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Abstract: Underwater acoustic homing weapons (UAHWs) are formidable underwater weapons with
the capability to detect, identify, and rapidly engage targets. Swift and precise target identification
is crucial for the successful engagement of targets via UAHWs. This study presents a real-time
target recognition method for UAHWs based on stacking ensemble technology. UAHWs emit
active broadband detection signals that manifest distinct reflection characteristics on the target.
Consequently, we have extracted energy and spatial distribution features from the target’s broadband
correlation detection output. To address the problem of imbalanced original sea trial data, we
employed the SMOTE algorithm to generate a relatively balanced dataset. Then, we established
a stacking ensemble model and performed training and testing on both the original dataset and
relatively balanced dataset separately. In conclusion, we deployed the stacking ensemble model on
an embedded system. The proposed method was validated using real underwater acoustic homing
weapon sea trial data. The experiment utilized 5-fold cross-validation. The results indicate that the
method presented in this study achieved an average accuracy of 93.3%, surpassing that of individual
classifiers. The model’s single-cycle inference time was 15 ms, meeting real-time requirements.

Keywords: SMOTE; stacking ensemble learning; imbalanced dataset; underwater acoustic homing
weapon; target recognition

1. Introduction

When underwater acoustic homing weapons (UAHWs) employ active sonar for detect-
ing, locating, tracking, and targeting submarines, they encounter the challenge of dealing
with a variety of acoustic decoys deployed by the submarines to mislead them. To ensure
the successful targeting of submarines, UAHWs must be equipped with active target recog-
nition capabilities. This enables them to effectively identify submarines and counter various
acoustic decoys. Scholars have undertaken research on real and decoy target recognition
technology for UAHWs. According to [1], the essential principle behind real and decoy
target recognition technology for active acoustic homing is the differentiation of real targets
from “decoy targets” generated by underwater acoustic countermeasures based on their
scale characteristics. Hence, scale characteristics play a pivotal role in the initial target
recognition process of underwater acoustic homing weapons. Early researchers successfully
accomplished scale target recognition by employing the azimuth analysis method [2,3].
Nevertheless, as underwater acoustic countermeasures have advanced, acoustic decoys
have transitioned from point source decoys to scale decoys equipped with extensive towed
arrays. This evolution has rendered it unfeasible to distinguish scale decoys from sub-
marines solely based on scale features [4,5]. Consequently, there is an urgent imperative to
develop a target recognition method for scale decoys in UAHWs.
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In recent years, the rapid advancement of artificial intelligence (AI) has provided
new avenues for target recognition. Conducting research on intelligent acoustic target
recognition holds significant practical importance. Currently, AI and machine learning
technologies have been widely applied to acoustic target recognition issues [6,7]. Underwa-
ter acoustic target recognition methods based on AI can be divided into statistical machine
learning methods and deep learning methods. Among them, the object recognition method
based on statistical machine learning includes support vector machine [8,9] and other
methods [10], while the object recognition method based on deep learning includes convo-
lutional neural networks [11–15], long short-term memory [16], and other methods [17].
It can be observed that for passive underwater acoustic target recognition, scholars have
conducted a substantial amount of research. However, there has been relatively less re-
search on active target recognition methods based on AI. Due to its ability to efficiently
address various real-world problems, ensemble learning has garnered significant attention
in the field of machine learning, and the stacking ensemble technique is an important
method within ensemble learning. Stacking ensemble learning can integrate the strengths
of various traditional machine learning methods, exhibiting strong generalization abilities
with minimal impact on time and space complexity. Therefore, stacking ensemble learning
is well suited for applications in scenarios with high real-time requirements. Currently,
the stacking ensemble technique has been applied in various fields, including rainfall pre-
diction [18], ocean wave height prediction [19], rock mass classification [20], and damage
prediction [21].

In this study, we presented a real-time target recognition method for UAHWs based
on the stacking ensemble technique. It was designed to address the issue of identifying
submarines and scale decoys in UAHWs. Firstly, under the active wideband detection wave-
form illumination of UAHWs, submarines exhibited the characteristic of multi-highlight
surface reflection, while scale decoys exhibited the characteristic of multi-highlight point
reflection. From the output of target broadband signal correlation detection, we extracted
statistical features of target echo energy distribution and spatial distribution. Next, we
constructed a stacking ensemble model suitable for UAHWs. In addition to the stacking
ensemble model, we established seven other classifiers, including SVM, KNN, LR, DT,
GBDT, and XGBoost, for comparison with the stacking ensemble model. Then, addressing
the issue of imbalanced data in the available real-world data, we employed the SMOTE
oversampling method to obtain a relatively balanced dataset. With both the imbalanced
and balanced datasets, we separately trained and tested the stacking ensemble model and
the seven individual classifiers. We analyzed the advantages of the stacking ensemble
model over individual classifiers and discussed the impact of imbalanced datasets on
classifier prediction performance. Finally, we deployed the stacking ensemble model on an
embedded system and calculated the inference time.

The structure of this study is as follows: Section 2 introduces the fundamental princi-
ples and methods; Section 3 presents the recognition method workflow; Section 4 provides
the prediction results and analysis and outlines the process and results of deploying the
model on an embedded system; Section 5 presents the discussion; and Section 6 presents
the conclusions.

2. Materials and Methods
2.1. Stacking Ensemble Learning

Ensemble learning is a technique that involves the combination of multiple models to
make predictions, aiming to achieve more accurate and robust results compared to those of a
single classification model. Ensemble learning typically falls into three categories: boosting,
bagging, and stacking. In boosting and bagging, the same base classifier is utilized, making
them homogeneous ensemble methods. In contrast, stacking [22] employs various types
of base learners for integration, earning it the designation of a heterogeneous integration
method. In order to integrate multiple classification models, a stacking ensemble model
first divides the original dataset into several sub-datasets. Then, each classification model
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is considered as a base model, and their prediction results for the data are output as meta-
features of the data. Finally, the meta-model is trained using the previously extracted
meta-features to make the final predictions. To avoid overfitting, we used k-fold cross-
validation to partition the dataset before training multiple heterogeneous models. Our
approach is rooted in our decision not to assign explicit weight coefficients to individual
base models. Instead, we harness the predictions generated by these base models. This
approach empowers the meta-model to correct discrepancies in the predictions made by
the base models, effectively reducing the risk of overfitting. Therefore, our model is a
“two-layer” ensemble model, rather than a “weighted” model. The following are the steps
to establish a “two-layer” stacking ensemble model:

1. The dataset S = [(xi, yi), i = 1, ..., N] is divided into a training set Strain = [(xtr, ytr),
tr = 1, ..., Ntrain] and a test set Stest = [(xte, yte), te = 1, ..., Ntest]. In these sets, xi
represents the i-th sample in the dataset, and yi corresponds to the class of the i-th
sample. For the training set, xtr represents the tr-th sample, and ytr is the class
associated with the tr-th sample. In the test set, xte represents the te-th sample, and
yte is the class associated with the te-th sample.

2. k base classifiers are selected, and the training set Strain is divided into k equal size
subsets S1, S2, ..., Sk. Define S−k as a test set; then, S∗k = S− Sk. All k base models are
trained using the training set Strain, and prediction probabilities zk,p are obtained using
the test set. A new training set is obtained by combining the predicted probabilities
of each base model on the test set during cross-validation. At the same time, the
predicted probabilities of each base model on the total test set are averaged, and a
new test set is obtained after concatenation.

3. The second level meta-model is trained with the newly generated training set. By
training the meta-model, the prediction deviation of the base model can be corrected
and the prediction accuracy can be improved.

2.2. Base Classifiers

Selecting base classifiers and meta-classifiers plays a vital role in establishing stacking
ensemble classifiers. In order to select the appropriate base and meta-classifiers and
compare them with stacking ensemble classifiers, we established seven commonly used
classifiers, including support vector machine, k-nearest neighbors, decision tree, logistic
regression, random forest, gradient boosting decision trees, and extreme gradient boosting
decision trees. The following provides a brief introduction to each classifier.

2.2.1. Support Vector Machine

Support vector machine (SVM) is a supervised learning method, which can be widely
used in statistical classification and regression analysis [23]. By mapping data points to
high-dimensional space, a segmentation hyperplane is found in high-dimensional space.
The segmentation hyperplane is determined by weighing the minimum interval and error
rate. The interval refers to the distance from the segmentation hyperplane to the support
vector, and the error rate refers to the number of incorrectly classified objects. At the same
time, kernel functions are used to map data points to high-dimensional spaces, thereby
reducing the difficulty of classification. For the binary classification problem in this study,
assuming a training set is (xi, yi)(i = 1, 2, ...n, y ∈ [−1, 1]), a hyperplane can be constructed
as wx + b = 0, where w is the normal vector determining the direction of the hyperplane,
and b is the offset term determining the distance between the hyperplane and the origin.
The solution to the hyperplane is a constrained optimization problem, and by utilizing the
Lagrange multiplier duality, it can be transformed into the following optimization problem:

max
α

[∑n
i=1 αi − 1

2 ∑n
i=1 ∑n

j=1(αiαjyiyj)]

s.t. ∑n
i=1(αiyi = 0)(0 < αi < C, i = 1, 2, ..., n)

(1)



J. Mar. Sci. Eng. 2023, 11, 2305 4 of 22

where αi, αj represents the Lagrange multiplier, and C is the penalty coefficient. The
ultimate optimal classification function is given by:

f (x) = sgn[
n

∑
i=1

(α∗i yixixT
i + b∗)] (2)

where αi represents the optimal Lagrange multiplier, and b∗ is the optimal coefficient b.
Moreover, given the nonlinear nature of the problem in this study, we incorporated a radial
basis kernel function, expressed as follows:

k(xi, xj) = exp(− 1
2γ2

∥∥xi − xj
∥∥2
) (3)

where γ represents the bandwidth of the radial basis kernel function.

2.2.2. k-Nearest Neighbors

k -nearest neighbor (KNN) [24] is a lazy learning classifier. The main idea is to calculate
the distance between the test samples and the samples in the training set. According to the
hyperparameter k preset in KNN, the nearest k samples in the training set determine the
type of test sample. KNN is simple in principle, without preconditions and assumptions, it
has a wide range of applications, and it is less affected by outliers. Its drawbacks include
high computational complexity, high storage space requirements, and susceptibility to
imbalanced data. Assuming xt

q is the feature vector to be classified, KNN entails seeking
the most similar feature vectors within the sample space. Following this, a vote is cast
among the k-nearest vectors, and the class with the highest frequency is assigned to the
target vector. Euclidean distance serves as the metric for measuring vector similarity and
can be expressed as:

DE =

√√√√ d

∑
q=1

(xs
q − xt

q)
2 (4)

where DE is the Euclidean distance, xs
q is the sample vector, and d is the dimensionality of

the sample.

2.2.3. Decision Tree

As depicted in Figure 1, decision tree (DT) [25] is a type of decision making, based
on a tree structure, that classifies a dataset through multiple conditional discriminant
processes and ultimately obtains the desired results. The CART decision tree is used in
this study, using the Gini coefficient as the basis for partitioning. The advantage is that the
nonparametric model does not require pre-assumptions about the samples and can handle
complex samples. Its calculation speed is fast, the interpretability of the results is strong,
and it is not sensitive to missing values. In the tree structure, each internal node represents
a judgment on an attribute, each branch represents an output of a judgment result, and,
finally, each leaf node represents a classification result. For a classification problem with K
classes, where the probability of a sample belonging to the k-th class is pk, the Gini index
for the probability distribution can be defined as:

Gini(p) =
K

∑
k=1

pk(1− pk) = 1−
K

∑
k=1

p2
k (5)

2.2.4. Logistic Regression

Logistic regression (LR) [26] assumes that the data obey the Bernoulli distribution and
performs classification using the method of maximizing the likelihood function to solve
the parameters via gradient descent. The advantage is that the classification possibility is
directly modeled, avoiding the problems caused by inaccurate distribution assumptions. It
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is easy to use, with strong interpretability. However, LR is prone to underfitting and has
relatively poor classification accuracy. When the feature space is large, the performance is
relatively poor. The logistic regression model can be expressed as:

P(y = 1|x) = exp(w · x + b)
1 + exp(w · x) + b

P(y = 0|x) = 1
1 + exp(w · x) + b

(6)

where x represents the input features, y is the output class, w is the weight vector, b is the
bias term, and w · x denotes the dot product of w and x.

Figure 1. Decision tree model.

2.2.5. Random Forest

Random forest (RF) is an ensemble classifier based on DTs [27]. It uses the bootstrap
resampling technique repeatedly to extract n different samples from the original dataset to
create a new training sample set to train the decision trees and then generates n decision tree
classifiers. Each decision tree classifier predicts the test samples and integrates n generated
decision trees using the bagging method. Here are the main steps of Random forest:

1. Data Sampling (Bootstrap): For a given training dataset, a random forest performs
random sampling with replacement, generating multiple different subsets. This is
referred to as bootstrap sampling. This means that certain samples may appear
multiple times in one subset, while others may not appear at all.

2. Feature Random Selection: At each node of every decision tree, a random forest does not
consider all features for splitting; instead, it randomly selects a subset of features from
the feature set. This helps increase the diversity of the model and prevents overfitting.

3. Decision Tree Training: For each bootstrap-sampled subset and feature subset, a
decision tree is trained. The commonly used decision tree algorithm is CART (Classi-
fication and Regression Trees).

4. Voting or Averaging: For classification problems, a random forest employs a majority
voting approach, where each decision tree votes for a class, and the final prediction is
the class with the most votes.

Ultimately, the output of a random forest can be expressed as:

y = majorityvote( f1(x), f2(x), ..., fn(x)) (7)
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where y is the prediction of the random forest, and fi(x) is the prediction of the i-th
decision tree.

2.2.6. Gradient Boosting Decision Tree

Gradient boosting decision tree (GBDT) [28] is an ensemble classifier based on DTs.
In each iteration, a new DT is generated, and the residual of the previous DT is used to
train the current DT. In addition, in each iteration, the gradient descent method is used
to increase the weight of misclassified samples so that the objective function error of the
model is smaller than the previous iteration. The convergence condition of this algorithm is
to meet the preset classification error or reach the upper limit of the DT. Finally, all trained
DTs are integrated into one classifier. GBDT has strong generalization ability and is widely
used in classification problems.

2.2.7. Extreme Gradient Boosting Decision Tree

Extreme gradient boosting decision tree (XGBoost) [27,29] is a large-scale parallel
lifting tree algorithm. Similar to GBDT, it also adopts the boosting method, but its objective
function is different from GBDT. This method is fast and can perform parallel calculations.

2.3. SMOTE

Synthetic minority oversampling technique (SMOTE) [29,30] is a data processing
method employed to address imbalanced datasets. The SMOTE algorithm harnesses the
KNN model from the realm of machine learning to generate new samples. This approach
distinguishes itself from the simple replication of minority class samples commonly utilized
in basic random oversampling. In contrast to random oversampling techniques, SMOTE
effectively mitigates the overfitting issues associated with such methods. The fundamental
principle of the SMOTE algorithm is as follows: Initially, it selects minority class samples to
create new synthetic samples, drawing from the minority class. It then traverses through all
the minority class samples. Subsequently, a sample is randomly chosen from all the samples
within the k-nearest neighbors of the sample slated for oversampling. Linear interpolation
is employed in accordance with Formula (1) to create the synthetic new sample.

xnew = xi + rand(0, 1) ∗ ‖x̂i − xi‖ (8)

where rand(0, 1) represents a random value between 0 and 1, x̂i denotes a randomly selected
sample from the k samples, xi denotes the sample to be oversampled, and xnew represents
the newly synthesized sample.

3. Modeling of UAHW Target Recognition Algorithm Based on SMOTE-Stacking

UAHWs employ active sonar for target detection. Initially, UAHWs utilize their array
of sensors to emit frequency-modulated signals, which propagate through the ocean chan-
nel, reach the target, and reflect as echoes. These target echoes, after transmission through
the ocean channel, are received by the sensor array of UAHWs and undergo array signal
processing and correlation detection. In addition to interference from marine environmental
noise, they are also influenced via reverberation. After receiving the target echoes through
the sensor array, UAHWs initiate beamforming to achieve spatial filtering. Subsequently,
the signal, post-beamforming, undergoes correlation detection. To mitigate the impact
of reverberation, a time-varying gain control method is applied. Following correlation
detection, the highlights corresponding to the target echoes are obtained. Feature extraction
is then conducted based on these highlights. Due to a significant disparity in the quantity
of submarine target echoes compared to decoy target echoes in the dataset, SMOTE is
employed in the feature domain. Ultimately, target recognition is accomplished through the
utilization of the stacking ensemble method. An entire workflow of the target recognition
algorithm is depicted in Figure 2.
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Figure 2. UAHW target recognition algorithm flowchart.

3.1. Active Acoustic Signal Detection System of UAHW

The UAHW uses an active acoustic sonar system to detect, locate, and track targets. In
active sonar systems, the emission signal is known. If the additive noise is white Gaussian,
the best detector given by the likelihood ratio test is a cross-correlator or matched filter.
The detection background consists of marine environmental noise, self-noise, circuit noise,
and reverberation. To reduce noise and reverberation interferences as much as possible,
we adopt beamforming before detection and the time-varying gain control (TVG) method,
respectively. A typical active sonar signal processing structure is shown in Figure 3.

Reverberation

Signal

Noise

Array
Prepro

cessing
Signal Detection

TVG
Frequency 

Correlation

Adaptive 

Threshold

Figure 3. Signal detection process diagram.

3.1.1. Time-Varying Gain Control (TVG)

In active acoustic sonar systems, the echo signal from the target is submerged in the
reverberation and noise background. Reverberation is a non-stationary stochastic process
with time-varying amplitude, frequency, air variation, and color. The target radiation noise
and target echo received by UAHWs continuously strengthen as they approach the target.
In order to keep the reverberation, echo, and target radiation noise within the effective
dynamic range of the receiver and within the voltage range that the A/D converter can
operate correctly, the constant false alarm processing of homing signal detection first needs
to solve dynamic range compression and background normalization.

We adopt time-varying gain control (TVG) for dynamic range compression. Its pro-
cessing flow is shown in Figure 4. The detector detects and integrates the output of the
receiver, forming a control code for the controlled amplifier, thereby changing the ampli-
fier gain. TVG can effectively implement dynamic range compression. However, due to
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the non-stationary nature of the background, its normalization of the background cannot
achieve constant variance. As shown in Figures 5 and 6, the original signal, TVG gain
curve, and the signal processed via TVG are presented. It can be seen that after TVG, the
reverberation, echo, and target radiation noise are all within the effective dynamic range of
the receiver.

Figure 4. Time-varying gain control diagram.

Figure 5. Time-domain signal after TVG processing result.

Figure 6. (a) Frequency-domain signal before TVG processing result. (b) Frequency-domain signal
after TVG processing result.

3.1.2. Adaptive Threshold

The purpose of signal detection is to extract as many useful signals as possible from
noise-polluted signals. For signal detection, there are two hypotheses: H0 contains no
signal and H1 contains a signal, which can be expressed as:
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H0 = n(t) H1 = s(t) + n(t) (9)

where s(t) and n(t) are the signal and noise, respectively.
The detection system requires the best criterion to be met under the given assumptions.

For active sonar systems, the optimal detection is typically based on the Neiman–Pearson
criterion, and the likelihood ratio is calculated via a matched filter. A matched filter is
an optimal linear filter. When the input signal is known, and the background noise is
white noise, then the output SNR of the matched filter reaches its maximum. The optimal
detection system of active sonar can be simplified as the structure presented in Figure 7.
In fact, the matched filter was implemented through the cross-correlation. As presented
in Figure 8, the input signal is s(t) and the background noise is n(t). Assume that n(t)
is white noise, and its power spectrum density is N0

2 . Then, the max output SNR of the
matched filter is 2E

N0
, where E is the energy of s(t).

Linear filtering
NP Criterion

Figure 7. Signal detection process flowchart.

Figure 8. Signal correlation detection flowchart.

TVG can effectively implement dynamic range compression. However, due to the
non-stationary characteristics of the background, their normalization of the background
can not reach constant variance. Another important measure to achieve constant false
alarm processing is adaptive threshold processing. The calculation of adaptive thresholds is
closely related to the signal form and signal processing methods used in homing. Dynamic
compression, background normalization, and adaptive thresholds constitute constant false
alarm processing for homing signal detection. Adaptive threshold processing is the ability
to adaptively adjust the detection threshold as the interference background changes, thereby
enabling more accurate detection of targets. We adopt an adaptive threshold generation
method based on low-pass filters. This adaptive threshold generation method assumes
that after low-pass filtering, the relevant peaks of the signal will be filtered out. Therefore,
the design of low-pass filters is crucial and must be determined based on the shape of the
signal’s relevant peaks. In addition, when generating the detection threshold in the final
step, a fixed offset can be added to the entire threshold as needed, which should be related
to the current background.

3.1.3. Frequency Correlation

In order to achieve fast correlation detection, frequency-domain correlation is used
for signal detectors. As presented in Figure 9, frequency-domain correlation uses cyclic
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convolution, fast Fourier transform (FFT), and inverse fast Fourier transform (IFFT) for
signal detection. The detection algorithm can be defined using the following:

ym(n, v) = abs(IFFT[FFT(xm(n)) ∗ (FFT(sv(n)))′]) (10)

where xm(n) and sv(n) denote the received and reference signals, respectively.

Figure 9. Signal frequency-domain correlation detection.

3.2. Feature Extraction

After signal detection, feature extraction is performed. The extraction of effective
features is a crucial step when building a model, and the quality of features plays a decisive
role in the prediction process. The linear array scale acoustic decoy has the characteris-
tics of highlight and azimuth extension, and it responds to the detection signal regularly
through multiple underwater acoustic transducers. When the response signals of multiple
underwater acoustic transducers are superimposed, the azimuth strike characteristics and
multi-highlight characteristics of submarine targets can be simulated with high fidelity. The
typical characteristics of the scale acoustic decoy response signal are its stable intensity dis-
tribution and spatial distribution, and the background between the highlights is “clean” [4].
The linear array scale acoustic decoy can not only simulate the reflection characteristics
of the target to the wideband incident signal and the radiated noise characteristics of the
real target but also simulate the scale characteristics of the real extended target physical
structure and the spatial distribution characteristics of the echo signal. Compared with the
stable highlight of linear array scale acoustic decoys, submarine echoes also have the char-
acteristics of multi-highlight [31]. Due to the irregular shape of submarines, the intensity
distribution and spatial distribution of echo bright spots are not the same at different angles,
which is a kind of surface reflection. Its highlight background is not clean because of surface
reflection. Based on the physical mechanism of the multi-point reflection and submarine
surface reflection of linear array scale acoustic decoys, we extracted target-based energy
features from the wideband signal correlation detection output, including five features:
single highlight energy distribution features, multi-highlight energy distribution features,
multi-highlight background energy distribution features, multi-highlight global spatial
distribution features, and multi-highlight local spatial distribution features. This feature
set can be used to identify submarine and linear array scale acoustic decoys.

3.3. Feature Oversampling Based on SMOTE

The data for this study were obtained from multiple sea trials conducted using UAHWs.
The data quantities are presented in Table 1. Specifically, the acoustic decoy dataset com-
prises 349 data samples collected from 10 different sea trials, while the submarine dataset
comprises 889 samples from 50 distinct sea trials.

Table 1. Data source and quantity description.

Target Type Sea Trial Number Data Number

Acoustic decoy 10 349
Submarine 50 889
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As shown in Table 1, it is clear that the sea trial data display an imbalance in the quan-
tity of the two target classes. For ease of representation, both target types were encoded,
with 0 representing acoustic decoys and 1 representing submarines. To prevent information
leakage and in consideration of the operational characteristics of UAHWs, we implemented
a 5-fold cross-validation with data stratification. For each training dataset in the 5-fold
cross-validation, the ratios of acoustic decoy samples to submarine samples in both the
training and test datasets are 287/731, 295/714, 289/701, 276/701, and 249/709, which are
approximately 2/5, 2/5, 2/5, 2/5, and 1/3, respectively. To analyze the impact of imbal-
anced data on our algorithm, we performed oversampling, using SMOTE, on the features
extracted from the original data. It is crucial to emphasize that this oversampling was
exclusively applied to the training set. We doubled the number of acoustic decoy features
in the training set while keeping the number of submarine features unchanged. During this
process, the k in the SMOTE algorithm was set to 5. The t-SNE [32] visualization results
for the original 5-fold cross-validation of features are presented in Figure 10. Figure 11
illustrates the corresponding t-SNE visualization results for the 5-fold cross-validation
after oversampling.

Figure 10. The t-SNE visualization results for the 5-fold cross-validation of features.

3.4. Model Establishment

The problem of target recognition for underwater homing weapons is a few-shot
recognition problem. SVM exhibits outstanding performance and is well-suited for small-
sample scenarios. KNN is easy to implement and also suitable for small-sample problems.
DTs offer good interpretability, which is crucial for underwater homing weapons. RFs
provide high accuracy and robustness, while XGBoost excels in performance and scalability,
making it highly versatile. And, in the first layer of the stacking ensemble model, we
selected five different learners, specifically KNN, SVM, DT, RF, and XGBoost. The meta-
classification model chosen was GBDT. To enhance the model’s robustness, we conducted
5-fold cross-validation on the training set. In each training and testing iteration, the data
were divided into five parts, with four parts used for training the model, and one part used
as a validation set for model evaluation. For instance, in one training and testing iteration,
these four data segments were employed as inputs for the first layer of the stacking model,
incorporating the five different learners, resulting in five predictions. These five predictions
were subsequently used as inputs for the second-layer meta-learner and were utilized for
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training. A validation dataset was employed as model input for testing in order to search
for the optimal hyperparameters. As illustrated in Figure 12, the entire training and testing
process was repeated five times to cover all the training data.

Figure 11. The t-SNE visualization results for the 5-fold cross-validation of features after SMOTE
oversampling.

Figure 12. Stacking ensemble model construction diagram.

4. Results and Analysis
4.1. Evaluation Metrics

To evaluate the predictive performance of our model, we utilized a range of evaluation
metrics to assess the performance of the machine-learning-based models. Considering
the data imbalance, six evaluation metrics were employed: accuracy (acc), area under the
receiver operating characteristic curve (AUC), F1 score (F1), precision (PRE), recall (REC),
and the kappa coefficient (kappa). Table 2 represents a confusion matrix for the binary
target recognition problem. In the table, TP refers to the number of samples belonging



J. Mar. Sci. Eng. 2023, 11, 2305 13 of 22

to the positive class and correctly predicted as positive-class samples by a classifier. FN
indicates the number of samples from the positive class that are incorrectly predicted as
negative-class samples. FP represents the number of samples from the negative class that
are incorrectly predicted as positive-class samples. Lastly, TN signifies the number of
samples from the negative class that are correctly predicted as negative-class samples.

Table 2. Two-class confusion matrix.

Predicted Positive Predicted Negative

Actual positives TPs (true positives) FNs (false negatives)
Actual negatives FPs (false positives) TNs (true negatives)

The evaluation metrics can be calculated based on a confusion matrix, and the corre-
sponding calculation formulae are as follows:

acc =
TP + TN

TP + TN + FP + FN
(11)

PRE =
TP

TP + FP
, REC =

TP
TP + FN

(12)

F1 =
2× PRE× REC

PRE + REC
(13)

kappa =
p0 − pe

1− pe
(14)

p0 =
TP + TN

TP + TN + FP + FN
(15)

pe =
(TP + FP)× (TP + FN) + (TN + FN)× (TN + FP)

(TP + TN + FP + FN)2 (16)

The form of the ROC curve is also a metric that can be used to evaluate the prediction
accuracy of classifiers. The ROC curve plots the true positive rate (TPR, i.e., recall) versus
the false positive rate (FRP = FP/(TN + FN)). AUC is referred to as the area under the ROC
curve. The AUC values vary from 0.5 to 1, indicating the discrimination accuracy, which can
be divided into five categories: no discrimination (0.5–0.6), poor discrimination (0.6–0.7),
fair discrimination (0.7–0.8), good discrimination (0.8–0.9), and excellent discrimination
(0.9–1). The AUC calculation formula is as follows:

AUC =
∫ 1

0
TPR(FPR−1(t))dt (17)

where FPR−1(t) represents the inverse function of the FPR, and t varies within the range
of 0 to 1.

4.2. Hyperparameter Selection of Classifiers

Different classifiers have different hyperparameters that need to be preset. Hyperpa-
rameters play a vital role in the performance of classifiers. The main hyperparameters we
consider are as follows:

• For the SVM classifier, the main hyperparameters are the kernel function type (we
selected the radial basis function, i.e., RBF), penalty coefficient C, and RBF kernel
function coefficient g. The penalty coefficient C reflects the tolerance of the SVM for er-
rors. The larger the value of C, the higher the training accuracy, but the generalization
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ability of SVM is weakened. The smaller the value of C, the higher the tolerance of
the SVM for errors, and the stronger the generalization ability of the SVM. The kernel
function coefficient g determines the mapped feature space. The larger the value of g,
the higher the dimensionality of the kernel function mapping; the smaller the value of
g, the lower the mapping dimension.

• For the KNN classifier, the main hyperparameter is the number of neighbors (k) and
the weight of neighbors at different distances. The larger the value of k, the higher the
accuracy of KNN, but oversized k will lead to overfitting. The smaller the value of k,
the lower the accuracy of KNN, but too small a value will lead to underfitting. The
weight selection for neighbors with different distances is distance, which means that
the weight of neighbors is inversely proportional to the size of the distance.

• For the DT classifier, the main hyperparameters are min sample split, min sample leaf,
and criterion. Min sample split represents the minimum number of samples required
to split internal nodes, min sample leaf represents the minimum number of samples
required for an effective terminal node, and criterion represents the selection criteria
of features.

• For the LR classifier, the main hyperparameters are the penalty parameter C and
the optimization type solver. The penalty parameter C reflects the reciprocal of the
regularization strength. The smaller the value of C, the stronger the regularization.
The solver represents the optimization type of the algorithm.

• For the GBDT classifier, the main hyperparameters are learning rate, n estimators, max
depth, max features, min sample split, and min sample leaf. Among them, the learning
rate is the weight reduction coefficient for each tree, n estimators is the number of
trees, max depth is the maximum depth of the tree, max features is the number of
features selected by the tree, and min sample split and min sample leaf are similar to
the definition in DT.

• For the RF classifier, the main hyperparameters are n estimators, max depth, max
features, min sample split, and min sample leaf. These hyperparameters are similar to
the definitions in GBDT.

• For the XGBoost classifier, the main hyperparameters are learning rate, n estimators,
max depth, max features, min sample split, and min sample leaf. These hyperparame-
ters are similar to the definition in GBDT.

We optimized the hyperparameters of each classifier via the grid search method [33].
The hyperparameters of the stacking ensemble model are optimized based on the optimized
value of each individual classifier.

4.3. Prediction Results

In this section, we employed a total of eight different classifiers, including KNN, SVM,
DT, LR, RF, GBDT, XGBoost, and our constructed stacking ensemble model. We separately
trained and tested these eight models on both the imbalanced dataset and the dataset
oversampled using SMOTE. All classifiers were trained and tested separately based on the
5-fold cross-validation dataset divided in Section 3.3. Section 4.3.1 presents the predictive
results of various classifiers on the imbalanced original dataset. In Section 4.3.2, we provide
the predictive results for different classifiers on the balanced dataset, as well as analyze the
impact of data balance on classifier performance.

4.3.1. Prediction Results Based on Imbalanced Training Dataset

Table 3 showcases the hyperparameter optimization outcomes for each classifier.
The dataset includes 349 acoustic decoy samples and 899 submarine samples, totaling
1248 samples for the dataset. Encoding the acoustic decoy as 0 and the submarine as 1,
Figure 13 shows the prediction result of the nine classifiers. In Figure 13, the red circle
represents the true type of the samples, and the blue x represents the prediction results
of different classifiers. It can be seen that the stacking ensemble classifier has the lowest
number of misclassified samples and the best classification performance compared to other
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classifiers. It is worth noting that for SVM, KNN, and LR, the amount of submarine data
misclassified is less than that of acoustic decoys. Taking LR as an example, only a few other
submarine samples have been misclassified as acoustic decoy samples, while most of the
acoustic decoy samples have been misclassified as submarines. This is because the dataset
is imbalanced.

Table 3. Optimization results of hyperparameters based on the imbalanced training dataset.

Classifiers Hyperparameters

SVM Kernel = ‘rb f ’, C = 0.8, g = 0.5
KNN k = 5, weights = distance

DT Min sample split = 4, min sample leaf = 3, criterion = ‘gini’
LR C = 0.9, penalty = ‘l2’, solver = ‘sag’

GBDT Learning rate = 0.1, n estimators = 100, max depth = 4,
max features = 5, min sample split = 4, min sample leaf = 4

RF n estimators = 100, max depth = 6, max features = 5,
min samples split = 6, min sample leaf = 6

XGBoost Learning rate = 0.1, n estimators = 100, max depth = 5,
max features = 5, min sample split = 5, min sample leaf = 5

Figure 13. Predictive results of each classifier based on imbalanced training dataset: (a) SVM; (b) KNN;
(c) DT; (d) LR; (e) GBDT; (f) RF; (g) XGBoost; (h) stacking.
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In order to further analyze the classification performance of each classifier, the indicator
parameters mentioned in Section 4.1, which include accuracy, AUC, F1, PRE, REC, and
kappa coefficients, are calculated to analyze each classifier. Figure 14 shows the 5-fold
cross-validation accuracy, F1, and kappa results of each classifier, and Table 4 shows the
AUC, PRE, and REC results of each classifier. The following can be seen from Figure 14
and Table 4:

• Compared with other classifiers, the stacking ensemble classifier has the best perfor-
mance. For acc, the stacking ensemble classifier reaches 0.922± 0.0402, which is higher
than all other eight individual classifiers. For AUC, the stacking ensemble classifier
reaches 0.958 ± 0.0735, which is higher than all other eight individual classifiers.
For F1, the stacking ensemble classifier reaches 0.948 ± 0.0225, which is higher than
all other eight individual classifiers. For PRE, the stacking ensemble classification
algorithm reaches 0.941 ± 0.0559, which is higher than all other eight individual
classifiers. For REC, the stacking ensemble classifier reaches 0.957 ± 0.0257, which
is lower than the LR classifier (0.997 ± 0.0072) and RF classifier (0.967 ± 0.0479). It
is worth noting that although the LR classifier has a higher REC, the PRE is not high.
This phenomenon is due to the imbalanced dataset.

• Tree-based classifiers, such as XGBoost, GBDT, and RF classifiers, have relatively good
performance. These classifiers are also ensemble models based on decision trees. This
indicates that ensemble classifiers have advantages in classification problems. We
use these ensemble models as the base classifiers for the stacking ensemble classifier
in this study. For these tree-based classifiers, XGBoost shows the best performance.
The acc, AUC, F1, PRE, and REC of XGBoost reach 0.908 ± 0.0420 (the best of three
ensemble classifiers), 0.950± 0.0550 (second only to the RF classifier at 0.956± 0.0483),
0.938 ± 0.0240 (the best of the three ensemble models), 0.922 ± 0.0522 (the best of
the three ensemble models, equal to the mean of the GBDT classifier, with a standard
deviation less than the GBDT classifier), and 0.957 ± 0.0383 (second only to the RF
classifier at 0.967 ± 0.0479), respectively.

• The performance of SVM, KNN, LR, and DT classifiers are relatively poorer than that of
the stacking ensemble classifier and tree-based classifiers XGBoost, RF, and GBDT. For
acc, DT has the highest accuracy at 0.872 ± 0.0374, followed by SVM at 0.871 ± 0.0474,
and KNN and LR have the worst accuracy at 0.858 ± 0.0384 and 0.858 ± 0.0385,
respectively. For AUC, SVM has the highest value of 0.945 ± 0.0417; LR takes second
place, with a value of 0.932 ± 0.0774; the next is DT, which is 0.890 ± 0.0958; and KNN
is the worst, with a value of 0.897 ± 0.0916. For F1, all four individual classifiers are
greater than 0.9 and relatively close. The F1 scores of SVM, KNN, LRm and DT are
0.917 ± 0.0230, 0.910 ± 0.0174, 0.912 ± 0.0228, and 0.911 ± 0.0173, respectively. For
PRE, only DT is greater than 0.9, at 0.922 ± 0.0509. Furthermore, the PRE values of
the other three classifiers are all below 0.9, and the PRE values of SVM, KNN, and LR
are 0.868 ± 0.0512, 0.842 ± 0.0314, and 0.839 ± 0.0324, respectively. For REC, all four
individual classifiers are greater than 0.9. The REC values for SVM, KNN, DT, and
LR are 0.975 ± 0.0273, 0.991 ± 0.0149, 0.901 ± 0.0605, and 0.997 ± 0.0072, respectively.
This phenomenon is also due to the imbalanced dataset and will be discussed in
Section 4.3.2.

• For the kappa coefficient, the stacking ensemble classifier is the highest, at 0.784± 0.1437.
The three tree class ensemble classifiers XGBoost, RF, and GBDT take second place, with
0.743 ± 0.1479, 0.722 ± 0.1420, and 0.710 ± 0.1450, respectively. The four individual
classifiers, SVM, KNN, LR, and DT have relatively low mean values below 0.7, which
are 0.597 ± 0.2372, 0.555 ± 0.2070, 0.667 ± 0.1148, and 0.547 ± 0.2085, respectively. This
phenomenon reflects the advantage of ensemble classifiers in the processing imbalanced
dataset. In conclusion, it can be seen that the stacking ensemble classifier has the best
performance. The acc, AUC, F1, PRE, and kappa values of the stacking ensemble
classifier are the highest among all classifiers. At the same time, the PRE and REC
values of the stacking ensemble classifier are relatively balanced, which indicates that the
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stacking ensemble classifier has strong adaptability to imbalanced datasets. For XGBoost,
RF, and GBDT, the results are second only to the stacking ensemble classifier, and their
PRE and REC values are both greater than 0.9, indicating that the ensemble classifiers
have strong adaptability to imbalanced datasets. For SVM, KNN, LR, and DT, their
performances are relatively poor. With the exception of DT, there is a significant gap
between the PRE and REC values of the other three individual classifiers. Although
cost-sensitive methods were used for the three individual classifiers, the results were
still poor.

Figure 14. Prediction results of each classifier based on imbalanced training dataset: (a) acc; (b) F1;
(c) kappa.

Table 4. Prediction results of each classifier based on imbalanced training dataset.

Classifier AUC PRE REC

SVM 0.945 ± 0.0417 0.868 ± 0.0512 0.975 ± 0.0273
KNN 0.897 ± 0.0916 0.842 ± 0.0314 0.991 ± 0.0149

DT 0.890 ± 0.0958 0.922 ± 0.0509 0.901 ± 0.0605
LR 0.932 ± 0.0774 0.839 ± 0.0324 0.997 ± 0.0072

GBDT 0.934 ± 0.0778 0.922 ± 0.0538 0.943 ± 0.0515
RF 0.956 ± 0.0483 0.907 ± 0.0589 0.967 ± 0.0479

XGBoost 0.950 ± 0.0550 0.922 ± 0.0522 0.957 ± 0.0383
Stacking 0.958 ± 0.0735 0.941 ± 0.0559 0.957 ± 0.0257

4.3.2. Prediction Results Based on Relatively Balanced Training Dataset

In this section, all classifiers are trained on the relatively balanced training data based
on SMOTE. Table 5 showcases the hyperparameter optimization outcomes for each classifier.
Table 6 shows the PRE and REC values of each classifier on the relatively balanced dataset.
Comparing Tables 3 and 5, it can be seen that all classifiers have closer PRE and REC
values on the relatively balanced dataset. Taking the SVM classifier as an example, on
the imbalanced dataset, the PRE 5-fold CV mean value and REC 5-fold CV mean value
are 0.868 and 0.975, respectively, while on the relatively balanced dataset, both values are
0.913 and 0.943, respectively. It is worth noting that the PRE 5-fold CV mean value and REC
5-fold CV mean value of the ensemble classifiers, including the proposed stacking ensemble
classifier, XGBoost, GBDT, and RF, show relatively little change. This phenomenon also
indicates that compared to classical classifiers, ensemble classifiers have more advantages
on imbalanced datasets compared with individual classifiers.
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Table 5. Optimization results of hyperparameters based on relatively balanced training dataset.

Classifiers Hyperparameters

SVM Kernel = ‘rb f ’, C = 0.9, g = 0.5
KNN k = 6, weights = distance

DT Min sample split = 5, min sample leaf = 4, criterion = ‘gini’
LR C = 0.9, penalty = ‘l2’, solver = ‘sag’

GBDT Learning rate = 0.1, n estimators = 110, max depth = 4,
max features = 5, min sample split = 4, min sample leaf = 4

RF n estimators = 110, max depth = 6, max features = 5,
min sample split = 6, min sample leaf = 6

XGBoost Learning rate = 0.1, n estimators = 110, max depth = 5,
max features = 5, min sample split = 5, min sample leaf = 5

Table 6. Prediction results based on relatively balanced training dataset.

Classifier PRE REC

SVM 0.913 ± 0.0809 0.943 ± 0.0530
KNN 0.930 ± 0.0865 0.921 ± 0.0583

DT 0.947 ± 0.0484 0.901 ± 0.0285
LR 0.934 ± 0.0827 0.909 ± 0.0527

GBDT 0.938 ± 0.0557 0.937 ± 0.0364
RF 0.931 ± 0.0531 0.943 ± 0.0317

XGBoost 0.945 ± 0.0612 0.943 ± 0.0250
Stacking 0.955 ± 0.0399 0.955 ± 0.0326

In order to further analyze the impact of imbalanced datasets on classifiers, the met-
rics introduced in Section 2 were calculated, including accuracy, AUC, F1, and kappa.
Tables 7–10 show the acc, AUC, F1, kappa, and mean variation between the imbalanced
and relatively balanced datasets. The following can be observed from the tables:

• For acc, all classifiers improved differently on the relatively balanced dataset. The
mean accuracy of SVM, KNN, DT, LR, GBDT, RF, XGBoost, and the stacking ensemble
classifier increased by 1.5%, 2.6%, 1.8%, 2.3%, 0.9%, 0.8%, 0.6%, and 1.1%, respectively.
It is worth noting that the accuracy increase in the ensemble classifiers represented by
the stacking ensemble classifier is lower than that of the individual classifiers, which
also indicates that the ensemble classifiers have advantages in processing imbalanced
datasets. In addition, the accuracy increase in the stacking ensemble classifier is greater
than that of the GBDT, RF, and XGBoost ensemble classifiers. This phenomenon can
be attributed to the accuracy increase in the base classifiers. The use of SMOTE has
led to a relatively balanced training dataset, resulting in improved performance for
individual classifiers. The moderately balanced dataset reduces the risk of classifier
overfitting and ultimately enhances the evaluation metrics for the classifier. Due to
the improved performance of base classifiers, the final stacking ensemble model also
shows improvement.

• For AUC, it can be found that, with the exception of the RF (a decrease of 0.005)
and XGBoost (a decrease of 0.006) classifiers, the AUC values of all other classifiers
increased. Among them, the SVM classifier has the highest improvement of 0.012, and
DT showed the lowest improvement of 0.003.

• It can be found that all classifiers have varying degrees of increases in F1. Among
them, KNN and DT have the largest increase, at 0.011, and the stacking ensemble
classifier shows the smallest increase of 0.003. Obviously, the improvement values of
the ensemble classifiers are smaller than that of the individual classifier, which also
reflects the advantage of the ensemble classifiers in processing imbalanced datasets.

• The kappa coefficients of all classifiers increased, with the LR classifier showing an
improvement value of 0.121 and XGBoost showing an improvement value of 0.023,
which is the smallest. This phenomenon not only reflects the enhanced separability
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of the dataset after SMOTE oversampling but also the effectiveness of oversampling
from another perspective.

Table 7. Predicted acc changes based on the imbalanced training dataset and the relatively balanced
training dataset.

Classifier Imbalanced Relatively Balanced Mean Variation (%)

SVM 0.871 ± 0.0474 0.886 ± 0.0478 1.5
KNN 0.858 ± 0.0384 0.884 ± 0.0476 2.6

DT 0.872 ± 0.0374 0.890 ± 0.0375 1.8
LR 0.858 ± 0.0385 0.881 ± 0.0404 2.3

GBDT 0.897 ± 0.0390 0.906 ± 0.0416 0.9
RF 0.900 ± 0.0340 0.908 ± 0.0393 0.8

XGBoost 0.908 ± 0.0420 0.914 ± 0.0445 0.6
Stacking 0.922 ± 0.0402 0.933 ± 0.0472 1.1

Table 8. Predicted AUC changes based on the imbalanced training dataset and the relatively balanced
training dataset.

Classifier Imbalanced Relatively Balanced Mean Variation

SVM 0.945 ± 0.0417 0.957 ± 0.0463 0.012
KNN 0.897 ± 0.0916 0.904 ± 0.1039 0.007

DT 0.890 ± 0.0958 0.893 ± 0.0854 0.003
LR 0.932 ± 0.0774 0.938 ± 0.0728 0.006

GBDT 0.934 ± 0.0778 0.945 ± 0.0669 0.011
RF 0.956 ± 0.0483 0.951 ± 0.0511 −0.005

XGBoost 0.950 ± 0.0550 0.944 ± 0.0747 −0.006
Stacking 0.958 ± 0.0735 0.962 ± 0.0606 0.004

Table 9. Predicted F1 changes based on the imbalanced training dataset and the relatively balanced
training dataset.

Classifier Imbalanced Relatively Balanced Mean Variation

SVM 0.917 ± 0.0230 0.924 ± 0.0225 0.007
KNN 0.910 ± 0.0174 0.921 ± 0.0218 0.011

DT 0.912 ± 0.0228 0.923 ± 0.0209 0.011
LR 0.911 ± 0.0173 0.918 ± 0.0175 0.007

GBDT 0.930 ± 0.0223 0.936 ± 0.0241 0.006
RF 0.934 ± 0.0174 0.938 ± 0.0221 0.004

XGBoost 0.938 ± 0.0240 0.942 ± 0.0250 0.004
Stacking 0.948 ± 0.0225 0.951 ± 0.0278 0.003

Table 10. Predicted kappa changes based on the imbalanced training dataset and the relatively balanced
training dataset.

Classifier Imbalanced Relatively Balanced Mean Variation

SVM 0.597 ± 0.2372 0.668 ± 0.2258 0.071
KNN 0.555 ± 0.2070 0.661 ± 0.2371 0.106

DT 0.667 ± 0.1148 0.720 ± 0.1227 0.053
LR 0.547 ± 0.2085 0.668 ± 0.1910 0.121

GBDT 0.722 ± 0.1420 0.748 ± 0.1468 0.026
RF 0.710 ± 0.1450 0.747 ± 0.1435 0.037

XGBoost 0.743 ± 0.1479 0.766 ± 0.1580 0.023
Stacking 0.784 ± 0.1437 0.821 ± 0.1341 0.037
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4.4. Model Deployment on Embedded Systems

We have deployed the optimal stacking ensemble model trained on a balanced dataset
on an NVIDIA AGX Orin, a powerful embedded system chip with a maximum computa-
tional power of 275 TOPS. Using a socket connection, we established duplex communication
between the UAHW and the NVIDIA AGX Orin. The specific computational process in-
volves UAHW computing echo features and transmitting them to the NVIDIA AGX Orin
through the socket connection. The NVIDIA AGX Orin computes the predicted results
and transmits them back to UAHW. Through testing, the stacking ensemble model has
demonstrated accurate predictions with a time of 15 ms, meeting the real-time requirements
of UAHWs.

5. Discussion

In this study, we propose an underwater intelligent target recognition method for
underwater acoustic homing weapons based on stacking ensemble technology. The anal-
ysis results indicate that this method possesses stronger recognition and generalization
capabilities compared to individual classification models. Additionally, as our approach
utilizes highlight detection for feature extraction, it can be easily extended to the problem
of point source acoustic decoy recognition. As shown in Table 11, after comparison with
some existing scale target recognition methods for underwater acoustic homing weapons,
our proposed method demonstrates applicability to scale acoustic decoy recognition. Fur-
thermore, this method can also be extended to underwater unmanned vehicle (UUV) target
recognition.

Table 11. A comparison with existing methods.

Method Point Source Decoy
Recognition Capability

Scale Decoy Recognition
Capability Real-Time Capability

Ours Scalable Possesses Possesses
The literature [2] Possesses Does not possess Possesses
The literature [3] Possesses Does not possess Possesses
The literature [34] Possesses Does not possess Possesses

However, our approach also has certain limitations: when the underwater acoustic
homing weapon cannot effectively detect highlights, the model cannot perform effective
recognition. Since underwater acoustic homing weapons operate on a multi-cycle working
regime, subsequent improvements could leverage this regime. By utilizing detection results
from preceding and succeeding cycles to compensate for the lack of detection in a specific
cycle, the model could ultimately provide effective recognition results.

6. Conclusions

In this study, we proposed an underwater active acoustic homing classification model
based on stacking ensemble technology. The following work was conducted:

• Multiple features based on highlights were extracted from real sea trial data.
• SMOTE oversampling technology was utilized to expand minority scale acoustic

decoy data in the feature domain to solve the problem of data imbalance.
• A stacking ensemble classification model was established to improve classification

ability and robustness compared to single classification models.
• A semi-physical simulation experiment was conducted on an embedded system, a

digital computer was used to calculate features, input them into the embedded system,
and provide inference results, proving that the model has real-time performance.

The average recognition acc of the proposed method on sea trial data is 93.3%, with
an average AUC of 0.962, average F1 of 0.951, average PRE of 0.955, average REC of
0.955, and average kappa of 0.821. The single-cycle inference time is 15 ms. In summary,
the method proposed in this study has better performance and robustness compared to
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traditional single classification models. At the same time, it has good real-time performance
and can provide an effective recognition model for UAHWs. In the future, our research will
expand in two directions. On the one hand, we will delve into recognition models based on
transfer learning. On the other hand, by capitalizing on the multi-cycle operational regime
of underwater acoustic homing weapons, our goal is to develop intelligent recognition
methods that encompass multiple cycles, allowing for a comprehensive exploration of the
implicit information embedded in these operational cycles. This model will be deployed
on UAHWs for the purpose of target recognition.
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