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Abstract: In this paper, the negative Poisson’s ratio and rigidity of a protective structure are improved
to allow the structure to exert a negative Poisson’s ratio effect in multiple directions and to enhance
the structural load-carrying capacity. Therefore, a 3D framed plate honeycomb is designed on the
basis of a traditional 2D negative Poisson’s ratio honeycomb. The Poisson’s ratio and modulus of
elasticity are derived, and the equivalent mechanics model (EMM) of a 3D framed plate protective
structure is established by combining bending deformation, shear deformation, and compression
deformation. To verify the validity of the equivalent mechanics model (EMM), a compression test
and numerical simulation study are carried out by combining 3D printing technology and numerical
simulation methods. In addition, the effects of structural parameters on the modulus of elasticity,
negative Poisson’s ratio, and other mechanical properties are discussed. The results show that, under
vertical loading, the equivalent Poisson’s ratio and the modulus of elasticity of the cell elements
decrease with the increase in the ratios of the lengths of the cell element walls in the upper and lower
planes to the length of the diagonal cell element in the concave direction. In addition, it is shown that
the elastic modulus increases with increasing concave angle and thickness. Moreover, under lateral
loading, the equivalent Poisson’s ratio of the cell elements increases with the ratios of the lengths
of the upper and lower planar cell element walls to the length of the diagonal cell element walls,
with the angle of concavity and with the thickness of the plate frame, while the modulus of elasticity
of the cell elements exhibits the opposite trend and decreases with the thickness of the framed
plate structure.

Keywords: negative Poisson’s ratio; framed plate protective structure; EMM; numerical simulation;
mechanical properties

1. Introduction

Advanced protective structures are crucial for providing explosion and impact pro-
tection for ships. Strategies for improving the anti-explosive and anti-impact properties
of ships have evolved, leading to the development of lightweight and efficient protection
systems from traditional metal framed plate structures. Negative Poisson’s ratio structures,
classified as a unique type of mechanical metamaterial, offer distinctive advantages in
terms of bending resistance [1], impact resistance [2–4], energy absorption [5,6], vibration
isolation [7], load carrying [8], shear modulus [9], fracture toughness [10], and fatigue
resistance. Consequently, these structures have been rapidly developed in aerospace, au-
tomotive manufacturing, construction engineering, and biomedicine [11–13]. The new
design of an advanced negative Poisson’s ratio structure is significant for enhancing the
anti-explosive and anti-impact properties of ships.
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Negative Poisson’s ratio structures can exhibit different mechanical properties through
structural design. Typical inner concave [14], rotating polygona [15], chiral [16], and other
negative Poisson’s ratio structures can be manufactured to show different mechanical
properties through structural design. Fu [17] generated a new honeycomb structure with a
negative Poisson’s ratio, incorporating a rhombic design into a concave honeycomb and
increasing flexural strength and in-plane stiffness. Larsen [18] designed optimized 2D
concave triangular structures using topological optimization methods, which can exhibit
negative Poisson’s ratio properties after adjusting the length of the bars and the angle
between adjacent bars. Rafsanjani [19] proposed a concave negative Poisson’s ratio meta-
material with structural biostability that maintained its shape after unloading. Grima [20]
proposed a semirigid rotating square, which is a particular type of negative Poisson’s ratio
structure. Lu [21] proposed a 3D crossed chiral structure with the same chiral negative
Poisson’s ratio structure in the three principal stress directions by connecting neighboring
layers of a chiral material to diagonal rods. Some research has been carried out by scholars
on two-dimensional negative Poisson’s ratio structures. Ingrole et al. [22] obtained a 2D
negative Poisson’s ratio hybrid structure with controlled failure modes by improving the
conventional inner-concave negative Poisson’s ratio structure and combining it with a
positive hexagon. Qiao et al. [23] combined functional gradient materials to design honey-
comb structural forms with different thickness gradients and angles. Relative to traditional
two-dimensional honeycombs with a uniform distribution, the reasonable allocation of the
relative density of the honeycomb could effectively improve the structural impact resistance.
Tang et al. [24] designed a 2D hybrid graded negative Poisson’s ratio honeycomb structure
with excellent compressibility and ductility. Ajdar et al. [25] explored the effects of initial
defects in 2D honeycombs on the overall performance by removing some cell elements in a
uniform structure.

To further exploit the bidirectional properties of a negative Poisson’s ratio and improve
the structural energy absorption, scholars have focused on 3D negative Poisson’s ratio
structures. Choi [26] developed an analytical formula for the mechanical properties of
three-dimensional concave hexagonal honeycomb structures, and analytical equations
were derived for the equivalent modulus of elasticity and Poisson’s ratio of the system.
Yang et al. [27] theoretically studied 3D concave structures. The scholars showed that
the mechanical properties of this form of honeycomb structure were mainly determined
by the ratio of the length of the members to the angle of the concavity. Wang et al. [28]
optimized the design of triangular cells, making it a three-dimensional spatial configuration,
and a cylindrical negative Poisson’s ratio honeycomb structure was obtained using this
cell element arrayed in all directions. A cylindrical negative Poisson’s ratio honeycomb
structure was obtained using this cell element dressed in all orders. A flexible negative
Poisson’s ratio structure with flexural crystals serving as cell elements was proposed in
a paper by Babaee et al. [29]. Wei et al. [30–32] introduced triangles into the traditional
star-shaped honeycomb structure, proposed a novel star-triangle honeycomb structure,
and investigated its deformation behaviors at different velocities. The negative Poisson’s
ratio effect of the star-triangle honeycomb under pressure in two directions was analyzed
via numerical simulation, and a theoretical model was developed to accurately predict its
Young’s modulus and Poisson’s ratio. The star-triangle honeycomb structure was extended
to three dimensions, and a combination of experimental and simulation methods was used
to study its deformation mode and analyze the effects of gradient design on the deformation
and energy absorption of the structure. The above studies showed that the honeycomb
structure maintained the negative Poisson’s ratio effect even under large strains. Bodaghi
M et al. [33] fabricated a new type of ship fender plate using a 4D printing technique using
a fusible filament of shape memory polylactic acid polymer, and its thermomechanical
behavior was analyzed experimentally and simultaneously. The results showed that
the proposed fender structure had a good energy absorption capacity, and the plastic
deformation could be fully recovered by simple heating. Hamzehei R et al. [34] fabricated
a novel 3D zero Poisson’s ratio metamaterial by 4D printing and achieved piecemeal
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energy absorption (PEA) by introducing horizontal bars in the cells. Existing 3D negative
Poisson’s ratio structures primarily enhance energy absorption through the gaps between
cell elements. It is essential to note that, for advanced naval explosion-proof impact and
vibration isolation protection measures, such as equipment impact bases and vibration
isolation bases, a negative Poisson’s ratio structure should not only provide high energy
absorption and vibration isolation performance but also have a certain degree of stiffness
performance. Therefore, the protective structure required not only a smooth platform stress
but also a high equivalent modulus of elasticity to meet the load-carrying requirements.

Based on the background of a ship’s protective structure, the meaning of the present
scenario is obvious, which is to bring some high energy absorption structures with a certain
degree of stiffness. In order to fulfill this, the 3D framed plate protection structure was
proposed, the derivation of Poisson’s ratio and elastic modulus, and an EMM of the 3D
framed plate protection structure by combining bending deformation, shear deformation,
and compression deformation were constructed, which is the novelty of the present work.
The specimens were manufactured via 3D printing technology and a numerical simulation
was conducted, and the proposed EMM was verified through a combination of tests and
simulation. The main contents are as follows: In Section 2, cell element forms for 3D framed
plate protective structures are constructed from a negative Poisson’s ratio honeycomb
structure. In Section 3, the equivalent parameters of 3D negative Poisson’s ratio structures
in cell element form are derived using theoretical methods, and an EMM is established
by combining bending deformation, shear deformation, and compression deformation
characteristics. The Young’s modulus and equivalent Poisson’s ratio of framed plate
protective structures in different directions are deduced. In Section 4, compression tests are
carried out to obtain the mechanical properties of 3D negative Poisson’s ratio structures,
and the theoretical model is verified by comparing the experimental and simulation results.
The conclusions are shown in Section 5.

2. Structural Design

The framed plate protective structure proposed in this paper is a dimension extension
of the 2D negative Poisson ratio structure. Stretch the 2D cell outward toward the face by a
distance b to form spatial configurations. Then, a 2D cell is rotated 90 degrees around the
Y-axis and orthogonally combined with another cell to form a 3D cell. The top and bottom
portions of the 3D cell are shown as crossed plates, and the middle portion has concave
plates in both directions. After obtaining 3D cell elements, single cell elements are arrayed
along the lateral (X), vertical (Y), and axial (Z) directions to form a 3D honeycomb structure.
The single-cell element parameters and 3D negative Poisson’s ratio honeycomb are shown
in Figure 1.
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3. Theoretical Analysis of Mechanical Properties
3.1. Relative Density

The specific derivation of the relative density of a 3D framed plate protective structure
with a negative Poisson’s ratio ρ is shown below [35]:

ρ =
Actual volume of all rods of a single cell element_Va

Volume occupied by the corresponding size of the outer edge of the cytosol_V0
(1)

The actual volume of all rods within a single cell element Va is calculated as follows:

Va = 2(2l1t1 + 4l2t + 2l2t)b− 2t1b2 = b(4l1t + 12l2t− tb) (2)

The equations for the macroscopic dimensions, such as the length and width W, and
height H of a single typical cell element, are as follows:

H = 2l2 sin θ (3)

W = l1 + 2l2 − 2l2 cos θ (4)

Therefore, the expression for the volume of the equivalent space occupied by the
outermost edge of the cell element V0 is as follows:

V0 = H ×W2 = 2l2(l1 + 2l2 − 2l2 cos θ) sin θ (5)

Due to the thicknesses of the framed plate protective structures, there is an overlapping
effect of the cell element at positions A and B, and the exact overlap is illustrated in Figure 2.
The overlapping effect is shown in Figure 3.
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The volume is V1 = 16t1tb
sin θ , and the actual volume after correction to account for overlap

effects is as follows:
Va = b(4l1t + 12l2t− tb− 16t1t

sin θ
) (6)

Therefore, the relative density can be expressed as follows:

ρ =
Va = b(4l1t + 12l2t− tb− 16t1t

sin θ )

2l2(l1 + 2l2 − 2l2 cos θ) sin θ
(7)

3.2. Compression in Vertical Direction (Y Direction)

When subjected to pressure, the deformation form of the negative Poisson’s ratio
honeycomb is different from that of other ordinary structures [36], as shown in Figure 4.
For the negative Poisson’s ratio, under the compressed load, the material shrinks in the
lateral direction. When the 3D structure is subjected to uniaxial compression in the vertical
(Y)-direction, its mechanical responses in X and Z directions are consistent due to structural
symmetry. Assuming that the cell element is subjected to a stress of σY, the pressure on
the tilted wall of the cell element is FY, and the bending displacement of the tilted wall
of the cell element under loading is δYR. In addition, δYS is the shear displacement of the
tilted wall of a cell element under loading, and δYT is the compressive displacement of the
tilted wall under loading. The force situation with the simplified force model is shown
in Figure 5. For ease of analysis, the deformed portion of the structure is simplified to a
cantilever beam model. To improve the accuracy of the calculation results, Timoshenko
beam theory was used for the analysis.
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The pressure FY on the cell element can be expressed as follows:

FY =
σY(2l1 − b)b

4
(8)
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From the static equilibrium condition, the relationship between the bending moment
MY and the pressure FY can be obtained and expressed in the following equation:

MY =
1
2

FY l1 cos θ (9)

Then, the bending deformation δYR of the inclined wall of the cell element under the
action of the bending moment is as follows:

δYR =
FY l23 cos θ

3EI
− MY l22

2EI
=

FY l23 cos θ

12EI
(10)

where I is the moment of inertia of the inclined wall section, which can be expressed as
I = bt3

12 , and E is Young’s modulus of the base material.
When the ratio of the length of the inclined wall to the thickness of the section is small,

the effect of shear on the deformation needs to be considered, and the displacement of the
inclined wall of the cell element due to shear δYS can be expressed as follows:

δYS =
∂UYS
∂QY

(11)

where QY is the shear stress and UYS is the shear energy of the inclined wall. To obtain the
total shear energy of the inclined wall, the shear stresses distributed on the inclined wall
are integrated, and the expressions for QY and UYS are as follows:

QY = FY cos θ0 (12)

UYS =

l2∫
0

QY
2

2GAS
dx = Y

3QY
2l2

5GA
(13)

The displacement δYS of the inclined wall due to shear is as follows:

δYS =
UYS
QY

=
3QY l2
5GA

(14)

where A represents the cross-sectional area of the inclined wall, B represents the inclined
wall shear modulus, and G = E/(2(1 + v)), where v represents the Poisson’s ratio of
the substrate.

The partial force TY generated by pressure FY in the direction of the inclined wall
causes the compressive deformation of the inclined wall.

δYT =
FY l2 sin θ

Ebt
(15)

The displacements δX and δY of the cell element in Y and X axes upwards are
shown below:

δX = 2(δYR + δYS) sin θ − 2δYT cos θ (16)

δY = 2(δYR + δYS) cos θ + 2δYT sin θ (17)

In the elastic deformation stage of the material, the stress should become proportional
with Hooke’s law, and its proportional coefficient is called the elastic modulus. Then, the
equivalent modulus of elasticity EY of the cell element in the Y direction is as follows:

EY =
σY
εY

=
σY

2(δYR+δYS) cos θ+2δYT sin θ
2l2 sin θ

(18)
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The equivalent Poisson’s ratio vY of the cell element can be expressed as follows:

vY = − εX
εY

= − (δYR + δYS) sin θ − δYT cos θ

(δYR + δYS) cos θ + δYT sin θ

(
2l2 sin θ

l1 + 2l2 ± 2l2 cos θ

)
(19)

3.3. Compression in Lateral Direction (X Direction)

Assuming the cell element is subjected to a stress of σX , the pressure on the inclined
wall of the cell element is FX and δXR is the bending displacement of the tilted wall of the
cell element under loading. Moreover, δXS is the shear displacement of the tilted wall of
a cell element under loading, and δXT is the compressive displacement of the tilted wall
of the cell element under loading. The force on the cell element in the lateral direction (X
direction) with the simplified force model is shown in Figure 6.
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case and simplified model.

The pressure FX on the inclined wall of the cell element is as follows:

FX = σXbt (20)

From the static equilibrium condition, the relationship between the bending moment
Mx and the pressure Fx can be obtained as follows:

MX =
1
2

FX l2 sin θ (21)

Then, the overall deformation of the tilted wall of the cell element is divided into
three parts: bending deformation, shear deformation, and compression deformation. The
expressions are as follows:
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Bending deformation:

δXR =
FX l23 sin θ

3EI
− MX l22

2EI
=

FX l23 sin θ

12EI
(22)

Shear deformation:
QX = FX sin θ (23)

UXS =

l2∫
0

Qx2

2GAS
dx =

3QX
2l2

5GA
(24)

δXS =
UXS
QX

=
3QX l2
5GA

(25)

Compression deformation:

δXT1 =
FX l2 cos θ

Ebt
(26)

δXT2 = 2
σxl1

E
= 2

FX l1
Ebt

(27)

In summary, the displacements when the cell element is loaded in the X-axis direction
can be expressed as follows:

δX = 2(δXR + δXS) sin θ + 2δXT1 cos θ + δXT2 (28)

δZ = 2(δXR + δXS) cos θ + 2δXT1 sin θ (29)

Therefore, the equivalent modulus of elasticity of the cell element in the X-axis upward
EX is as follows:

EX =
σX
εX

=
σX

2(δXR+δXS) sin θ+2δXT1 cos θ+δXT2
2(l2−l2 cos θ)+2l2

(30)

The expression for the equivalent Poisson’s ratio vX of the cell element is as follows:

vX = − εY
εX

= −
2(δXR + δXS) cos θ + 2δXT1 sin θ

2(δXR + δXS) sin θ + 2δXT1 cos θ + δXT2

(
l1 + 2l2 ± 2l2 cos θ

2l2 sin θ

)
(31)

4. Verification and Discussion
4.1. Experimental Test

A 3D framed plate protective structure with a negative Poisson’s ratio is fabricated
using rapid prototyping 3D printing technology with C-UV9400R material. The material
properties are shown in Table 1. Compression tests of 3D framed plate protective structures
with negative Poisson’s ratios are carried out. The parameters of the cell elements of the
designed specimen are shown in Table 2. Six specimens are processed and prepared. The
experimental specimens are designed based on GB1453-2022 [37] with five cell elements
(more than four) in both the horizontal and vertical directions. The compression load is
applied to the specimens using an electronic universal testing machine (WDW-100) at a
constant speed of 1 mm/min, and the compression test setup is shown in Figure 7. [36,38].

Table 1. Material properties of C-UV 9400R.

Densities g/cm3 Poisson’s Ratio ν Modulus of Elasticity E (MPa)

1.11 0.4 2600
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Table 2. Parameters of cell elements 1–3.

θ b (mm) t (mm) l1 (mm) l2 (mm)

50◦ 10 2 40 20
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Four nodes on the cell elements in the region are selected as calibration points, as
shown in Figure 8. The cells are labeled according to their rows as A1∼2 or B1∼2. By assum-
ing that the deformed calibration points are denoted as A1∼2

′ or B1∼2
′, the displacement

in the vertical and lateral directions before and after the deformation can be expressed
as follows:

∆X =

(
A1B1 + A2B2 − A′1B′1 − A′2B′2

)
2

(32)

∆Y =

(
A1 A2 + B1B2 − A′1 A′2 − B′1B′2

)
2

(33)
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The equivalent Poisson’s ratio of the specimen can be expressed as follows:

vY = −∆X/X0

∆Y/Y0
(34)

vX = − ∆Y/Y0

∆X/X0
(35)

where X0 and Y0 are the initial lengths of the specimen measurement area in the X and Y
directions, respectively.

When the specimen is loaded in the X direction, the oblique cell wall is convex along
the Y direction, and the curvature decreases as the concave angle increases. When the
specimen is loaded in the Y direction, the central cell wall is concave along the X direction,
and the curvature increases with the concave angle. The specimen compression is shown
in Table 3 (the first row corresponds to the concave angle, and the first column corresponds
to the loading direction). The equivalent Poisson’s ratio and equivalent elasticity modulus
values of the specimens are obtained, as shown in Table 4.

Table 3. Compression deformation of specimens.
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X
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Table 4. Equivalent mechanical properties of specimens.

θ (◦) Loading Direction Equivalent Poisson’s
Ratio

Equivalent Modulus of
Elasticity (EX/E&EY/E)

50 X −1.382 0.0480
50 Y −0.646 0.00231
60 X −0.904 0.0311
60 Y −0.955 0.00362
70 X −0.547 0.0269
70 Y −1.426 0.00769

4.2. Numerical Simulation

Structural stress analysis of cell elements is performed using ABAQUS (2022) finite
element software, adopting an ideal elastic-plastic model with material parameters con-
sistent with the test parameters. The FE (finite element) model is shown in Figure 9. A
finite element model is developed using eight-node solid cells, reduced integral equations,
and an hourglass control method. Considering model complexity, simulation accuracy,
and efficiency, a mesh of 1 mm is selected, which has been verified as an appropriate mesh
element in relevant studies [39]. To investigate the mechanical response of the structure in
the corresponding directions, a forced displacement of 1 mm/min is applied to the upper
and side (left) surfaces of the unit element in X and Y directions, respectively, and a fixed
constraint is applied on the opposite side.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 12 of 18 
 

 

initially compressed and bent, and the upper and lower cell walls are bent outwardly, 
exhibiting a negative Poisson’s ratio phenomenon. When the specimen is loaded in the Y 
direction, with the compression process, the diagonal rod first undergoes compression 
and bending. Moreover, the wall of the diagonal cell element is concave to the central axis, 
showing a negative Poisson’s ratio phenomenon. The bidirectional negative Poisson’s ra-
tio effect is noticeable. As the concave angle increases, the stress increases, and the degree 
of rod bending becomes more significant. 

  
(a) (b) 

Figure 9. Cell element of 3D framed plate structures in finite element models in (a) X direction; (b) 
Y direction. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 9. Cell element of 3D framed plate structures in finite element models in (a) X direction;
(b) Y direction.

The compression response process of the specimen is shown in Figure 10. When the
specimen is loaded in the X direction, with the compression process, the diagonal rod
is initially compressed and bent, and the upper and lower cell walls are bent outwardly,
exhibiting a negative Poisson’s ratio phenomenon. When the specimen is loaded in the
Y direction, with the compression process, the diagonal rod first undergoes compression
and bending. Moreover, the wall of the diagonal cell element is concave to the central axis,
showing a negative Poisson’s ratio phenomenon. The bidirectional negative Poisson’s ratio
effect is noticeable. As the concave angle increases, the stress increases, and the degree of
rod bending becomes more significant.
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direction; (c) θ = 60

◦
in the X direction; (d) θ = 60
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in the Y direction; (e) θ = 70
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in the X direction;

and (f) θ = 70
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in the Y direction.

Figure 11 illustrates the variations in the Poisson’s ratio and the equivalent modulus
of elasticity values with concave angle θ of the framed plate honeycomb structure when
compressed in the Y direction. As shown in the figure, the results are consistent with the
finite element simulation results and test results. The figure shows the variations in the
Poisson’s ratio and the equivalent modulus of elasticity values with concave angle θ when
the framed plate honeycomb structure is compressed in the X direction. The variation curve
of the Poisson’s ratio with concave angle θ in the experimental and simulation results is
consistent with that of the theoretical EMM.
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4.3. Validation of Results and Discussion

The variations in the mechanical properties with cell element design parameters are
analyzed. Based on the theoretical derivation of the equivalent modulus of elasticity and
the equivalent Poisson’s ratio, the cell element parameters are substituted into the equations
to analyze the effects of θ, t, and l1/l2 on the mechanical properties of the framed plate
structure. The thickness of the framed plate t is set to three values: 1.5 mm, 2 mm, and
2.5 mm. Moreover, l1/l2 is set to five ratios: 2, 2.5, 3, 3.5, and 4. In addition, θ is set to a
range of values 40

◦ ∼ 65
◦
, and b is set to a fixed value of 5 mm.

The variation patterns of the equivalent Poisson’s ratio and modulus of elasticity in the
Y direction with θ, t, and l1/l2 are shown in Figure 12. When the framed plate cell element
form is loaded in the Y direction, the absolute magnitude of the cell element equivalent
Poisson’s ratio decreases as l1/l2 increases. With a constant l2 value, an increase in l1
implies a decrease in transverse strain, and the negative Poisson’s ratio effect weakens. As
θ increases, the structural negative Poisson’s ratio effect becomes more pronounced. With
increasing Poisson’s ratio, the effect is increasingly sensitive to the values of l1/l2 and θ. A
cross-sectional comparison of the trends of the equivalent Poisson’s ratios of cell elements
with three different plate frame thicknesses shows that t has little effect on the absolute
value of the Poisson’s ratio of the structure. The modulus of elasticity ratio EY/E increases
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as l1/l2 decreases and both θ and t increase. A decrease in l1/l2 leads to a decrease in strain
in the Y direction, which causes an increase in EY/E. An increase in t implies a thickening
of the bars. In addition, the stiffness of the structure is improved, and the value of EY/E is
increased. As θ increases, the size of the cell element along the Y direction increases; thus,
the strain decreases, and the equivalent elastic modulus increases. Additionally, l1/l2 has a
greater effect on the structural equivalent modulus of elasticity than both θ and t.
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The variations in the equivalent Poisson’s ratio and modulus of elasticity in the X
direction with θ, t, and l1/l2 are shown in Figure 13. When framed plate structures with
negative Poisson’s ratios are subjected to X-direction loading, the Poisson’s ratio decreases
with increasing θ, t, and l1/l2. Similar to the Y-direction pressure, the cell element along the
Y-direction size increases with θ. Moreover, the decrease in the Y-direction strain leads to a
decrease in the Poisson’s ratio. Furthermore, l1/l2 and t have little effect on the Poisson’s
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ratio, but the absolute value of Poisson’s ratio is relatively sensitive to θ. As l1/l2 increases
and t decreases, the parameter EX/E decreases. An increase in t indicates a greater stiffness
and an increase in EX/E. In addition, l1/l2 has a large effect on EX/E, and both θ and t
have little effect.
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5. Conclusions

To adapt to the development trend of ship structure protection, today’s protection
structure should take into account a certain degree of stiffness while playing the role of
energy absorption and impact resistance. Based on the tendencies of a ship’s protective
structure, the meaning of the present scenario is obvious, which is to bring some high
energy absorption structures with a certain degree of stiffness. To fulfill this, the 3D framed
plate protection structure, the derivation of Poisson’s ratio and elastic modulus, and the
EMM of the 3D framed plate protection structure was proposed by combining the bending
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deformation, shear deformation, and compression deformation were constructed. The
main conclusions drawn from this investigation are as follows:

(1) In this paper, based on the traditional 2D negative Poisson’s ratio honeycomb, a 3D
plate-and-shelf honeycomb is proposed, which can exert the negative Poisson’s ratio effect
in multiple directions, and simultaneously has a certain degree of load carrying capacity. An
EMM of the cell in the vertical and lateral directions is established by combining bending
deformation, shear deformation, and compression deformation.

(2) Compression tests of 3D framed plate protective structures with a negative Pois-
son’s ratio are carried out. The Poisson’s ratio and modulus of elasticity values of the
specimen with different concave angles in distinct loading directions are obtained. The
evolution trends of the elements are obtained based on numerical simulations. The va-
lidity of the theoretical EMM is verified through a combination of the experimental and
numerical results.

(3) The effects of structural parameters on the mechanical properties, such as the
modulus of elasticity and Poisson’s ratio, are investigated. In the Y direction, the equiv-
alent Poisson’s ratio of the element decreases with increasing l1/l2. When the Poisson’s
ratio is large, the material is more sensitive to the values of l1/l2 and θ. In addition, as
l1/l2 decreases, θ, t, and EY/E increase. In the X direction, the Poisson’s ratio decreases
with increasing θ, t, and l1/l2. However, l1/l2 and t have little effect on the Poisson’s ratio.
Moreover, the Poisson’s ratio is more sensitive to θ. The parameters t and EX/E decrease
when l1/l2 and θ increase.
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