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Abstract: The sliding mode controller stands out for its exceptional stability, even when the system
experiences noise or undergoes time-varying parameter changes. However, designing a sliding mode
controller necessitates precise knowledge of the object’s exact model, which is often unattainable in
practical scenarios. Furthermore, if the sliding control law’s amplitude becomes excessive, it can lead
to undesirable chattering phenomena near the sliding surface. This article presents a new method
that uses a special kind of computer program (Radial Basis Function Neural Network) to quickly
calculate complex relationships in a robot’s control system. This calculation is combined with a
technique called Sliding Mode Control, and Fuzzy Logic is used to measure the size of the control
action, all while making sure the system stays stable using Lyapunov stability theory. We tested this
new method on a robot arm that can move in three different ways at the same time, showing that it
can handle complex, multiple-input, multiple-output systems. In addition, applying LPV combined
with Kalman helps reduce noise and the system operates more stably. The manipulator’s response
under this controller exhibits controlled overshoot (Rad), with a rise time of approximately 5 ± 3%
seconds and a settling error of around 1%. These control results are rigorously validated through
simulations conducted using MATLAB/Simulink software version 2022b. This research contributes
to the advancement of control strategies for robotic manipulators, offering improved stability and
adaptability in scenarios where precise system modeling is challenging.

Keywords: robot manipulator; neural network; fuzzy logic controller; MATLAB/Simulink; sliding
mode control

1. Introduction

This scientific analysis focuses on addressing the challenges of precisely controlling
underwater robotic arms amidst environmental fluctuations and limitations of traditional
control algorithms. This study emphasizes the significance of unmanned underwater
machines. These scholarly documents collectively explore remotely operated vehicles
(ROVs) for inspection purposes, encompassing a comprehensive review of inspection-class
ROVs, the development of an intelligent support system for ROV operators to enhance
real-world performance, and the introduction of a novel control method utilizing terminal
sliding mode and dynamic damping to improve fault tolerance and predictive capabilities
for tracked ROVs [1–3], highlighting the roles of robotic arms. These studies also investigate
the impact of machining trajectory on grinding force for complex-shaped stone by a robotic
manipulator, apply adaptive neural-PID visual servoing tracking control using an Extreme
Learning Machine (ELM), and model impedance control with limited interaction power
for a 2R planar robot arm [4–6] or manipulators [7,8] in conducting complex underwater
tasks beyond human reach. These manipulators, operated via controllers like joysticks,
are designed for diverse missions, varying in size and strength, and are equipped with
hydraulic or electric power, along with sensory or visual aids.

This paper presents a solution that integrates Sliding Mode Control (SMC) [9–14] and
Radial Basis Function Neural Networks (RBFNN) to enhance the stability and accuracy of
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a three-degree-of-freedom robotic arm in underwater environments. SMC, known for its
stability amidst noise and variable parameters, requires accurate model knowledge, which
is complemented by RBFNN’s ability to estimate nonlinear functions online. Additionally,
fuzzy logic is proposed to mitigate oscillations around the sliding surface [15,16].

This research incorporates dynamic equations development for the ROV manipulator
arm, designing sliding mode, fuzzy logic, and neural-network control systems, and includes
noise calculations. It compares the efficacy of these proposed methods with traditional
PID control through simulations. Results demonstrate superior performance of the SMC
system in amplitude and settling time, with fuzzy logic control achieving the best tracking
accuracy, and the neural-network control showing equivalent performance. This research
demonstrates the application of neural network-based terminal sliding mode control to
space robots actuated by control moment gyros, a novel approach to coordinating large-
scale systems with a focus on interaction prediction principles, the utilization of a fuzzy
sliding mode controller based on RBF neural network for the control of a three-link robot,
the design of adaptive fuzzy sliding-mode control for high-performance islanded inverters
in micro-grids, and a comprehensive examination of variable structure control applied to
complex systems [17–21].

This paper also acknowledges the use of PID controllers for their simplicity and
effectiveness, while highlighting the exploration of neural network and machine-learning
approaches for more sophisticated nonlinear control strategies. This study contributes
to the field by detailed modeling of robot dynamics, simplifying system-based controller
development, and validating the controller on a real robot for balance and path following.
This research enhances the understanding and capabilities in designing controllers for
self-balancing robots, pushing the boundaries of traditional control methods.

This study addresses the challenges in controlling underwater robotic arms, stemming
from the dynamic aquatic environment and the limitations of traditional control methods. It
introduces a novel solution combining Sliding Mode Control (SMC) and Fuzzy Neural Net-
work (FNN) to enhance flexibility, precision, and adaptability of the control system [22–24].
SMC effectively manages rapid environmental changes, while FNN optimizes the system
based on real-time conditions, leading to a more accurate and stable robotic arm control [25]
in unpredictable underwater settings.

Experiments conducted under simulated underwater conditions demonstrate that this
integrated system significantly outperforms traditional control methods in accuracy and
stability. Additionally, this study incorporates the Linear Parameter-Varying (LPV) and
Kalman Filter into the system, further improving adaptability and precision. The inclusion
of LPV and Kalman Filter makes the control system more versatile, capable of handling
underwater variability, and elevates its reliability for high-precision tasks. This advanced
approach not only enhances existing systems but also paves the way for developing more
accurate and reliable underwater robotic technologies.

This research paper begins with an introduction highlighting the challenges in pre-
cisely controlling underwater robotic arms due to environmental fluctuations and limita-
tions of traditional control algorithms. It emphasizes the importance of remotely operated
vehicles (ROVs) and robotic manipulators for complex underwater tasks. The second
section describes the dynamic modeling of a three-degree-of-freedom robotic arm, outlin-
ing its kinetic equations and Denavit–Hartenberg parameters. Next, the adaptive sliding
control method is presented, integrating the Sliding Mode Control (SMC) and Radial Basis
Function Neural Networks (RBFNN) to enhance system stability and accuracy. Fuzzy
logic control is incorporated to mitigate oscillations. Meanwhile, the RBFNN estimates
nonlinear functions within the control laws. The Results and Discussion section analyzes
the simulation outcomes, comparing the efficacy of the proposed approach to conventional
PID controllers in parameters such as rise time, settling error and noise elimination. Finally,
the conclusion summarizes the vital contributions of this research in advancing underwater
robotic control strategies amidst environmental unpredictability and model limitations.
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Overall, this study aims to develop an adaptive, stable and high-precision control solution
for underwater manipulators.

2. Robot Manipulator of Fancon 1263 Model
2.1. A Brief Overview of the Robotic Arm in This Research Paper

The ROV, or Remotely Operated Vehicle, is a purpose-built underwater apparatus
equipped with propellers, cameras, and a manipulator arm. The ROV’s body is constructed
from a specialized aluminum alloy designed to be both lightweight and durable for marine
environments. Its propellers provide omnidirectional mobility, enabling the ROV to move
freely in all directions. The manipulator arms of the ROV are highly articulated, often
exceeding 1 m in length, and can be fitted with various specialized tools such as welding,
cutting, gripping, and holding devices, depending on the specific task requirements.

The simplistic structure of the ROV’s robotic arm is illustrated in Figure 1, which
serves as the model referred to, and extensively studied by, the author throughout this
research paper.
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from the right.

This study analyzes a Remotely Operated Vehicle (ROV), an unmanned underwater
vehicle, detailing its structure as shown in Figure 1. The ROV features a sturdy, watertight
body, essential for underwater operation, housing internal electronics, and powered by
thrusters for various underwater movements. It is also equipped with cameras and sensors
for capturing and relaying underwater images and data.

A crucial element of the ROV is its manipulator arm, designed for precision tasks like
grasping and welding, with a simple structure and three degrees of freedom, each link
being about 1 m long. This arm, capable of rotational movements, is crucial for underwater
maintenance and is remotely operated. It faces challenges like friction and communication
delays, which this study addresses with advanced control methods. The arm’s design,
affixed to the mobile ROV, allows for a 3 m operational range.

This paper also examines the arm’s dynamic model, a system of differential equations
incorporating factors like gravity, buoyancy, and hydrodynamics, using the Lagrange–Euler
formulation for modeling. The arm’s kinematics are described using Denavit–Hartenberg
parameters, linking joint torques to movements.

This dynamic model is vital for the control system’s development, forming the math-
ematical basis for controller design, and ensuring optimal performance by accurately
modeling system dynamics.

Given the relatively uncomplicated nature of ROV tasks, the authors of this study have
utilized a three-degrees-of-freedom manipulator as the subject of investigation. The kinetic
model for this three-degree-of-freedom manipulator system is outlined in reference [18]:

M(θ)
..
θ+ C

(
θ,

.
θ
) .
θ+ F

(
θ,

.
θ
)
+ G(θ) + dv(t) = u (1)
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With M =

M11 M12 M13
M21 M22 M23
M31 M32 M33

 is the inertial matrix, F =
[
F1 F2 F3

]T is the fric-

tion vector, G =
[
G1 G2 G3

]T is the gravity vector, dv(t) is the noise signal, u =[
u1 u2 u3

]T is the control signal vector, θ =
[
θ1 θ2 θ3

]T is the angle of the joints of

the manipulator system and C =
[
C1 C2 C3

]T is expresses the coriolis and centrifu-
gal torques.

M11 = l2
1

(m1

3
+ m2 + m3

)
+ l1l2(m2 + 2m3) cos(q2) + I2

2

(m2

3
+ m3

)
(2)

M12 = M21 = m2

(
l2
2 + l1l2 cos(θ2 )

)
+ m3

(
l2
2 + l2

3 + l1l2 cos(θ2 )
)
+ m3(l1l3 cos(θ2 + θ3 ) + 2l2l3 cos(θ3 )) (3)

M13 = M31 = m3

(
l2
3 + l1l3 cos(θ2 + θ3 )

)
+ m3l2l3 cos(θ3) (4)

M22 = m2l2
2 + m3

(
l2
2 + l2

3 + 2l2l3 cos(θ3, )
)

(5)

M23 = M32 = m3

(
l2
3 + l2l3 cos(θ2 + θ3 )

)
(6)

M33 = m3l2
3 (7)

F1 = −(m2 + m3)l1l2

(
2

.
θ1

.
θ2 +

.
θ

2
2

)
sin(θ2)−m3l1l3qsin(θ2 + θ3)−m3l2l3

(
2

.
θ1

.
θ3 + 2

.
θ2

.
θ3 +

.
θ

2
3

)
sin(θ3) (8)

F2 = (m2 + m3)
.
θ

2
1 sin(θ2) + m3l1l3

.
θ

2
1 sin(θ2 + θ3)−m3l2l3

(
2

.
θ1

.
θ3 + 2

.
θ2

.
θ3 +

.
θ

2
3

)
sin(θ3) (9)

F3 = m3l1l3
.
θ

2
1 sin(θ2 + θ3) + m2l2l3

( .
θ1 +

.
θ2

)
sin(θ3) (10)

q = 2
.
θ1

.
θ2 + 2

.
θ1

.
θ3 + 2

.
θ2

.
θ3 +

.
θ

2
2 +

.
θ

2
3 (11)

G1 = m1gl1 cos(θ1) + m2g(l2 cos(θ1 + θ2) + l1 cos(θ1)) + m3g(l2 cos(θ1 + θ2) + l1 cos(θ1)) + m3g(l3 cos(θ1 + θ2 + θ3)) (12)

G2 = m2gl2 cos(θ1 + θ2) + m3g(l2 cos(θ1 + θ2)) + m3g(l3 cos(θ1 + θ2 + θ3)) (13)

G3 = m3g(l3 cos(θ1 + θ2 + θ3)) (14)

C1 = ∑3
j=1 ∑3

k=1 Γ1jk(θ)
·
θ j
·
θk (15)

C2 = ∑3
j=1 ∑3

k=1 Γ2jk(θ)
·
θ j
·
θk (16)

C3 = ∑3
j=1 ∑3

k=1 Γ3jk(θ)
·
θ j
·
θk (17)

Γijk(θ) =
1
2

(
∂Mij

∂θk
+

∂Mik
∂θj
−

∂Mjk

∂θi

)
(18)

The parameters of the manipulator considered in this study are:
m1 = 1 kg is the mass of joint 1,
m2 = 0.8 kg is the mass of joint 2,
m3 = 0.5 kg is the mass of joint 3,
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l1 = 1 m is the length of joint 1,
l2 = 0.8 m is the length of joint 2,
l3 = 0.6 m is the length of joint 3,
g = 9.81 m/s2 is the acceleration due to gravity.
Γijk(θ) are Christoffel symbols.
Mij, Mik, Mjk are the elements of the inertia matrix.

2.2. Forward Kinematics

It has been given that there exists a matrix Ti−1
i that is called a homogeneous transfor-

mation matrix, and it has the form:

Ti−1
i =

[
Ri pi
0 1

]
(19)

where: Ri (3 × 3 matrix): rotation matrix.
pi (3 × 1 matrix): translation vector.

T0
n =

n

∏
i=1

Ti−1
i =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (20)

where:
n: the number of robot’s joints.
Ti−1

i : the transformation matrix from coordinate system i to coordinate system i − 1.
T0

n = f(q1, q2, q3,..., qn); q1 ÷ qn are joint variables; n, s, and a are vectors indicating

directions, p =
[
px, py, pz

]T
is position vector.

Hence, by having knowledge of the geometric characteristics of the links and the
kinematic rules governing the joints, it is possible to fully ascertain the position and
orientation of the manipulator links.

The objective of the forward kinematics problem is to determine the position and
orientation of the end-effector when the values of the joint variables are known. Typically,
these joint values are expressed as a function of time, denoted as qi = qi(t), and our task is
to ascertain the position and orientation of the end-effector corresponding to these specific
joint values. To address the forward kinematics problem, it is necessary to establish the
kinematic equations of the robot, as outlined in Equation (20).

For reference, we established a coordinate system with its origin at O0, denoted as
x0, y0, and z0, as depicted in Figure 2. Another coordinate system, O1, x1, y1, and z1, is
positioned at joint 2, where the z1-axis aligns with the second joint axis. Subsequently,
coordinate system O2, x2, y2, and z2, has its origin at joint 3, with the z2-axis aligned with
the third joint axis and the x2-axis aligned with the gripper direction, pointing toward the
jaws. Lastly, coordinate system O3, x3, y3, and z3, has its origin situated at the center of the
gripper. The Denavit–Hartenberg (DH) parameter for a robot in angular coordinate system
in Table 1.
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Table 1. The Denavit–Hartenberg (DH) parameter table for a robot in angular coordinate system.

Joint αi ai di θi

1 90◦ a1 d1 q1
2 0 a2 0 q2
3 0 a3 0 q3

From the DH parameter table, it can be determining the transformation matrices
between coordinate systems:

T0
1 =


cq1 0 sq1 a1·cq1
sq1 0 −cq1 a1·sq1
0 1 0 d1
0 0 0 1

 (21)

T1
2 =


cq2 −sq2 0 a2·cq2
sq2 cq2 0 a2·sq2
0 0 1 0
0 0 0 1

 (22)

T2
3 =


cq3 −sq3 0 a3·cq3
sq3 cq3 0 a3·sq3
0 0 1 0
0 0 0 1

 (23)

where, abbreviation symbols are used as follows: cq1 = cos(q1), sq1 = sin(q1)·
The homogeneous transformation matrix representing the position and orientation of

the end effector with respect to the origin coordinate system can be determined.

T0
3 = T0

1·T1
2·T2

3 =


cq1·c(q2 + q3) −cq1·s(q2 + q3) sq1 cq1·[a3·s(q2 + q3) + a2·sq2 + a1]
sq1c(q2 + q3) −sq1·s(q2 + q3) −cq1 sq1·[a3·s(q2 + q3) + a2·sq2 + a1]

s(q2 + q3) c(q2 + q3) 0 a3·s(q2 + q3) + a2·sq2 + a1
0 0 0 1

 (24)
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The dynamic equations of the robot in the angular coordinate system can be acquired
by matching corresponding elements of two matrices (T0

n and T0
3).

nx = cos(q1)· cos(q2 + q3)
ny = sin(q1)· cos(q2 + q3)
nz = sin(q2 + q3)
ox = − cos(q1)· sin(q2 + q3)
oy = − sin(q1)· sin(q2 + q3)
oz = cos(q2 + q3)
ax = sin(q1)
ay = − cos(q1)
az = 0
px = cos(q1)·[a3· cos(q2 + q3) + a2· cos(q2) + a1]
py = sin(q1)·[a3· cos(q2 + q3) + a2· cos(q2) + a1]
pz = a3· sin(q2 + q3) + a2· sin(q2) + d1

(25)

2.3. Inverse Kinematics

The inverse kinematics problem necessitates determining the robot’s joint values based
on the known position and orientation of the end effector point. These parameters are
deduced from a given motion trajectory of the robot, commonly represented in matrix form.

Tn
0 =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (26)

The solution to the inverse kinematics problem is of paramount significance in robot
control. In practical applications, there exists prior knowledge regarding the desired
position and orientation of the target end effector point to be reached. The objective is
to compute the required joint values for meeting the motion criteria. Consequently, the
resolution of the inverse kinematics problem holds pivotal importance in ensuring efficient
control of the robot’s operations.

From Equations (24) and (26), there are:

T0
3 = T0

1·T1
2·T2

3=


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1



=


cq1·c(q2 + q3) −cq1·s(q2 + q3) sq1 cq1·[a3·s(q2 + q3) + a2·sq2 + a1]
sq1c(q2 + q3) −sq1·s(q2 + q3) −cq1 sq1·[a3·s(q2 + q3) + a2·sq2 + a1]

s(q2 + q3) c(q2 + q3) 0 a3·s(q2 + q3) + a2·sq2 + a1
0 0 0 1


(27)

Deduce: [
T0

1

]−1
·T0

3 = T1
2·T2

3 = T1
3 (28)

A homogeneous matrix is a matrix of the form:

T =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (29)
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According to [21], the inverse matrix of matrix T denoted as T−1 will be:

T−1 =


nx ny nz −p·n
ox oy oz −p·o
ax ay az −p·a
0 0 0 1

 (30)

Substituting into the expression:

T1
2·T2

3 =


cos(q2 + q3) −sin(q2 + q3) 0 a3·cos(q2 + q3) + a2·cos(q2)
sin(q2 + q3) cos(q2 + q3) 0 a3·sin(q2 + q3) + a2·sin(q2)

0 0 1 0
0 0 0 1

 (31)

Balancing the corresponding element at row 3, column 4 of the two matrices, obtain:

sin(q1)·px − cos(q1)·py = 0 (32)

Deduce:
q1 = atan2

(
py, px

)
(33)

Through the position of the Robot’s end-effector point, also determine the values of
the joint variables:{

a3·cos(q2 + q3) + a2·cos(q2) = cos(q1)·px + sin(q1)·py − a1
a3·sin(q2 + q3) + a2·sin(q2) = pz − d1

(34)

Deduce:  q2 = atan2
(

pz−d1
cos(q1)·px+sin(q1)·py−a1

)
− atan

(
a3·sin(q3)

a3·cos(q3)+a2

)
q3 = ∓acos [

cos(q1)·px+sin(q1)·py−a1]
2
+(pz−d1)

2−(a3
2+a2

2)
2·a2·a3

(35)

2.4. Noise When Working Underwater

The resistance forces on a subsea manipulator include:
Frictional resistance: this is the resistance caused by the friction between the sur-

face of the manipulator and the water. This force depends on the manipulator’s speed,
the surface area in contact, and the viscosity of the water. The formula for calculating
frictional resistance:

Ffrictional = k·v (36)

where:
F is the frictional resistance.
k is the coefficient of friction.
v is the speed of the manipulator.
Pressure resistance: This is the resistance caused by the water pressure acting on the

surface of the manipulator. This force depends on the depth below the sea and the speed of
the manipulator. The formula for calculating pressure resistance:

Fpressure =
1
2
·ρ·A·v2 (37)

where:
F is the pressure resistance.
ρ is the density of the water.
A is the surface area of the manipulator.
v is the speed of the manipulator.
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Molecular resistance: this is the resistance caused by water molecules hindering the
movement of the manipulator. This force depends on the viscosity of the water and the
speed of the manipulator. The formula for calculating molecular resistance:

Fmolecular = 6·π·η·r·v (38)

where:
F is the molecular resistance.
η is the viscosity of the water.
r is the radius of the manipulator.
v is the speed of the manipulator.
Impact force is when the ROV changes motion suddenly.
In the process of researching and developing manipulators attached to ROVs, identify-

ing and analyzing sudden forces arising from changes in the ROV’s motion in the system
plays an important role. These forces, including inertial forces, centrifugal forces, and
Coriolis forces, have a significant influence on the precision and stability of the manipulator.
Static force occurs when the ROV accelerates or decelerates suddenly. It is calculated
using formula:

Finertia = m·a (39)

where: m is the mass of manipulator.
a is the acceleration of the ROV.
This force causes the position of the manipulator to shift. This change can affect the

ability to perform tasks accurately, essential in many underwater activities. When the ROV
makes rapid changes of direction, the centrifugal force becomes significant. The formula
for this force is:

Fcentri f ugal =
m·v2

r
(40)

where v is the velocity of the ROV and r is the turning radius.
Centrifugal force can cause rotation of the manipulator, affecting its angular position

and ability to maintain correct orientation. In the rotating reference frame of the ROV, the
Coriolis force becomes important, especially when the ROV changes its angular velocity.
The formula for calculating this force is:

Fcoriolis = 2m(vx ×Ω) (41)

where vx is the velocity of the manipulator handle, and
Ω is the angular velocity of the ROV.
This force causes a deflection in the manipulator’s trajectory, requiring adjustment to

achieve the correct position. This analysis provides a detailed view of how sudden forces
affect the manipulator in the system, highlighting the complexity of underwater robot
operations and the need for advanced control strategies to manage these challenges. An
in-depth understanding of these effects is necessary to develop control systems capable of
eliminating their effects, ensuring that the manipulator operates accurately and stably in
full underwater environments.

The total resistive force on the manipulator is calculated by adding up all the resistive
forces, namely:

Ftotal = Ffrictional + Fpressure + Fmolecular + Finertia + Fcentri f ugal + Fcoriolis (42)

3. Adaptive Sliding Control Using Neural Network and Logic Fuzzy Controller
3.1. Sliding Mode Control

Sliding mode control (SMC) represents a control system approach employed for
stabilizing dynamic systems, particularly those characterized by uncertain or nonlinear
dynamics. The fundamental concept underlying SMC is to compel the system to adhere to
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a specific trajectory or sliding surface within the state space, irrespective of initial system
conditions or external disturbances.

Sliding mode control is introduced as a powerful control method capable of achieving
stable control of nonlinear systems even in the presence of model uncertainty and external
disturbances. The core idea of sliding mode control is to force the system’s states to “slide”
along a switching hyperplane (referred to as the sliding surface) toward an equilibrium
point. This is achieved by applying a discontinuous control law to switch control actions
based on the sign of the error between the current state and the desired state. The switching
ensures that the system’s states converge and remain on the sliding surface, providing ro-
bustness against model uncertainties and disturbances. To implement sliding mode control,
an appropriate sliding surface is first designed based on the system’s dynamics and relative
degree. Then, a switching control law is derived, comprising equivalent control terms to
compensate for model uncertainties and switching terms to counteract disturbances and
bring states onto the sliding surface. In this research paper, the sliding mode control method
is applied to control a three-degree-of-freedom robotic arm for underwater operations.
Challenges related to model uncertainty and noise in the underwater environment drive
the use of sliding mode control. Let θd denote the desired manipulator response, while
θ represents the actual output of the manipulator. The primary control objective entails
minimizing the error between θ and θd, as defined in Equation (43).

e = θ− θd (43)

Sliding surface sI (with i = 1, 3):

si =
·
ei + aiei (44)

where:
ai > 0

Choose the control law u such that derivative of the sliding surface:

·
e =


·
s1.
s2.
s3

 = −

k1·sign(s1)
k2·sign(s2)
k3·sign(s3)

 (45)

The control goal is to design u such that
.
s is driven to zero exponentially fast, ensuring

the system states converge to the sliding surface.
Sliding control law:

us =

[
F
(
θ,
·
θ

)
+ G(θ)

]
+ M



..
θ1d − a1

(
θ1 −

·
θ1d

)
− k1·sign(s1)

..
θ2d − a2

(
θ2 −

·
θ2d

)
− k2·sign(s2)

..
θ3d − a3

(
θ3 −

·
θ3d

)
− k3·sign(s3)

 (46)

3.2. Sliding Mode Control-Fuzzy Logic Control

Fuzzy logic is applied to estimate the amplitude of the sliding mode control law in a
dynamic, adaptive manner. This helps reduce chattering in the control output. A fuzzy
inference system (FIS) is developed using input of error (s) and change in error. Gaussian
membership functions are defined for the fuzzy sets of the input and output variables.
IF-THEN rules are constructed to relate the fuzzy sets of error to the fuzzy sets of the
control gain (k). The FIS evaluates the rules using fuzzy logic operations (in this paper it is
AND) to map crisp error values to crisp control gain values. This adaptive, fuzzy-estimated
control gain is then used within the overall sliding mode control law to regulate the system
states. The use of fuzzy logic is rationalized as it allows modeling nonlinear dynamics
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and uncertainties in a simple, intuitive way using linguistic rules. This helps sliding
mode control accommodate unknown factors in the underwater manipulator system. By
integrating fuzzy logic within sliding mode control, the approach aims to leverage the
robustness of SMC while reducing chattering through adaptive gain estimation.

Consider the sliding mode control system-Fuzzy Logic control [26–29]. The amplitude
of the control rule is dynamically estimated through a fuzzy inference system utilizing the
rules structured as follows:

IF sI is Am
i THEN kI is Bm

i
Within i = 1, 3
Where Am

i and Bm
i are fuzzy sets (Figure 3).
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The membership functions used are Gaussian functions [18].

µA(si) = exp

(
−
(

si − αi

σi

)2
)

(47)

where:
i = 1, 3, kI ≥ 0
αi, σI are the center and width of the ith Gaussian function, respectively.
Choose a positive definite function.

V =
1
2

3

∑
i=1

s2
i (48)

From (47) deduce:
·

V = −
3

∑
i=1

si·ki·sign(si) (49)

·
V = −

3

∑
i=1
|si|·ki (50)

Therefore, the fuzzy rule is defined as follows:
IF |sI| is NB THEN kI is NB
IF |sI| is NM THEN kI is NM
IF |sI| is NS THEN kI is NS
IF |sI| is Z THEN kI is Z
IF |sI| is PS THEN kI is PS
IF |sI| is PM THEN kI is PM
IF |sI| is PB THEN kI is PB
Where:
NB: Negative Big
NM: Negative Medium
NS: Negative Small
Z: Zero
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PS: Positive Small
PM: Positive Medium
PB: Positive Big
Program for Fuzzy Logic Control in MATLAB version 2022b that is presented in

Appendix A section.

3.3. Sliding Control Using RBFNN Network

An RBFNN is used to estimate nonlinear functions within the sliding mode control
law, since an exact mathematical model of the underwater manipulator system is difficult
to obtain. The RBFNN consists of three parts—an input layer, a hidden layer with radial
basis activation functions, and an output layer. It is trained online using a gradient descent-
based algorithm to minimize the error between the actual and desired sliding surfaces.
The RBFNN learns and adapts the control law based on current state feedback without
requiring an exact model of the system dynamics. This helps make the sliding mode control
more robust by compensating for model uncertainties and nonlinearities in the real-world
underwater system. The RBFNN also allows the control law to be adjusted continuously in
real-time as the system operates, improving tracking performance.

In this research, the strategic selection of the Radial Basis Function Neural Network
(RBFNN) marks a significant development in the control of underwater robotic arms.
RBFNN is highly valued for its efficient handling of unstable and fluctuating data, a critical
characteristic in the challenging underwater environment. This choice presents a clear
advantage over other neural-network architectures like Convolutional Neural Networks
(CNN) and Long Short-Term Memory (LSTM). While CNNs excel in image processing
due to their feature detection capabilities, they may not fully capture the continuous varia-
tions of the underwater environment. Similarly, while LSTMs are effective in processing
sequential data and long-term information, they might struggle with the rapid and abrupt
changes typical in underwater settings. In contrast, RBFNN, with its rapid adaptability and
effective handling of unstructured data, emerges as the optimal choice in this scenario. This
decision not only reflects a deep understanding of the specific challenges in underwater
robotic control but also demonstrates flexibility and creativity in applying AI technology to
address complex issues.

In summary, RBFNN is an effective choice in solving prediction, classification, and
control problems, especially in real-world environments with noise and uncertainty. In
this study, we consider the application of the sliding control system using RBF neural
network [29–31]. The nonlinear system is given as (51).{ ·

x = f (x) + g(x)u
y = h(x)

(51)

where x = [x1, x2, . . ., xn]T is the state vector, u is the input signal, y is the output signal, f(x)
and g(x) are the nonlinear functions describing the characteristic kinematics of the system.

Suppose (52) does not contain u and (46) contains u.

dr−1y
dtr−1 = L(r−1)

f h(x) + L(r−2)
f Lgh(x) (52)

dry
dtr = L(r)

f h(x) + L(r−1)
f Lgh(x)u (53)

where:
Lfh(x) =

∂h(x)
∂x f(x) is the Lie derivative in the f(x) direction.

Lgh(x) = ∂h(x)
∂x g(x) is the Lie derivative in the g(x) direction.

From (53) deduce:
y(r) = a(x) + b(x)u (54)
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where:
a(x) = L(r)

f h(x) (55)

b(x) = L(r−1)
f Lgh(x) (56)

The control law u is determined such that:

y(r) = v(t) (57)

where v(t) is the new control signal.
From (55)–(57) deduce:

u∗(x) =
1

b(x)
[−a(x) + v(t)] (58)

The control law v(t) is determined based on the pole assignment method with the
characteristic equation:

e(r) + k1e(r−1) + . . . + kr−1e1 = 0 (59)

where:
ym(t) is the desired output value.
y(t): actual output value
k1, k2, . . ., kr−1: is chosen so that (59) has a negative definite solution.

e(t) = ym(t)− y(t) (60)

From (57), (59) and (60) deduce:

y(r)
m (t)− v(t) + k1e(r−1) + · · ·+ k(r−1)e = 0 (61)

Or:
y(r)

m (t) + k1e(r−1) + · · ·+ k(r−1)e = v(t) (62)

Set [28]:
es + ηes(t) = k1e(r−1) + · · ·+ k(r−1)e (63)

where:
es(t) = k1e(r−1) + k2e(r−2) + · · ·+ k(r−1)e

η: is a positive constant.
es =

.
es − e(r)

The control law (58) is approximated by the RBFNN network:

u(x) = ∅T
uΨu(x) (64)

where:
Ψu(x): is a Gaussian basis function.
∅u: is the weight that updates such that u approaches u∗

Because u is estimated by RBFNN network with a finite number of neurons in the
hidden layer, so errors are unavoidable. Let δu(x) be the structural error:

u∗(x) = ∅∗Tu Ψu(x) + δu(x) (65)

Difference between û and u∗

û(x)− u∗(x) = ∅̃T
uΨu(x)− δu(x) (66)
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where ∅̃T
u = ∅u −∅∗u estimated parameter error. Due to the structural error, the control

law has the following form.
u = û + us (67)

where us is the sliding control law chosen so that the closed system is stable.
From (54) deduce:

y(r) = a(x) + b(x)u(t) = a(x) + b(x)u∗(t) + b(x)[u(t)− u∗(t)] (68)

Compare (58) and (68), there are:

y(r) = v(t) + b(x)[u(t)− u∗(t)] (69)

Output error is set:
e(r) = y(r)

m − y(r) (70)

Replace (69) in (70)

e(r) = −es − ηes − b∅̃T
uΨu(x) + bδu − bus (71)

From (71) there are:

·
es + ηes = −b∅̃T

uΨu(x) + bδu − bus (72)

Choose a positive definite function:

V =
1

2b
e2

s +
1
2
∅̃T

uQu
·
∅u (73)

Deduce:
·

V =
1
b

es
·

es −
·
b

2b2 e2
s + ∅̃T

uQu
·
∅u (74)

where ∅̃u =
·
∅u, Qu is a positive definite matrix.

Replace (73) into (75):

·
V = −ηe2

s
b
− esus + esδu + ∅̃T

u

(
Qu

·
∅u −Ψues

)
−

·
b

2b2 e2
s (75)

Based on [32], (70) adaptive parameter update rule

·
∅u = Q−1

u Ψues (76)

Replace (72) in (73), there are:

·
V = −ηe2

s
b
− esus + es

 δu −
·
b

2b2 es

 ≤ −ηe2
s

b
− esus + |es|

(
δu +

Db

2b2 |es|
)

(77)

where
·
b(x) ≤ Db, Db is a continuous function [33].

If us =
(
δu + Db

2b2 |es|
)

sign(es) is chosen, (73) becomes
·

V = −ηe2
s

b ≤ 0, so the closed
system is stable according to Lyapunov’s criterion.

The RBFNN network (Figure 4) plays the role of estimating nonlinear functions in the

control law so that the closed system is stable. The input to the network is
[
θi,
·
θi

]T
, the

output is the adaptive control law. It updated weights online based on (77).
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Figure 4. RBFNN Network.

Ψi = [Ψ1i Ψ2i . . . Ψ9i]
T is Gauss base function, ∅i = [∅1i ∅2i . . . ∅9i]

T is the update
parameter. The jth Gaussian basis function is defined as follows:

Ψji = exp

−
(
θi − c1j

)2
+

( ·
θi − c2j

)2

δ2
j

 (78)

where
j = 1, 9

The widths of the Gaussian basis functions are chosen equally: σj = 0.9
ckj is the base function center k = 1, 2

3.4. Adaptive Sliding Controller Using Fuzzy Neural Model

The adaptive sliding controller utilizing the fuzzy neural model represents a fu-
sion of the fuzzy sliding controller and the sliding controller employing the RBFNN
network [34–38]. Fuzzy logic dynamically assesses the controller described in Equation (66)
to mitigate oscillations. Meanwhile, the RBFNN network is tasked with identifying the
control law by estimating the nonlinear functions within the control rule, thus ensuring
stability in the closed system. A visual representation of the adaptive sliding controller
using the fuzzy neural model is illustrated in Figure 5.
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The control formula of the controller:

u = us +
·

V + uce + d(t) (79)

4. Results and Discussion
4.1. Simulation and Simulation Results

When d(t) = 0.01 × sin(0.06 πt) noise or random noise (with zero mean, 0.01 variance,
initial value is random) affects the manipulator and object parameters change as follows:
the weight of joint 1 increased by 50% at 10 s, joint 2 increased by 10% at 20 s and joint 3
increased by 20% at 40 s. The results show that the response of the manipulator system
has no oscillations and overshoots, the steady-state error approaches zero (see Table 2).
The concordance between the response of the manipulator and the reference signal was
96% (Figure 6). The adaptive sliding control law using fuzzy neural model is presented in
Figure 7. This result is obtained due to the online identification of the control rule based on
the estimation of nonlinear functions using the RBFNN network (Figure 8) and the online
estimation of the control rule using fuzzy logic (Figure 9). The phase trajectory has no
oscillation around the slip surface (Figure 10).

Table 2. Quality parameters of the manipulator response.

Joint 1 Joint 2 Joint 3

Overshot ±π
2 ± 3% (Rad) ±π

2 ± 4% (Rad) ±π
2 ± 5% (Rad)

Risetime 5± 3% (s) 5± 3% (s) 5± 3% (s)
Ess 0.68% 1.24% 1.32%
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In order to assess the effectiveness of the controller proposed in this study, the author
conducted simulations comparing it to the traditional PID controller with P = 1.43, I = 0.005,
D = 0.5. Define the control objective: in this research, the aim is to manage the direction of
movement effectively.

Establish the Kp coefficient: begin with the proportional coefficient, Kp, initially set
to 0, and progressively increase it until achieving system stability. If the system exhibits
slow response or instability, raise Kp. Conversely, if it displays excessive oscillations or an
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overly aggressive response, reduce Kp. The authors identified the optimal proportional
coefficient as 1.43.

Determine the Ki coefficient: following the determination of Kp, ascertain the integral
coefficient, Ki. Commence with an initial Ki value of 0 and incrementally raise it until
achieving system stability and minimizing the error between output and desired values. In
this article, a very small value of 0.005 was selected for the integral coefficient.

Specify the Kd coefficient: lastly, define the derivative coefficient, Kd. Initiate with an
initial Kd value of 0 and progressively raise it until attaining system stability and reducing
oscillations or waveform distortions in the response. The desired response necessitated a
Kd coefficient of 0.5.

Testing and fine-tuning: once the Kp, Ki, and Kd coefficients are determined, assess
the system to ensure it meets control requirements. Adjust the coefficient values as needed
and retest until optimal performance is achieved for the robot arm.

The results indicated that the intelligent controller outperforms the traditional one,
showcasing enhanced stability and precise tracking of the specified signal values as depicted
in Figures 11–16. It is worth noting that all simulations were conducted under the presence
of noise, simulating real-world underwater conditions (Section 2.4).
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Figures 11–14 clearly illustrate the significant improvement in the effectiveness of the
proposed controller compared to the PID controller. Furthermore, Figures 15 and 16 exhibit
nearly identical results, with the proposed controller demonstrating greater stability in the
presence of noise compared to the PID controller.

The above examples highlight the enhanced noise elimination and stability achieved
through the results.

Additionally, it is worth noting that, in the paper titled “Neural adaptive robust
motion-tracking control for robotic manipulator systems” [39], the proposed control method
employs neural networks to learn and adapt control parameters. However, this method
does not utilize the sliding mode technique, whereas our proposed approach combines
both sliding mode and fuzzy logic algorithms.

Similarly, in the paper titled “Robust control based on Adaptive Neural Network for
the process of steady formation of continuous contact force in Unmanned Aerial Manip-
ulator” [40], the control method relies on adaptive neural networks to determine control
parameters. Nevertheless, it does not incorporate the sliding mode technique and is not de-
signed to address the challenges of precise and stable control for underwater manipulators.

In our proposed control method, we integrate both sliding mode and fuzzy logic
algorithms to achieve superior performance in controlling underwater manipulators. Addi-
tionally, we calculate and minimize the impact of noise on the control process.

To implement the controller, a combination of sliding mode control, neural network,
and fuzzy logic control can be applied to control robotic arms in practical applications.
Here are some fundamental steps for implementing this control system: define the robotic
arm system objective and determine the specific objective of the robotic arm system, such
as reaching a particular position or maintaining stability at a specific location. Identify the
robotic arm system model: identify and understand the model of the robotic arm system,
including crucial parameters such as position, velocity, and acceleration. Design the control
model: based on the identified system model, design the control model, including the
necessary parameters to achieve the system’s objective. Calculate and program control
equations: utilize the previously designed control equations to calculate the control param-
eters and program them into the control system. Set up the neural network: configure the
neural network with the required parameters for controlling the robotic arm. Implement
the fuzzy logic control system: set up the fuzzy logic control system and adjust related
parameters to optimize the control system’s performance. Combine control methods: inte-
grate various control methods, including sliding mode control, neural network, and fuzzy
logic control, to maximize efficiency in controlling the robotic arm. Test and fine-tune:
after implementing the control methods, conduct testing and fine-tuning of parameters to
achieve optimal efficiency in controlling the robotic arm system. In this study, the following
results are displayed: Concordance with Reference Signal: 96%. ±π/2 ± 3% (Joint 1),



J. Mar. Sci. Eng. 2023, 11, 2312 21 of 29

±π/2 ± 4% (Joint 2), ±π/2 ± 5% (Joint 3), Rise Time: 5 ± 3% seconds for all joints, Steady-
State Error (Ess): 0.68% (Joint 1), 1.24% (Joint 2), 1.32% (Joint 3). Comparing with existing
research [41–43], the superiority of the proposed controller in this paper can be shown in
terms of effective noise reduction and stability from the response time. Especially in the
reference document [44] with a Response Accuracy of 93.4%, it is slightly lower compared
to the proposed controller. Although it exhibits a superior Steady-State Error compared to
the proposed controller, the Rise Time is somewhat longer and delayed compared to the
controller addressed in the article.

4.2. Modeling Noise Signal

In this section, based on Section 2.4 and references [45–47], we aim to demonstrate the
superiority of the system. The authors focus on modeling and analyzing common types of
disturbances that might affect the robotic arm of the ROV (Remote Operated Vehicle) when
operating in a marine environment. The working conditions are assumed to be standard
and not extremely harsh, excluding extreme factors such as very high pressures or very
low temperatures.

4.2.1. Modeling Disturbances

Authors identified two main types of disturbances: deterministic disturbances and
random disturbances.

Deterministic Disturbances

Deterministic disturbances usually arise from fixed or cyclical sources, like the engines
and electrical equipment on the ROV. Specifically:

Electrical frequency noise: originates from the ROV’s power source, can be modeled
using a sine function with a fixed frequency.

Engine noise: caused by engine vibrations, can be simulated using a sine function
with varying amplitude and frequency.

Random Disturbances

Random disturbances arise from the marine environment and other unpredictable factors:
Noise from waves and currents: affected by weather conditions and underwater

terrain, can be modeled using a random function.
Collision noise: occurs when the robotic arm contacts an underwater object, creating

uneven and unpredictable forces.

4.2.2. Origin, Amplitude, Frequency, and Impact of Disturbances

Electrical frequency noise: originates from the ROV’s electrical system, has fixed
amplitude and frequency. Affects control signals, potentially leading to errors.

Engine noise: comes from engine vibrations, amplitude and frequency and depends
on the engine’s speed and operational state. Affects the accuracy of movements.

Noise from waves and currents: amplitude and frequency are indeterminate, depen-
dent on weather conditions and terrain. Significantly impacts the robotic arm’s positioning
and stability.

Collision noise: occurs randomly when the robotic arm interacts with an object, affects
stability and precision of operations.

4.2.3. Disturbance Calculation Formulas

To model the aforementioned disturbances, we employ the following formulas:
Electrical Frequency Noise: N1(t) = A1 sin(2πf1t +∅1)
Engine Noise: N2(t) = A2 sin(2πf2t +∅2)
Noise from Waves and Currents: N3(t) = A3·rand()
Collision Noise: N4(t) = A4·rand()
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Where: A represents amplitude, f is the frequency, ∅ is the phase, and rand() denotes
random generation functions.

4.2.4. MATLAB Simulation Results

Using MATLAB, the authors simulated the noise signals to analyze their impact on
the robotic arm system (Figure 17).
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Based on Figure 17, authors can identify various types of disturbances affecting the
underwater robotic arm system. Electrical frequency noise is consistent and unchanging,
impacting the system’s signal quality. Motor noise occurs periodically, causing instability in
the robot’s movement. Wave and flow noise is irregular and tends to be random, affecting
the robot’s control ability. Collision noise is unpredictable and can damage the robot.
Recognizing and handling these disturbances is vital to enhance performance and reduce
noise. Improving design and employing smart algorithms will boost performance and
ensure safety. The authors introduced the use of Linear Parameter-Varying (LPV) Systems
and the Kalman filter to reduce noise. LPV helps model the non-linear system under
various conditions. Meanwhile, the Kalman filter assists in estimating the system’s real
state and reducing disturbances. The combination of LPV and the Kalman filter optimizes
the operation of the underwater robot in a complex environment.

4.3. Applying Linear Parameter-Varying and Kalman Models to Underwater Robot Manipulators
4.3.1. Approach to the LPV (Linear Parameter-Varying) Model [48,49] for Underwater
Robotic Arms
4.3.1.1. Introduction to the LPV Model

The underwater environment is particularly unpredictable with various factors such
as currents, pressure, and temperature that may change continuously. The LPV allows con-
trollers to self-adjust their parameters based on measured or estimated variables, enabling
the robotic arm to adapt to varying working conditions and maintain stable and accurate
performance. LPV provides the capability to optimize the controller based on specific
working conditions at any given time, ensuring that the robotic arm operates as efficiently



J. Mar. Sci. Eng. 2023, 11, 2312 23 of 29

as possible in every situation. The LPV model is used to describe systems whose dynamics
vary with time and/or depend on system state and inputs. This makes it particularly suited
for modeling nonlinear systems like underwater robotic arms, where environmental factors
like pressure, depth, and currents can affect the system’s dynamics. LPV offers a flexible
control solution, capable of self-adjusting to address the uncertainties and variations of the
system and its environment. The controller can be designed to best reflect performance in
each specific situation, allowing the robotic arm to operate at its most efficient.

4.3.1.2. Construction of the LPV Model

The LPV model can be represented as a linear equation as follows:

.
x(t) = A(p)x(t) + B(p)u(t) (80)

y(t) = C(p)x(t) + D(p)u(t) (81)

where:
x(t) is the system state vector.
u(t) is the system input vector.
y(t) is the system output vector.
p is the vector of varying parameters, dependent on state and inputs.
A(p), B(p), C(p), D(p) are matrices dependent on parameter p.
For underwater robotic arms, p might include factors such as depth, pressure, and

water temperature.
Basic parameters of the robotic arm are:
Segment lengths: l1 = 1.0 m, l2 = 0.8 m, l3 = 0.6 m.
Segment masses: m1 = 1 kg, m2 = 0.8 kg, m3 = 0.5 kg.
Joint stiffness: k1 = 100 Nm/rad, k2 = 80 Nm/rad, k3 = 50 Nm/rad.
Arm radii: r = 0.05 m
Assuming that state variables are angles and velocities of each joint:

x =
[
θ1

.
θ1 θ2

.
θ2 θ3

.
θ3

]
(82)

Inputs are torques applied to each joint:

u =
[
τ1 τ2 τ3

]T (83)

The system matrices A and B are built based on the linearization of the dynamic
system. After calculations and simplification, the matrices are obtained as follows:

A =



0 1 0 0 0 0
−k1
m1

0 k1
m1

0 0 0
0 0 0 1 0 0
k2
m2

0 −k2
m2

0 k2
m2

0
0 0 0 0 0 1
0 0 k3

m3
0 −k3

m3
0


(84)

B =



0 0 0
1

m1
0 0

0 0 0
0 1

m2
0

0 0 0
0 0 1

m3


(85)
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Measurement matrix:
C = I6 (86)

D = 06×3 (87)

Covariance Matrix:

Q = diag
([

0.01 0.01 0.01 0.01 0.01 0.01
])

(88)

R =
([

0.05 0.05 0.05
])

(89)

4.3.2. Development of the Extended Kalman Filter (EKF) for Underwater Robotic Arms
4.3.2.1. Introduction to the Extended Kalman Filter (EKF)

In underwater environments, direct measurement of the states like position, velocity,
and direction can be disturbed by factors such as waves, currents, or external influences.
The Kalman filter aids in estimating these states more accurately by combining information
from the system model and measurement data. It uses both system model information and
measurement data to provide high-accuracy state estimates, reducing noise impact. The
Extended Kalman Filter (EKF) [50] is a powerful tool for estimating system states in the
LPV model, especially when the system is nonlinear and noisy. The EKF is a variant of the
standard Kalman filter designed for nonlinear systems. It provides accurate and reliable
state estimates, even under noisy conditions. The filter can quickly respond to changes in
measurement data and system modeling.

The Kalman Gain K is a crucial factor in the EKF, playing a vital role in balancing
between prediction and measurement. It ensures that measurement information is rea-
sonably incorporated into the system’s state estimation. K is determined based on the
covariance matrix of the prediction, the measurement covariance matrix, and the matrix
relating estimated states to measurements. The Kalman Gain K is computed to optimize the
state estimation. To ensure stability and efficiency, K should be calculated so that the EKF’s
efficiency function (estimation error covariance) is minimized. The formula for computing
the optimal K is based on the principle of minimizing estimation errors.

4.3.2.2. Extended Kalman Filter (EKF) Formula

A priori estimation (before receiving new measurement data):

x̂k|k−1 = Akx̂k−1 + Bkuk−1 (90)

Pk|k−1 = AkPk−1AT
k + Qk (91)

Calculating the Kalman Gain coefficient:

Kk = Pk|k−1CT
k

(
CkPk|k−1CT

k + Rk

)−1
(92)

A posteriori update (after receiving new measurement data):

x̂k = x̂k|k−1 + Kk

(
yk −Ckx̂k|k−1

)
(93)

Pk = (I−KkCk)Pk|k−1 (94)

where:
xk: State estimation at time k.
Ak, Bk, Ck: System model matrices.
uk−1: Control input at time k−1.
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Pk: State estimation covariance matrix.
Qk: Process noise covariance matrix.
Rk: Measurement noise covariance matrix.
yk: Measurement data at time k.
Kk: Kalman Gain, balancing between model estimation and measurement data.

4.3.3. Simulation of LPV Combined with Kalman

Figure 18 below shows the impact of disturbance on the joints of a manipulator
working underwater when applying LPV and Kalman and vice versa.
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Figure 18. The impact of disturbance on the joints of a manipulator.

Analysis of Figure 18:
System without LPV and Kalman implementation:
The data represents three series (joint 1, joint 2, and joint 3) indicating strong fluctua-

tions and noise affecting the robot arm joints. The variability of these three series is very
high, indicating the system is heavily disturbed and it is challenging to track or predict its
next state.

System with LPV and Kalman implementation:
Upon employing LPV and the Kalman filter, fluctuations in the three data series (joint

1, joint 2, and joint 3) are significantly reduced. The series joint 1, joint 2, and joint 3 are
smoother and easier to follow, demonstrating that the impact of the noise has considerably
diminished in frequency and magnitude on the system’s operation. Compared to the
above graph, noise and variability have greatly decreased, proving the effectiveness of
implementing LPV and the Kalman filter.

5. Conclusions

Through this paper, a sliding mode controller based on fuzzy control and RBFNN
network is proposed to monitor the operating trajectory of the robot controller. An adaptive
rule is used to tune online the weights of the RBFNN, which are used to compute the
equivalence control. The adaptive training algorithm is derived from the meaning of
the Lyapunov stability analysis, so that the stability of the closed-loop system can be
guaranteed even in the case of uncertainty. Using RBFNN, instead of a multi-layer feed-
forward network trained with backpropagation, shortens the reach of time. Problem-
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solving in SMC is minimized with the proposed controller. The simulation results show
that the joint position tracking responses follow the desired trajectories of perturbations
and frictional forces. In addition, the simulation results demonstrate that the fuzzy sliding
mode controller based on the radial basis function neural network proposed in this paper is
a stable control scheme for monitoring applications. Close the trajectory of the robot control
mechanism. The adaptive sliding controller using a fuzzy neural model has indicated the
adaptability of both noise and time-varying object parameters. In this controller, we use
fuzzy logic to estimate the control law amplitude online to limit the oscillation. At the
same time, using the RBFNN network determines control law based on nonlinear function
estimation to ensure a stable closed system.

The chart indicates that the implementation of LPV in conjunction with the Kalman
filter has significantly enhanced the system’s performance. In underwater environments,
where numerous factors introduce noise to the data, employing these methods proves
highly effective in noise reduction and bolstering the accuracy of state estimations.

In practice, this results in the underwater robotic arm operating more stably, with
greater precision and reliability, subsequently enhancing its operational capability and
overall efficiency.

The control strategy we have introduced holds immense potential for its use in real-
world underwater robotics. As we look to the future, our next steps involve applying
this method to tangible robotic arm models and analyzing its efficacy through hands-
on underwater trials. Moreover, with the advent of groundbreaking methods like deep
reinforcement learning and bio-inspired optimization, there is ample room to refine our
control algorithm. Delving into the incorporation of state-of-the-art sensors for precise
state feedback and better disturbance handling is another exciting prospect. Doing so
will significantly address the real-world challenges that underwater operations often face.
Furthermore, enhancing the controller to manage issues like changes in hydrodynamic
parameters, nonlinear friction interferences, and overlooked dynamics becomes a pivotal
research avenue. In essence, our efforts pave the way for pioneering intelligent control
systems that enable underwater robots to carry out intricate operations seamlessly and
with unwavering accuracy.

This project serves as a foundation for future research on a practical model for stabi-
lizing robot arm control through a proposed control system and intelligence, enhancing
adaptability through computer vision.
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Nomenclature

ROV Remotely Operated Vehicle
RBFNN Radial Basis Function Neural Networks
SMC Sliding Mode Control
FIS Fuzzy Inference System
LPV Linear Parameter Varying
EKF Extended Kalman Filter
CNN Convolutional Neural Networks
LSTM Long Short-Term Memory
FNN Fuzzy Neural Network
PID Proportional Integral Derivative

Appendix A

From all the above data, programming the fuzzy rule definition of the problem in
Algorithm A1 below:

Algorithm A1. Fuzzy set algorithm.

[System]
Name = ‘Fuzzyset’
Type = ‘mamdani’
Version = 2.0
NumInputs = 1
NumOutputs = 1
NumRules = 7
AndMethod = ‘min’
OrMethod = ‘max’
ImpMethod = ‘min’
AggMethod = ‘max’
DefuzzMethod = ‘centroid’

[Si]
Name = ‘|Si|’
Range = [0 1]
NumMFs = 7
MF1 = ‘NB’:’gaussmf’, [0.07078 0]
MF2 = ‘NM’:’gaussmf’, [0.07078 0.1667]
MF3 = ‘NS’:’gaussmf’, [0.07078 0.3333]
MF4 = ‘Z’:’gaussmf’, [0.07078 0.5]
MF5 = ‘PS’:’gaussmf’, [0.07078 0.6667]
MF6 = ‘PM’:’gaussmf’, [0.07078 0.8333]
MF7 = ‘PB’:’gaussmf’, [0.07078 1]

[Ki]
Name = ‘Ki’
Range = [0 1]
NumMFs = 7
MF1 = ‘NB’:’gaussmf’, [0.07078 0]
MF2 = ‘NM’:’gaussmf’, [0.07078 0.1667]
MF3 = ‘NS’:’gaussmf’, [0.07078 0.3333]
MF4 = ‘Z’:’gaussmf’, [0.07078 0.5]
MF5 = ‘PS’:’gaussmf’, [0.07078 0.6667]
MF6 = ‘PM’:’gaussmf’, [0.07078 0.8333]
MF7 = ‘PB’:’gaussmf’, [0.07078 1]

[Rules]
1, 1 (1): 1
2, 2 (1): 1
3, 3 (1): 1
4, 4 (1): 1
5, 5 (1): 1
6, 6 (1): 1
7, 7 (1): 1
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