the reliability and generalization ability of the model performance is needed. Secondly,
whether the adaptive observation of more MOPs would improve the analysis and pre-
diction capability of the coupled-environment numerical prediction system remains to be
studied. Meanwhile, the effects of the fusion of the evolutionary algorithm, other strategies,
and various RL algorithms also require further study.
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