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Abstract: Environmental mismatch degrades the performance of source localization and tracking
methods in shallow water. One solution is to estimate source parameters and the key environmental
parameters simultaneously from the acoustic data. In this paper, an unconventional approach of joint
tracking source depth and water depth parameters by a particle filter is proposed. This approach is
free of prior environmental knowledge and numerical calculation of any forward model. First, a state-
space model based on modal nature behavior is established driving the shallow-water propagation,
instead of modeling in time or space, as was done previous works. Subsequently, particle filtering is
employed for joint tracking, in which the evolution with mode-order of vertical wavenumbers and
the relationship between state parameters and beam-wavenumber outputs transformed from the data
are exploited. Final, the particle smoother reduces the uncertainty of state parameters at initial steps,
and improves the overall tracking accuracy. Our approach is demonstrated using simulated data in
an ideal waveguide and applied to shallow-water SWellEx-96 experimental data to substantiate its
superior performance.

Keywords: source depth and water depth tracking; particle filter and smoother; unknown shallow-water
environment; uncertainty estimate

1. Introduction

The shallow-water environment supports a multipath or multimodal propagation,
and the effect of wave reflection and refraction cannot be omitted. Therefore, classical
underwater passive tracking methods based on plane wave or other simple wave models
are not performing well. For instance, bearing-only tracking [1,2] and Doppler-bearing
tracking [3,4] are restricted in the distant scope. In this context, tracking methods have been
proposed to include waveguide and multipath effects by propagation models. Dubrovin-
skaya [5] matched the measured channel impulse response (CIR) with a set of calculated
CIRs through a propagation model that was combined with the Viterbi algorithm to track
the AUV trajectory; Nosal [6] successfully tracked the sperm whale’s trajectory by matching
the multi-path arrival delay difference; Bucker [7] and Fialkowski [8] reported matched
field tracking methods, which use the continuity of source location and the disorder of
many high level sidelobes in sequential matched-field ambiguity functions to track a mov-
ing source. However, these methods perform poorly because of the space-time fluctuated
environment parameters that are not fully known in shallow water.

Bayesian approaches have been researched to reduce the impact of environmental
mismatch and enhance the robustness of source tracking in shallow water. Dosso and co-
workers proposed Bayesian focalization [9] and marginalization [10] approaches for source
tracking in an uncertain environment. The Mediterranean Sea experiment study [11] indi-
cated that marginalization provides more reliable source tracking results than focalization
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and determines environmental parameters. Marginalization consists of Gibbs Sampling-
Maximum a Posteriori [12] (GS-MAP) and integrating the posterior probability density
(PPD) to obtain estimations and marginal probability distributions for source location or en-
vironmental parameters, respectively. But a drawback of marginalization is that unknown
parameters in each time segment are simultaneously estimated, resulting in the number
of unknown parameters increasing over time. This not only raises the issue of expensive
computations, but also forms a high-dimensional parameter space with large uncertainty.

In contrast to marginalization, a particle filter [13] (PF) estimates unknown parameters
recursively via a state-space model. This is achieved through prediction employed from
previous estimates with a state equation, and with updates stemming from the collective
data history with a measurement equation. Yardum and co-workers incorporated PFs
into spatial and temporal tracking of environmental parameters [14]. Experimental results
certified that PFs provide continuous environmental estimates and their uncertainties
using only a fraction of the computational power required in marginalization schemes [15].
Gerstoft proved that the performance of geoacoustic PF algorithm with a sufficient particle
number can approach the Cramer–Rao lower bound [16]. Michalopoulou [17] successfully
tracked water depth using a multi-model PF. Yardim related environmental and source
location parameters to the sequentially arriving acoustic data and realized geoacoustic and
source tracking using PFs [18]. Then, the extension of a PF named the particle smoother [19]
was demonstrated on the SWellEx-96 and SW06 experimental data, in which the parameter
uncertainty is reduced relative to a PF alone [20]. These methods have been demonstrated
that PF is an ideal algorithm for tracking both source and environment parameters and their
potential uncertainty in an unknown shallow-water environment. However, these PF-based
methods selected the full-field data that coupled with many sound propagation parameters
as measurements, and also relied on numerical propagation model relating measurements
to state parameters. As an alternative, to avoid multiple replica field calculations, a model-
free attempt has been made to investigate the potential for matching only select features of
the acoustic field to corresponding replica features. Kuznetsov and Pereselkov measured
the amplitude ratio for neighboring wave field modes to estimate the source depth [21]
and confirmed the high noise immunity and weak sensitivity to the bottom model of their
algorithm [22].

This paper presents a joint tracking method for a source depth and water depth using
particle filter in shallow water. The method avoids incorporating multiple non-essential
environmental factors or repeating calculation of an acoustic model in the tracking process.
First, in the dynamic state-space model we constructed, observed measurements are beam-
wavenumber outputs transformed from received data by a vertical line array (VLA) through
twice beamforming, so that they are less sensitive to scattering and attenuation than the full
wave field; the state vector consists of vertical wavenumber, water depth, and source depth.
Second, we exploit the inverse relation between an adjacent vertical wavenumber difference
and water depth to constrain the scope of prior particles, so as to improve prediction
accuracy. Next, the particle weights, which are proportional to the likelihood of matching
predicted measurements to observed measurements and are calculated to generate PPDs.
Specifically, our predicted measurements are directly given by the sine values of the product
of source depth and vertical wavenumbers divided by water depth (no propagation model
calculations are required); our observed measurements were preprocessed by beamforming
twice to suppress the ocean noise. Processing then makes it possible to reduce the difference
between the observed and predicted measurements and increase the number of effective
particles. Finally, we adopt the particle smoother to reduce the state uncertainty and refine
PPD estimates.

The paper is organized as follows. In Section 2, the state-space model is developed
for our problem. Section 3 presents the foundation of a particle filtering method for
source depth and water depth joint tracking in shallow water. Simulation and SWellEx-96
experiments results obtained by the proposed method using GS, PF and PF-S filters are
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compared in Sections 4 and 5, respectively. Also in Section 4, the influence of particle
number is discussed. In Section 6, we summarize the paper.

2. State-Space Modeling
2.1. Problem Formulation

As shown in Figure 1, we assume that a fixed-depth (zs) source moves toward or away
from an N element, VLA. The source covers a range span of ∆r with a constant speed (v),
radiating narrowband tones during the observation time. The received data are divided
into K blocks, corresponding to the K uniformly spaced samples on range from r1 to rK.
From the normal mode theory [23], the kth block of received pressure data at depth zn is
given by

p(rk, zn, zs) = Q
M

∑
m=1

1√
krmrk

φm(zs)φm(zn)e−irk(krm−iαm), (1)

where M is the number of propagating modes, φm(·) is the mode m depth function, krm
is the mode m horizontal wavenumber, αm is the mode m attenuation coefficient, and the
quantity Q = eiπ/4/

√
8πρ(zs) represents a constant factor with ρ(zs) as the water density

at the source depth.
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Figure 1. The path sketch of a moving source relative to a VLA.

Consider an idealized waveguide model with a pressure-release surface and bottom.
The general solution of the depth-separated wave equation [23] is

φm(z) =

√
2ρ

D
sin(kzmz), (2)

where D is water depth, the mode m vertical wavenumber kzm is defined as

kzm =
√

k2
0 − k2

rm, (3)

and must assume particular values,

kzm =

(
m− 1

2

)
π

D
, m = 1, 2, · · · . (4)

k0 is the medium wavenumber at radial frequency ω (k0 = ω/c, and the sound speed c is
1500 m/s). Substituting the Equation (2) into (1), the pressure data leads to

p(rk, zn, zs) =
Q
D

M

∑
m=1

√
1

krmrk
sin(krmzs) sin(krmzn)e−irk(krm−iαm). (5)

As our previous studies pointed out in Reference [24], the pressure field data can be
used to estimate the beam-wavenumber spectrum using beamforming at different received
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depths and ranges in turns. The beam-wavenumber output is a function of the sine angle
(sin θ ∈ [0, 1]) and wavenumber (kr ∈ [0, k0]),

|y(sin θ, kr)| =
∣∣∣∣∣ K

∑
k=1

(
N

∑
n=1

p(rk, zn, zs)e−ik0zn sin θ

)√
krSke−i(k−1)∆rkr

∣∣∣∣∣, (6)

where e−ik0zn sin θ and e−i(k−1)∆rkr are the vertical-direction beamforming steering vector
and the synthetic aperture modal beamforming steering vector, respectively, and

√
kr and

Sk =

[
N
∑

n=1
|p(rk, zn, zs)|2

]−1/2

≈ √rk are weighting coefficients [25]. By substituting (5) into

(6), beam-wavenumber outputs can be written as

|y(sin θ, kr)| ≈
1
D

M

∑
m=1

[
γm|sin(krmzs)|

∣∣∣∣∣ N

∑
n=1

sin(krmzn)e−ik0zn sin θ

∣∣∣∣∣
∣∣∣∣∣ K

∑
k=1

e−irkkrm e−i(k−1)∆rkr

∣∣∣∣∣
]

, (7)

where the mode m attenuation term γm = Qe−r1αm is a real number. One finds that∣∣∣∣∣ N

∑
n=1

sin(krmzn)e−ik0zn sin θ

∣∣∣∣∣ =
∣∣∣∣ sin[k0(sin θm − sin θ)Nd]

sin[k0(sin θm − sin θ)d]

∣∣∣∣, (8)

∣∣∣∣∣ K

∑
k=1

e−irkkrm e−i(k−1)∆rkr

∣∣∣∣∣ =
∣∣∣∣ sin[(krm − kr)Kdr/2]

sin[(krm − kr)dr/2]

∣∣∣∣. (9)

where sin θm =
√

k2
0 − k2

rm/k0 is the sine of the mode m propagation angle [23], dr = ∆r/K
is the moving distance in each block. If the beam and wavenumber direction are offset
from any modal propagation angle (θm) and modal horizontal wavenumber (krm), both
Equations (8) and (9) obtain small numbers. Conversely, when there is a match, the beam-
wavenumber spectrum given by Equation (7) appears a peak value, which indeed means
for twice modal separation. The spectral peak can be obtained as [24]

|y(θm, krm)| ≈
γm

D
|sin(kzmzs)| ∝ |φm(zs)|. (10)

Note that these peak amplitudes are affected by only the value of the mode depth function
at the source depth, having weak sensitivity to environmental parameters excluded from
consideration in this paper, such as sediment density, top layer, and bottom sound speed
parameters. And, the relationship between peaks amplitudes and the unknown interested
parameters (source depth and water depth) is directly given by Equation (10) without
involving a forward propagation model. Thus, it may can be possible to provide a reliable
estimate of source depth and water depth parameters, by employing beam-wavenumber
spectral peaks in place of the pressured data.

However, the solution to Equation (10) is ambiguous. To eliminate the multivalued
ness, we estimated joint source depth and water depth parameters estimation for differ-
ent modes along with the evolution information of modal vertical wavenumbers (see in
Equation (4)). A correct solution is solved by using a tracking algorithm in our scheme,
which combines the state-space model established in the mode domain (in Section 2.2) with
particle filtering (in Section 3).

2.2. The State-Space Model: Varies with Mode-Order

The state-space model contains the state vector and the measurement vector, which
is generally established in time or space. We here turn the problem around: tracking
unknown parameters in modal space. The evolution of modal vertical wavenumbers is
characterized as a source movement in time, and a tracking approach is employed to
estimate unknown parameters. In short, in our case, to solve source depth and water depth
from beam-wavenumber outputs measurements, states correspond to the mode k and k + 1
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instead of points in time. Let the mode k be the vertical wavenumber xkz,k, and water depth
xkz,k and source depth xzs,k are grouped as the state vector xk,

xk = [xkz,k,
1

xwd,k
, xzs,k]

T
, (11)

where the superscript T denotes the transposition operator. We set up a simple state
equation based on Equation (4):

xk =

 xkz,k
1/xwd,k

xzs,k

 =

1 π 0
0 1 0
0 0 1

 xkz,k−1
1/xwd,k−1

xzs,k−1

+ ηk = Fxk−1 + ηk, (12)

where F demotes the state transition matrix, ηk is the state noise term with a known
Gaussian density N (0, Q), and Q = diag(q2

kz, 1/q2
wd, q2

zs) is a diagonal matrix whose diago-
nal elements determine the possible deviation between theoretical and practical acoustic
propagation models. Note that π/xwd,k is the adjacent vertical wavenumber difference in
Equation (12). The inter-parameter relationship between vertical wavenumber and water
depth given by Equation (4) is incorporated into the state equation so as to constrain state
parameters search space.

Our goal is to sequentially estimate the state vector xk at each step through a known
relationship between measurements and parameters. Let acoustic measurements zk be
beam-wavenumber outputs,

zk = [|y(sin θ, kr)|], θ ∈ [0◦, 90◦], kr ∈ [0, k0]. (13)

The measurement equation which relates measurements to the state vector is con-
structed based on Equation (10):

zk =

∣∣∣∣y( xkz,k

k0
,
√

k2
0 − x2

kz,k

)∣∣∣∣ = γm

xwd,k

∣∣sin(xkz,kxzs,k)
∣∣+ εk, (14)

where εk is the measurement noise term with a known Gaussian density N (0, σ2) and σ2

is the noise variance. In our scheme, zk is transformed from received data by a vertical
line array (VLA) through twice beamforming. This preprocessed step suppresses part
of ocean noise. The remaining part is regarded as the random perturbations in the field
measurements and has a statistical description in εk.

As mentioned above, we establish the state-space model with mode-order as the inde-
pendent variable. The state equation describes the evolution of modal vertical wavenum-
bers and its inverse relation with water depth in an ideal waveguide. However, in practice,
boundary conditions or the sound velocity profile changes. As a result, the modal vertical
wavenumber is disturbed, such as the presence of leaky mods with a non-zero imaginary
part, but the solution given by Equation (2) in the water column is again a sinusoid [23].

One finds that the state equation does not contain the physics in a sufficient complete
way. This is known as model deficiencies of acoustic propagation, which is differs from
mismatch. Fortunately, model deficiency can often be compensated by the state noise
ηk, albeit with a loss in solution quality. Similar to the state equation, the measurement
equation considers the situation that measurements are corrupted with ocean noise by the
measurement noise term εk. In other words, our state-space model is applied in the ideal
waveguide in principle, and can also be generalized to layered waveguides which will be
tested against experimental data.

In our case, the parameter estimation problem is solved by a recursive filter based on
the state-space model because it provides not only point estimates but uncertainties for
source depth and water depth parameters by estimating the PPD p(xk|zk) . In Section 3,
the dynamics of our problem will be captured by particle filter and smoother instead of the
Kalman family of filters due to the non-linear structure of the measurement equation.
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3. Particle Filter and Smoother for Joint Tracking

(1) Predict.

For a given set of particles from the previous step
{

xi
k−1|k−1

}Np

i=1
, create a new prior

set of particles
{

xi
k|k−1

}Np

i=1
at step k by using Equation (12),

xi
k|k−1 = Fxi

k−1|k−1 + ηi
k, i = 1, · · · , Np. (15)

The key to the predictions is whether the prior particles “cover” the truth. It can be seen
that the state equation [see Equation (12)] contains the inverse relation between water
depth and vertical wavenumber, in which case, the prior particles sampling cannot be
randomly given, and the shape of the multi-dimensional transition density is constrained
by Equation (15). Hence, “scattered” sampling and filtering divergence can be avoided.

(2) Update.

Calculate the normalized weight wi
k of each particle xi

k|k−1 from its likelihood function

wi
k = L

(
xi

k|k−1

)
/

Np

∑
i=1
L
(

xi
k|k−1

)
, (16)

L
(

xi
k|k−1

)
=

1

(πσ2)k exp
[
−‖zk(x

i
k|k−1)− γTh(xi

k|k−1)‖
2
/σ2

]
. (17)

Here zk(xi
k|k−1) ∈ Rk is the observed measurement vector with k elements,

zk(x
i
k|k−1) =

[∣∣∣∣∣y
(

xi
kz

k0
,
√

k2
0 − (xi

kz)
2
)∣∣∣∣∣
]

, (18)

xi
kz = xi

kz,k|k−1 − [0, 1, · · · , k− 1]π/xi
wd,k|k−1; (19)

γTh(xi
k|k−1) ∈ Rk is the predicted measurement, of which the mode attenuation term

γ = [γ1, · · · , γk] and the predicted measurement function

h(xi
k|k−1) =

∣∣∣sin
(

xi
kzxi

zs,k|k−1

)∣∣∣/xi
wd,k|k−1. (20)

We assume that the difference between the mode attenuation terms from the first
to kth order can be negligible in order to reduce the number of unknown parameters,
γm(m = 1, · · · , k) ≈ γ. The unknown mode attenuation term is estimated by a maximum
likelihood estimator. An analytic solution is obtained by solving L

(
xi

k|k−1

)
/∂γ = 0

as follows:

γ̂ =

[
zk(xi

k|k−1)
]T

h(xi
k|k−1)

‖h(xi
k|k−1)‖

2 . (21)

By inserting mode attenuation estimate back into (16) and defining a cross spectral density

function C
(

xi
k|k−1

)
= zk(xi

k|k−1)
[
zk(xi

k|k−1)
]T

, the likelihood leads to

L
(

xi
k|k−1

)
=

1

(πν2)k exp
[
−ϕ(xi

k|k−1)/σ2
]
, (22)
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ϕ(xi
k|k−1) = tr

(
C
(

xi
k|k−1

))
−

[
h(xi

k|k−1)
]T

C
(

xi
k|k−1

)
h(xi

k|k−1)

‖h(xi
k|k−1)‖

2 , (23)

where tr is the trace operation and ϕ(·) is the mismatch function between beam-wavenumber
outputs zk(·) and predicted measurements h(·).

It is observed that the likelihood function of Equation (22) need not compute the full
field. Previously, such methods have required the data field to relate to the replica field
through a numerical forward model so that likelihood functions can be provided. Obviously,
our proposed method can reduce the computational load of particle weights. Besides,
previous PF-based methods depend on multi-dimensional environmental parameters
search to reduce the mismatch between observed and predicted full fields, whereas these
parameters need not be considered in our method.

(3) Resample.

Create a new posterior set of particles
{

xi
k|k

}Np

i=1
by resampling

{
xi

k|k−1

}Np

i=1
. Resam-

pling generates particles with identical weights from the parent set according to the weights
of the parent particles, with high likelihood particles generating more particles than the
low likelihood ones [26]. The PPD at step k is expressed as

p(xk|z1:k) ≈
1

Np

Np

∑
i=1

δ(xk − xi
k|k). (24)

(4) Smoother.

As mentioned in Section 2, errors that are unaccounted for (e.g., propagation modal
errors) will affect the quality of the tracking results including the uncertainties. Therefore,
particle smoothing techniques are applied to reduce uncertainty in the parameter estimates.
The forward–backward smoother [27] exploits both past and “future” measurements in
comparison to a one-way particle filtering. First, selecting Ns particles and their weights{

xj
K, wj

K

}Ns

j=1
from the posterior set of particles at the last step K as the backward smooth

set of particles. Then, at k = 1,. . ., K − 1 step, the normalized weight of each backward
smooth particle is obtained as

wj
k|K =

Np

∑
i′=1

wj
k p(xi′

k+1

∣∣∣xj
k)

Np

∑
i=1

wi
k p(xi′

k+1

∣∣∣xi
k)

wj
k+1|K, (25)

where wj
K|K = wj

K. It does not create any new particles, but each particle’s weight is
corrected during the backward smoothing process. At each step, the smooth PPD is
approximated by Ns particles and their weights,

p(xk|z1:K) ≈
Ns

∑
j=1

wj
t|Kδ(xk − xj

k). (26)

(5) State Estimation.

The point state estimation at step k can be shown by maximum the smooth PPD,

x̂k = argmax
xk

{p(xk|z1:K)}; (27)
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The marginal probability distribution at step k is defined by integration the smooth PPD,

p(xi
k|z1:K) =

∫
δ(xk − xi

k)p(xk

∣∣∣z1:K)dxk , (28)

which reflects the uncertainty of the point state estimation. As a summary, Table 1 shows
the source depth and water depth joint tracking algorithm steps.

Table 1. Steps of the source depth and water depth joint tracking algorithm.

Step 1 establish the state-space model: (12) and (14);

Step 2 predict: (15);

Step 3 update: (22) and (23);

Step 4 resample: (24);

Step 5 smoother: (25) and (26);

Step 6 state estimation: (27) and (28);

4. Simulation in an Ideal Waveguide

In this section, the PF-S, the PF (without smoother), and the GS are incorporated
into the source depth and water depth joint tracking problem in an ideal waveguide. The
purposes of simulations are to compare the tracking results of three filters and discuss the
influence of particle numbers on the filtering efficiency.

Both the GS and the PF approximate the PPD through particle sampling. The difference
lies in the method of particle sampling. The GS samples particles from the conditional
probability distribution at each independent tracking step by alternately selecting one state
parameter and fixing the others [28]. But the particles of the PF propagate recursively in
the state-space according to step-order. Set filter tuning parameters as follow:

• The state noise covariance matrix Q = diag([1, 10−3, 10−4]);
• The observation noise variance σ = 0.1;
• The number of forward particles Np = 4× 104;
• The number of backward smooth particles Ns = 104;

• The first state parameters are sampled from uniform distributions:
{

xi
kz,1

}Np

i=1
∼

(0, k0),
{

xi
wd,1

}Np

i=1
∼ (100, 300),

{
xi

zs,1

}Np

i=1
∼ (0, 100).

These filters tuning parameters remain constant following unless otherwise specified.

4.1. Envrionmental Configuration

A path sketch is described in Figure 2 where an acoustic source at a fixed 40 m depth
moves away from a VLA at a constant speed of 5 kn. The simulation starts at a source-
receiver range of 5 km with a range span of 3 km, in which the sound speed is 1500 m/s
and the water depth is 216 m. The simulated acoustic data are computed at a frequency of
130 Hz at a 21 elements VLA from 94 to 212 m using the KRAKEN program [29], including
60 samples at a uniform range for each hydrophone.
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Figure 2. The path sketch of a moving source relative to a VLA in an ideal waveguide.

First, the observed measurements used in our tracking method are shown in Figure 3a.
The beam-wavenumber spectra deduced from the simulated data received on a VLA using
Equation (6). The dashed line (Figure 3a) is computed for cosine transforms between
the beam and wavenumber direction (kr = k0 cos θ). The dots (Figure 3a) mark the first
32 modal horizontal wavenumbers and modal propagation angles, which agree well with
beam-wavenumber spectral peaks. These peaks’ amplitudes are then compared with the
first 32 modal excitation values in sequence, as shown in the solid curve and the dashed
curve (both normalized) in Figure 3b. This indicates that the amplitude difference of
two curves is a small number and can be regard as the measurement noise in our state-
space model.
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Figure 3. (a) Beam-wavenumber spectra, where modal horizontal wavenumbers and modal prop-
agation angles are marked by circle symbols and calculated by the KRAKEN program, and cosine
transforms between the beam and wavenumber direction are denoted by the dashed line; (b) Beam-
wavenumber spectral peaks’ amplitudes, which are obtained by extracting from the positions of circle
symbols in (a) to compare with the first 32 modal excitation values (both normalized).

4.2. Simulated Tracking Result

The effectiveness of three filters for source depth and water depth joint tracking is
tested using beam-wavenumber outputs in Figure 3a. Figure 4a,b shows the estimated
values of source depth and water depth obtained for the GS-MAP (square-marked line),
the PF-MAP (stars-marked line), and the PF-S-MAP (triangles-marked line) changes over
the steps along with the true trajectory (dashed line). The GS-MAP and the PF-MAP
absolute error estimates for source depth initially rise before the twelfth step, whereas the
PF-S-MAP estimates are close to the truth at each step. Figure 4b,c shows that the GS-MAP
yields poor performance in tracking water depth and vertical wavenumber parameters,
but the PF and the PF-S used here showed success. It is proven that our method using
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PFs can be promising for the source depth and water depth joint tracking problem in an
ideal waveguide.
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Figure 4. Tracking results of the GS-MAP (squares-marked line), the PF-MAP (stars-marked line),
and the PF-S-MAP (triangles-marked line) in an ideal waveguide: (a) source depth, (b) water depth,
and (c) vertical wavenumber. Dashed lines indicate true trajectories.

Beam-wavenumber outputs shown in Figure 3a are used as measurements to test
the effectiveness of filters for source depth and water depth joint tracking. In Figure 4,
the evolution of the point state estimation for each parameter with respect to the GS-
MAP (square-marked line), the PF-MAP (stars-marked line), and the PF-S-MAP (triangles-
marked line) changes over the steps. The source depth tracking results of three filters
are given in Figure 4a, following the true trajectory (dashed line). The GS-MAP and PF-
MAP absolute error estimates initially rise before the twelfth step, whereas the PF-S-MAP
estimates are close to the truth at each step. Figure 4b includes the water depth tracking
results, showing that the GS-MAP estimates appear to diverge at each step, and that the
PF-MAP estimates are inferior to the PF-S-MAP over the first ten steps. These phenomena
occur similarly in Figure 4c. The GS estimates are unable to track vertical wavenumbers, but
two PFs used here showed success. It is proven that our method using PFs can be promising
for the source depth and water depth joint tracking problem in an ideal waveguide.

The reason for the superiority of the two PFs estimation over the GS in Figure 4a–c is
further analyzed. Indeed, the state vector dimension exceeds the measurement dimension,
resulting in the great uncertainty of state parameters. But the particle set can be constrained
in the recursive sampling of parameters’ space along the step when the PF estimates state
parameters with our state-space model. The GS assumes that each step is independent, and
the state estimation is determined only by measurements. As a consequence, the GS-MAP
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exhibits poor performance in tracking water depth and vertical wavenumber parameters
(see Figure 4b,c). As a result, it demonstrates the benefits of exploiting our state-space
model by making a comparison between the GS and two PFs.

4.3. Number of Particles Selection

The selection of the number of particles is a trade-off between computation and
tracking performance. In order to comprehensively capture the state probability density,
the number of particles should increase linearly with the state dimension. Unfortunately,
the optimum of the number of particles is scenario dependent. Root Mean Squared Errors
(RMSE) for the GS-MAP (squares-marked line) and the PF-MAP (stars-marked line) are
computed by repeating the track using 100 Monte Carlo realizations. The RMSE of source
depth and water depth parameters are obtained as a function of the number of forward
particles in Figure 5a and Figure 5b, respectively.
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Figure 5. RMSE for the GS-MAP (squares-marked line) and the PF-MAP (stars-marked line) at the
last 10 tracking steps in terms of (a) source depth and (b) water depth and computed as a function of
the number of forward particles.

The performance of all filters degrades at the number of forward particles under 5000
because the PPDs of source depth and water depth parameters cannot be comprehensively
captured with there are only a few particles. As the number of forward particles increases
(more than 5000, less than 30,000), the RMSE of the source depth and water depth for the
PF-MAP is much smaller than the GS-MAP in Figure 5a,b. The RMSE of the water depth
in the GS-MAP stays above 20 m and is much higher than the PF-MAP in Figure 5b even
if there are sufficient forward particles (about 50,000). The PF performance is gradually
shown to be superior and reduces particles’ computational complexity.

Figure 6 shows the RMSE of the first 10 steps for the PF-MAP (stars-marked line) and
the PF-S-MAP (triangles-marked line) with fixed forward particles (10,000) as a function of
the number of backward particles. Adding the smoother helps to decrease the RMSE of the
first 10 steps of source depth and water depth for the PF-MAP. Specifically, the panel on
the top shows that the RMSE of the source depth reduces by about 4 m when the number
of backward particles is 1000. As the number of backward particles is increased to 5000,
the RMSE of the water depth can be greatly reduced, by about 13 m in the bottom panel.
The smoother with a few numbers of backward particles can improve the PF estimation
accuracy at initial steps, especially for water depth.
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10 tracking steps in terms of (top) source depth and (bottom) water depth, computed as a function of
the number of backward particles.

5. SWellEx-96 Experimental Examples

The goal of this section is to investigate PF and PF-S behaviors for the source depth
and water depth joint tracking in a layered waveguide with experimental data collected
during the SWellEx-96 experiment [30]. Figure 7a includes environmental parameters, such
as the thickness (216 m) of a water layer that has sound speed, density, and attenuation,
and overlies two sediment layers and a semi-finite basement.
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Figure 7. The SWellEx-96 Event S5: (a) The layered waveguide with sound speed profile, VLA, and
geo-acoustic parameters; (b) The path of a surface ship in blue towed a deep and a shallow source
during the 75 min VLA recording.

Figure 7b presents a surface ship traveling with a radial velocity of 2.5 m/s towards
a 21 element VLA during this experiment; the ship tows a deep (54 m) and a shallow
(9 m) source, both projecting different tonal signals. The analyzed data involved two tonal
signals, one at 127 Hz that was projected by a shallow source, and the other at 130 Hz and
projected by a deep source, both splitting into 232 segments. Acoustic data correspond to
source-receiver ranges of 8 km to 7.2 km at the VLA for 6 min.
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Due to the fact that there are no perfect boundaries as well as the loss mechanisms
present in the ocean waveguide, the energy attenuation of high-order modes is faster than
that of low-order modes in received data. We adjust the number of steps to 10, that is, only
the first 10 modes are tracked. As the low-order modal propagation angles are small, the
angle of the vertical-direction beamforming steering vector is restricted within the interval
θ ∈ [0

◦
, 60

◦
]. This would suppress part of ocean noise. In addition, element values of the

state noise covariance matrix are increased by five times to ensure filters with increased
convergence speed.

5.1. Convergence Speed

In Figure 8, panels on the left and the right display the 9 m and the 54 m source
scenarios separately, including the tracking results of the source depth and water depth
parameters by the PF-MAP (stars-marked line) and the PF-S-MAP (triangles-marked line)
estimates. The standard deviations of marginal PPDs and marginal smooth PPDs are
plotted with different colored shading around the tracking results.
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Figure 8. Tracking results of the PF-MAP (stars-marked line) and the PF-S-MAP (triangles-marked
line) for the SWellEx-96 experiment in the 9 m (left panels) and 54 m (right panels) moving source
scenario: (a,c) source depth; (b,d) water depth. Dashed lines indicate true trajectories.

As for tracking results of source depth, Figure 8a shows that the PF-MAP estimates
begin to approach the truth in the eighth step, while the PF-S-MAP estimates remain
accuracy at each step; both two estimates performed well in Figure 8b. Figure 8a indicates
that the PF-MAP converges slowly by comparison with the PF-S-MAP for the 9 m source
scenario. This is related to a few important attributes about modal structure in a downward-
refracting sound speed environment (see Figure 7a). Amplitudes for the mode spectrum
of the shallow source monotonically increase with mode order which, in general, are
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essentially 0 for the first several modes. Accordingly, the weight of particles at initial
tracking steps (low-order modes) has little difference between the one near the truth and
the one located in another position. This affects the PF-MAP convergence. In contrast, the
PF-S-MAP can effectively reduce the shallow source depth tracking error at initial steps as
it uses measurements of all steps, especially for large beam-wavenumber peak amplitudes
(correspond to high-order modes).

Figure 8c,d displays that the PF-MAP are not close to true values until the last two
steps for tracking results of water depth, while the PF-S-MAP yields good performance
at each step. These phenomena are contributed to by the inevitable prior modeling bias
in the state equation. If the real values of the state parameters evolve differently from
this state evolution model, the PF may be unable to track these changes immediately.
For example, the actual environment used here is more complex, with the bias of the
assumption for the state equation. Even though the measurement equation may tell the PF
that the vertical wavenumber parameter is changing in an unexpected way, the PF may
ignore the measurement information if this contradicts the state evolution model. The
smoother is the only difference between the PF and the PF-S. This reveals that adding an
additional smoothing procedure helps to reduce the impact of state modeling errors.

5.2. Uncertainty Analysis

An uncertainty analysis was carried out to assess the advantages of the smoother. We
take the 9 m source scenario for the SWellEx-96 Experiment as an example. The evolution
of marginal PPDs and marginal smooth PPDs of source depth and water depth parameters
at all steps is given in Figure 9a–d.

Marginal PPDs show non-Gaussian, multi-modal distributions with many local proba-
bility maxima distributed over the search space in Figure 9a, which indicates unsuccessful
tracking of the source depth parameter by the PF. But the marginal smooth PPDs of source
depth in Figure 9c correspond to narrow Gaussian PDFs. This shows that the source
depth parameter is accurately resolved with small estimation uncertainty by the PF-S. As a
comparison with marginal PPDs of the water depth parameter shows a somewhat uniform
distribution except for the last few steps in Figure 9b, marginal smooth PPDs are slightly
sharper in Figure 9d. Figure 9c,d further shows that the smoother can effectively reduce
the uncertainty of source depth and water depth estimation in the joint tracking process.
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6. Conclusions

For ocean acoustic applications, there is a natural limit factor with environmental
uncertainty. In this paper, a joint tracking approach for source depth and water depth
parameters is presented. It might provide a new way to design passive tracking methods in
an uncertain shallow-water environment. Our approach establishes the state-space model
in the mode domain by exploiting the evolution with mode-order of vertical wavenumber,
using particle filtering and the relationship between unknown parameters and beam-
wavenumber outputs to obtain tracking results.

The simulation shows that the tracking results of the PF applied in our method are
better than the GS. The main reason for this is how the PF utilizes our state-space model
while the GS does not. The model includes the evolution of vertical wavenumbers and its
inverse relation with water depth, which allows the respective search intervals of prior state
parameters to be narrowed. In addition, the recursive filtering (PF) based on the model
requires fewer particles than the independent sampling per step pattern (GS) under the
premise of the same tracking accuracy, which is beneficial for reducing computational costs.
SWellEx-96 experimental results further specify that adding the smoother based on particle
filtering is beneficial to reduce uncertainty and tracking errors of source depth and water
depth parameters. Because the smoother uses measurements of all steps to correct forward
particles’ weights at each step, “tighter” PPDs are generated.

Our approach has practical value in ocean acoustic applications. It enables tracking of
source depth and water depth parameters and their underlying uncertainties in shallow
water, making the approach a natural extension of target localization and geo-acoustic
inversion techniques. The three key advantages of our approach over existing methods are
summarized as follows: (1) it does not require any environmental information or numerical
calculation from a propagation model and has computational efficiency; (2) it adds an
additional smoothing procedure that help to reduce the impact of state modeling errors
and effectively reduces the uncertainty of source depth and water depth estimation in the
joint tracking process when acoustic field modeling errors exist between our state-space
model and the actual waveguide; (3) it has weak sensitivity to ocean noise as observed
measurements in our scheme are beam-wavenumber outputs transformed from received
data by a vertical line array (VLA) through twice beamforming. This preprocessed step
suppresses part of the ocean noise. And the noise immunity of the algorithm will be
analyzed in future work.

The depth of a moving source remains constant over a period of time. Nevertheless,
the source depth may change over time when a source moves up and down following
waves. In this case, we can divide the data over an extended period of time into multiple
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segments. In each segment time, the source depth is assumed to be constant, and our
method is continuously applied to the process. The above scheme in theory also enables our
method to be applied to a weakly range-dependent environment where the adiabatic mode
approximation can be assumed. Our method is obviously not suitable for the environment
with a complicated bottom layer, which should be considered in the follow-up research.
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