
Citation: Ren, Y.; Zhang, L.; Huang,

W.; Chen, X. Neural Network-Based

Adaptive Sigmoid Circular

Path-Following Control for

Underactuated Unmanned Surface

Vessels under Ocean Disturbances. J.

Mar. Sci. Eng. 2023, 11, 2160. https://

doi.org/10.3390/jmse11112160

Academic Editor: Gerasimos

Theotokatos

Received: 13 September 2023

Revised: 12 October 2023

Accepted: 29 October 2023

Published: 13 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Neural Network-Based Adaptive Sigmoid Circular
Path-Following Control for Underactuated Unmanned Surface
Vessels under Ocean Disturbances
Yi Ren 1,2, Lei Zhang 1,* , Wenbin Huang 1 and Xi Chen 1

1 Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University,
Harbin 150001, China; renyi_708@163.com (Y.R.); huangwenbin@mail.nwpu.edu.cn (W.H.);
chenxibruce@163.com (X.C.)

2 No.708 Research Institute of CSIC, Shanghai 200011, China
* Correspondence: zhanglei103@hrbeu.edu.cn

Abstract: This study describes a circular curve path-following controller for an underactuated un-
manned surface vessel (USV) experiencing unmodeled dynamics and external disturbances. Initially,
a three degrees of freedom kinematic model of the USV is proposed for marine environmental distur-
bances and internal model parameter deterrence. Then, the circular path guidance law and controller
are designed to ensure that the USV can move along the desired path. During the design process, a
proportional derivative (PD)-based sigmoid fuzzy function is applied to adjust the guidance law. To
accommodate unknown system dynamics and perturbations, a radial basis function neural network
and adaptive updating laws are adopted to design the surge motion and yaw motion controllers,
estimating the unmodeled hydrodynamic coefficients and external disturbances. Theoretical analysis
shows that tracking errors are uniformly ultimately bounded (UUB), and the closed-loop system is
asymptotically stable. Finally, the simulation results show that the proposed controller can achieve
good control effects while ensuring tracking accuracy and demonstrating satisfactory disturbance
rejection capability.

Keywords: path following; line of sight; robust control; underactuated unmanned surface vehicle;
sliding mode; adaptive control; radial basis function neural networks

1. Introduction

Over the past few decades, unmanned surface vessels (USVs) have gained widespread
attention due to their broad application potential in various marine missions, such as
environmental monitoring, ocean exploration, and military tasks [1]. Among various USV
control techniques, path-following control is a fundamental technology that enables the
basic autonomous sailing ability for USVs in ocean missions, e.g., maritime surveillance,
seabed charting, and environment monitoring. To realize the path-following objective for
USVs, various research efforts have been made by researchers, i.e., [2–7].

The control objective of a path-following control system is to steer an USV along a
time-independent trajectory under internal model dynamics and external disturbances [8].
Generally speaking, the path-following controller of underactuated USVs is always con-
structed using two components: the path-following guidance law and the dynamic tracking
law. First, the path-following guidance law generates a desired yaw angle to guide the
underactuated USV to converge to the desired path. Then, the dynamic tracking law forces
the USV to converge to the desired speed and the guided yaw angle. In existing studies,
widely adopted approaches include the line-of-sight (LOS) (e.g., [9–11]) and vector field
(VF) methods [12–14]. Compared with VF-based methods, the LOS technique has garnered
widespread research focus given its simpler and more reliable algorithm as well as better
transient performance. The conventional LOS guidance approach was established by [10].
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Here, a look-ahead distance is introduced to determine the LOS point, and the desired
LOS angle is generated by the relative direction between the USV position and the LOS
coordinates. Although effective, it should be pointed out that the method developed by [10]
is only based on a fixed look-ahead distance. As a consequence, the system robustness
under external disturbances and guidance performance under different speeds cannot be
guaranteed. For the first issue, the integral LOS approach represents an effective solution,
as first proposed by [11]. The main idea of the integral LOS is to introduce the integra-
tion of cross-tracking error into the guidance law to enhance the steady-state guidance
performance under constant ocean disturbances. Under this condition, ref. [15] proposes
a relative velocity model to simplify the control system under constant ocean current,
which realizes the global asymptotic stability and local exponential stability of the guidance
system. In [16], a predictor-based LOS guidance technique was developed to compensate
for the sideslip angle of the USV that is induced by disturbances. In [17], a fuzzy observer
is introduced to assist the guidance of the USV’s surge speed and yaw angle under multiple
lumped unknowns. To address the second issue, an improved LOS approach is proposed
by [18], in which the look-ahead distance is designed by considering the USV’s speed and
the cross-tracking error, such that both the system performance and speed adaptability
of parameters can be guaranteed. In [19], the fuzzy optimizer is introduced to tune the
look-ahead distance parameter. Ref. [20] proposed an adaptive line-of-sight (ALOS) algo-
rithm that adapts to error variations and is applied for path following. Ref. [21] proposed
a full-speed adaptive guiding law to solve the standard LOS systems’ lack of sensitivity
to lateral errors. However, it should be pointed out that most of the above-mentioned
methods are only effective in straight-line path guidance. For curved path tracking, the
Serret-Frenet coordinate system is required to modify curve paths for tracking [22] or to
estimate curved paths using monotone Hermite spline curves for parameterizing [23] linear
paths. To enable LOS steering on a curve path, ref. [24] linearized the curved trajectory.
Ref. [25] used the closest point on the trajectory to steer the USV as the LOS reference. Based
on the Serret-Frenet coordinate transformation, ref. [26] further extended the fuzzy LOS
guidance approach proposed by [17] to the curved path case. Although the above guidance
algorithm can solve the guidance robustness under external disturbances with adaptability,
it also refers to a complicated structure and poses a large computational burden in practice.
For example, the above interference compensation method needs to identify a large number
of fuzzy rules or update the weights of network nodes, which cannot meet the real-time
requirements in engineering applications. For curve tracking, the related Serret-Frenet
coordinate transformation may further expand the architecture of the guidance algorithm.

In addition the path guidance issue, the dynamic tracking issue is another key aspect
that should be considered in realizing path-following control. In practice, a USV must
maneuver through maritime disturbances, such as wind, currents, and unpredictable waves.
Underactuated USVs may experience substantial velocity drift angles due to the influence
of ocean currents, which makes it challenging for the actual trajectory to converge in the
intended direction. In addition, due to the complicated geometric shape of the USV’s
hull and variable surrounding flow field, it is difficult to account for the hydrodynamic
forces in the controller design. If unmodeled dynamics cannot be compensated for in these
systems, the control performance will deteriorate and even cause instability. The above
LOS techniques can significantly affect guiding stability in practical applications, which can
result in substantial oscillations in the intended trajectory while only slightly improving
performance. Furthermore, many control methods have been investigated to make the USV
follow the desired yaw angle and surge velocity. In recent years, adaptive backstepping
technology has drawn a lot of interest among these control algorithms because of its
pronounced advantages in managing ocean disturbances and model uncertainty. To solve
the problem of the path-following control of a USV, ref. [27] combined the backstepping
method with LOS guidance to allow underactuated USVs to track arbitrary straight and
curved trajectories. Fuzzy rules [28], neural networks [29], and other adaptive techniques
are typically incorporated into the backstepping controller design process when taking
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into account ocean disturbances and unmodeled dynamics to estimate and account for the
model’s unknown terms and increase the controller’s robustness. It should be emphasized
that only theoretical and simulation studies have been used to verify the approaches
indicated above. There are still some restrictions in real-world engineering applications.

Motivated by the above observations, this study proposes a novel sigmoid function-
based line-of-sight circular path guidance law and neural network-based path-following
controller. The innovations of this study are as follows:

1. A novel look-ahead angle guidance architecture is established to facilitate the circular
path guidance. Compared with the existing curve path guidance approach, the
Serret-Frenet coordinate transformation is not required by the proposed method, such
that the proposed method enjoys a simple and intuitive structure as a traditional
straight-line guidance approach in practical engineering.

2. A novel sigmoid compensation is introduced to the guidance law. Using this design,
the guidance angle can be adaptively tunned according to the scale and the change
rate of cross-tracking error, which enables guidance performance under external
disturbances and parameter adaptability under different surge speeds.

3. A neural network-based adaptive scheme is developed to estimate unknown un-
modeled dynamics. In the design, an adaptive learning law is developed to update
the weight matrix of the neural network, and the adaptive control is combined to
compensate for the deficiencies of the sliding mode change structure control so that
the system can weaken the vibrations while maintaining the robustness under internal
perturbations and external disturbances.

The remainder of this paper is organized as follows. The USV model and preliminary
findings are introduced in Section 2. The proportion-based line-of-sight circular path
guidance law is given in Section 3. The neural network controller design is presented in
Section 4. Numerical verification results are given in Section 5. Conclusions are drawn in
Section 6.

2. Preliminary Findings
2.1. Underactuated USV Model

In order to express the motion of the USV, the Earth-fixed frame {XEOEYE} and the
body-fixed frame {XBOBYB} are introduced, which are illustrated in Figure 1.
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In this article, we consider that the motions of the USV are defined in the horizontal
plane. The USV model is given in Equation (1):

.
x = u cos ψ− v sin ψ
.
y = u sin ψ + v cos ψ
.
ϕ = r
.
u = m22

m11
vr− Xu

m11
u− X|v|v

m11
|v|v− X|v|r

m11
|v|r

−X|r|r
m11
|r|r + du

m11
+ τu

mu
.
v = −m11

m22
ur− Yv

m22
v− Y|v|v

m22
|v|v− Y|v|r

m22
|v|r

−Yvvr
m22

v2r− Yvrr
m22

vr2 + dv
m22

.
r = m11−m22

m33
uv− Nr

m33
r− N|v|r

m33
|v|r− N|r|r

m33
|r|r

−Nvvr
m33

v2r− Nvrr
m33

vr2 + dr
m33

+ τr
mr

(1)

where x, y represent the USV’s position; ψ stands for the yaw angle; u, v, and r stand for
the surge velocity, sway velocity, and yaw velocity related to the body-fixed coordinate,
respectively; m11, m22, and m33 stand for inertia masses; τu and τr are control inputs pro-
vided by the equipped thrusters and rudders, respectively; du, dv, and dr are the coupling
of ocean disturbances; and X(•), Y(•), and N(•) are constant hydrodynamic coefficients.

To facilitate descriptions in the subsequent controller design, we reorganize the above
USV model to provide the following simplified form:

.
x = u cos ψ− v sin ψ
.
y = u sin ψ + v cos ψ
.
ϕ = r
.
u = Fu +

τu
mu.

v = Fv.
r = Fr +

τr
mr

(2)

where mu = m11 and mr = m33. The couplings of unknown nonlinear hydrodynamics and
external disturbances Fu, Fv, and Fr are expressed as follows:

Fu = m22
m11

vr− Xu
m11

u− X|v|v
m11
|v|v− X|v|r

m11
|v|r

−X|r|r
m11
|r|r + du

m11

Fv = −m11
m22

ur− Yv
m22

v− Y|v|v
m22
|v|v− Y|v|r

m22
|v|r

−Yvvr
m22

v2r− Yvrr
m22

vr2 + dv
m22

Fr =
m11−m22

m33
uv− Nr

m33
r− N|v|r

m33
|v|r− N|r|r

m33
|r|r

−Nvvr
m33

v2r− Nvrr
m33

vr2 + dr
m33

(3)

Remark 1. As a typical underactuated system, most of USV’s actuators can only provide surge
and yaw control forces, while dynamics in sway motion are underactuated. Thus, we only consider
τu and τr to enhance the practicability of the proposed results. In addition, the hydrodynamics of
USVs tend to exhibit a high degree of nonlinearity and perturbation, making it difficult to obtain
accurate hydrodynamic coefficients. Therefore, couplings Fu, Fv, and Fr that related to the USV’s
hydrodynamic characteristics will all treated as unmodeled dynamics when designing the controller,
which is significant to improve the practicability of the controller. In the following controller design,
a neural network approximator is designed to estimate these unknown terms.
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Assumption 1. Unknown system dynamics included in Fu, Fv, and Fr are upper bounded with
unknown bounds.

Assumption 2. The USV’s velocities u, v, and r and accelerations
.
u,

.
v, and

.
r have known bounds.

Remark 2. It is worth noting that Assumption 1 and Assumption 2 are generally assumed in the
controller design of marine vehicles, as noted in [30–33]. In the marine environment, the energy
of the external interference is limited, so Assumption 1 holds. In actual applications, the USV’s
actuators will also be limited by the finite energy (i.e., input saturation constraint). Therefore,
Assumption 2 also holds in engineering. In addition, the maximum velocities and acceleration of the
USV can be obtained by sea tests (i.e., speed test, turn test, and zigzag test).

2.2. Function Approximation

In this study, the radial basis function neural network (RBFNN) is employed to approxi-
mate the unknown hydrodynamics coupling and external disturbances. The approximation
ability of RBFNNs is given as follows:

Lemma 1 [33]. For the real continuous function f (Xn),Rd → R , it can be approximated by
following NN over to any arbitrary accuracy:

f (Xn) = WTh(Xn) + ε (4)

where W = [w1, . . . , wm]
T is the RBFNN weight; ε is the RBFNN approximation error; Xn is the

network input vector; and h(Xn) = [h1(Xn), . . ., hm(Xn)] describes the networks’ hidden layer,
which is specified by the following Gaussian activation function:

hj(Xn) = exp

(
−
‖x(Xn)− cj‖2

2b2
j

)
, j = 1, 2, . . . , m (5)

where cj, j = 1, . . . , m is the column vector representing the center distribution of Xn, and bj
represents the width of hj(Xn).

2.3. Control Objective

This study seeks to solve the circular path-following control problem for an underac-
tuated USV under LOS guidance and a neural network-based adaptive control architecture.
The control objective of this study can be summarized in the following two points:

(1) LOS guidance: Under the proposed LOS guidance law, the USV can track the circular
path, and the transversal deviation SE is stable within the bounded tracking error.

(2) Yaw angle and velocity tracking: Under the proposed controller, the yaw tracking error
and the velocity tracking error dynamics are stable, and the related tracking errors
satisfies the bounded solution (See in [34,35]) under the unknown hydrodynamics
and external disturbances.

To realize the above control objective, an LOS guidance-based and neural network
controller is proposed, and its structure is presented in Figure 2.
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Figure 2. Schematic of the proposed LOS guidance and neural network controller for the USV. 
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3. Sigmoid Function-Based Line-of-Sight Circular Path Guidance Strategy

In this section, the sigmoid function-based LOS circular path guidance law is designed
to facilitate the first control objective in the underactuated USV’s path-following mission.
For a better illustration, a schematic drawing of the designed guidance law is provided in
Figure 3. In Figure 3, P(x, y) is the position of the USV, Po(xo, yo) is the center of the tracked
circle path, and Pk(xk, yk) is the nearest intersection point of PoP and the tracked circle path.

According to the above definitions, the rotation angle of
→

PoP can be calculated as follows:

ϕp = atan2
(

y− yo

x− xo

)
(6)
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Inspired by the look-ahead distance in the straight-line guidance strategy, we introduce
dt as the look-ahead angle in the circular path guidance strategy. Then, the LOS guidance
point PLOS(xLOS, yLOS) is described as follows:{

xLOS = xo + Rk cos(ϕp + dt)
yLOS = yo + Rk sin(ϕp + dt)

(7)
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According to Equations (6) and (7), the LOS angle of the USV with respect to PLOS is
given as follows:

ϕLOS = atan2
(

yLOS − y
xLOS − x

)
(8)

To proceed with the sigmoid-based LOS circular path guidance law design, we denote
the following auxiliary angle:

ϕY =

∣∣∣∣atan2
(

yo − y
xo − x

)
− atan2

(
yLOS − y
xLOS − x

)∣∣∣∣ (9)

Then, in Equation (9), the expected yaw angle ϕd of the USV is given as follows:

ϕd = atan2
(

yLOS − y
xLOS − x

)
+ kSE ϕY (10)

where kSE is the adaptive parameter, which is given by the following sigmoid function:

kSE =
2

1 + exp(−k1SE − k2
.
SE)
− 1 (11)

where k1 and k2 are positive design parameters, and SE is the path-following error, which
is given as follows:

SE =

√
(yo − y)2 + (xo − x)2 − Rk (12)

Remark 3. The proportion-based line-of-sight circular path guidance can track the circular path. In
addition, it has full-speed adaptability and strong robustness, and the parameters are easily set. It
mainly includes the following aspects:

(1) The conventional line-of-sight method is suitable only for straight-line tracking and not for
curve tracking. The existing curve LOS method needs to convert the system coordinate into
the Serret-Frenet coordinate system when conducting curve path tracking. However, the LOS
method proposed here does not require conversion, so the algorithm is more intuitive and
practical.

(2) The compensation item kSE is introduced to ensure the convergence performance under different
SE values. When SE is large, the compensation item is large, which ensures the transient
guidance performance and allows the USV to converge to the path faster. When SE is small,
the response compensation becomes smaller to avoid oscillation.

(3) The curved path LOS guidance law is based on the traditional LOS guidance principle but
includes the overall measures to deal with environmental interference. The new guidance law
overcomes the disadvantages of the traditional sight law, which is vulnerable to environmen-
tal interference, while retaining the intuition and simplicity of the traditional line-of-sight
guidance.

4. Neural Network-Based Control Law

Based on the desired heading angle generated by the guidance law designed in
Section 3, this section aims to design a heading speed controller based on neural networks
and sliding mode adaptive technology that enables the USV to follow the desired path. In
the design process of the controller, we introduce the RBFNN to approximate the sum of
the internal and external disturbances of the system. At the same time, combined with
the good effect of the sliding mode control strategy in nonlinear control, a neural network
sliding mode adaptive controller is designed. Here, the adaptive update rate is used to
adjust the weight matrix of the RBFNN in real time, and the sliding mode surface is used
to enhance the stability of the system. The design of the control strategy is divided into two
aspects: the yaw motion controller and the surge motion controller.
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4.1. Control Law Design
4.1.1. Yaw Motion Controller Design

In this subsection, the yaw tracking control law is designed to force ϕ to converge to
its desired value ϕd, which is generated by the above designed guidance law. We define
the yaw angle error ϕe as follows:

ϕe = ϕ− ϕd (13)

By differentiating Equation (13), the derivative of yaw angle error can be obtained:

.
ϕe = r− .

ϕd (14)

Then, we define the sliding mode surface as follows:

S1 = c1 ϕe +
.
ϕe (15)

where c1 is the positive control parameter.
By differentiating Equation (15), the derivative of the sliding mode surface can be

obtained:
l

.
S1 = c1

.
ϕe +

..
ϕe

= c1
.
ϕe +

.
r− ..

ϕd
(16)

According to Equation (2), we can rewrite the USV’s yaw motion dynamics as follows:{ .
ϕ = r
.
r = Fr + Grτr

(17)

where Gr = 1/mr is defined for the sake of compactness.
By substituting Equation (17) into Equation (16), we obtain the following:

.
S1 = c1

.
ϕe + Fr + Grτr −

..
ϕd (18)

Unknown model dynamics Fr exist in Equation (18). To facilitate the subsequent
design, the following RBFNN can be constructed to approximate Fr under Lemma 1:

Fr = Wr
Thr(X) + εr (19)

where Wr = [wr1, . . . , wrm]
T is the RBFNN’s weight vector; hr = [hr1, . . . , hrm]

T is the output
of the network hidden layer; and |εr| ≤ εN is the bounded approximation error when εN is
a small positive constant. The input vector of the above NN is given as X = [u, v, r].

Since Wr is the unknown desired weight vector, we define Ŵr as its estimation. Then,
the NN estimation error can be defined as follows:

W̃r = Wr − Ŵr (20)

Using the constant property of Wr, the time derivative of W̃r can be obtained as follows:

.
W̃r =

.
Wr −

.
Ŵr

= −
.

Ŵr

(21)

Then, based on the above designs, the control law of the yaw motion channel is
proposed as follows:

τr =
1

Gr
(−c1

.
ϕe − krS1 − ŴT

r hr +
..
ϕd) (22)
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where kr is the positive control parameter. The updated law of
.

Ŵr is proposed as follows:

.
Ŵr = γr1(S1hr(x)− γr2Ŵr) (23)

where γr1 and γr2 are positive control parameters.

4.1.2. Surge Motion Controller Design

In this subsection, the surge motion controller is designed to allow the USV’s surge
speed u to converge to the target speed ud, which is given by the planner. The velocity
tracking error of USV can be defined as follows:

ue = u− ud (24)

By differentiating Equation (24), the derivative of velocity error can be obtained:

.
ue =

.
u− .

ud (25)

Then, we construct the integral sliding mode surface as follows:

S2 = ue + c2

∫ t

0
ue(τ)dt (26)

where c2 is the positive control parameter.
By differentiating Equation (26) along with Equation (2), the derivative of the sliding

mode surface can be obtained:
.
S2 =

.
ue + c2ue

= c2ue +
.
u− .

ud
= c2ue + Fu + Guτu −

.
ud

(27)

where Gu = 1/mu.
Similar to the design in the yaw tracking channel, according to Lemma 1, we can also

construct the following RBFNN to realize the approximation of Fu, which is formed using
the following:

Fu = Wu
Thu(x) + εu (28)

where Wu = [wu1, . . . , wum]
T is the RBFNN’s weight vector; hu = [hu1, . . . , hum]

T is the
output of the network hidden layer; εu is the RBFNN’s approximation error satisfying
|εu| ≤ εX, where εX is a small bounded constant; and X = [u, v, r]T is the network input
vector.

Here, Ŵu is defined as the estimated value of Wu, and the estimated error can be
expressed as follows:

W̃u = Wu − Ŵu (29)

By differentiating Equation (29), the derivative of estimated error can be obtained:

.
W̃u =

.
Wu −

.
Ŵu

= −
.

Ŵu

(30)

where the property
.

Wu = 0 is utilized in obtaining Equation (31).
Then, based on the above designs, the control law of the surge motion channel is

proposed as follows:

τu =
1

Gu
(−c2ue − ŴT

u hu +
.
ud − kuS2) (31)
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where ku is a positive control parameter. The updated law of Ŵu is proposed as follows:

.
Ŵu = γu1(S2hu(x)− γu2Ŵu) (32)

where γu1 and γu2 are positive control parameters.

Remark 4. The RBFNN sliding mode adaptive controller designed in this section can be used to
solve the problems of unknown disturbance and model parameter uncertainties, and the combination
of the neural network and sliding mode makes the control system have better robustness and stability.
It mainly includes the following aspects:

1 Neural networks have the ability to learn arbitrary functions, and its self-learning ability
can avoid complex mathematical analysis that occupies an important position in traditional
adaptive control theory. Aiming at solving the highly nonlinear control problems that cannot
be solved by traditional control methods, the hidden neurons of multi-layer neural networks
adopt an activation function with a nonlinear mapping function, which can approximate
arbitrary nonlinear functions, providing an effective solution for nonlinear control problems.
This method can be widely used to solve control problems with uncertain models.

2 The sliding mode control is combined with the neural network to approximate the nonlinear
control system, and the neural network is used to realize the adaptive approximation of the
internal and external disturbances of the system, which can effectively reduce the fuzzy
gain. The adaptive law of neural networks is derived from the Lyapunov function, and the
stability and convergence of the entire closed-loop system are ensured through the adjustment
of adaptive weights.

4.2. Stability Analysis

Theorem 1. Considering the USV system described by Equation (2) and under the proposed control
laws noted in Equations (22) and (31) and adaptive laws described in Equations (23) and (32), if
Assumption 1 holds, the yaw tracking error ϕe and the velocity tracking error ue are ultimately
uniformly bounded (UUB).

Proof of Theorem 1. To verify the stability of the closed-loop system, we consider the
following Lyapunov function:

V =
1
2

S1
2 +

1
2

S2
2 +

1
2γr1

W̃r
TW̃r +

1
2γu1

W̃u
TW̃u (33)

Noticing that γr1 and γu1 are all positive constant control parameters, it can be straight
forward to verify that V ≥ 0 and monotonically increases with respect to S1, S2, ‖W̃r‖
and ‖W̃u‖. To proceed with the verification, we can differentiate Equation (33) along with
Equations (18) and (27). In this sequence,

.
V can be obtained as follows:

.
V = S1

.
S1 + S2

.
S2 − 1

γr1
W̃r

T
.

Ŵr − 1
γu1

W̃u
T

.
Ŵu

= S1(c1
.
ϕe + Fr + Grτr −

..
ϕd) + S2(c2ue + Fu + Guτu −

.
ud)

− 1
γr1

W̃r
T

.
Ŵr − 1

γu1
W̃u

T
.

Ŵu

(34)

By substituting control laws in Equations (22) and (31) and adaptive laws in Equations
(23) and (32) into Equation (34), we obtain the following:

.
V = −krS2

1 + εrS1 − kuS2
2 + εuS2

−W̃r
T( 1

γr1

.
Ŵr − S1hr(x))− W̃u

T( 1
γ

.
Ŵu − S2hu(x))

= −krS2
1 − kuS2

2 + εrS1 + εuS2 + γr2W̃r
TŴr + γu2W̃u

TŴu

(35)
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Here, W̃p = Wp − Ŵp and p = u, r. Thus, using Young’s inequality, the following
relation holds:

W̃p
TŴp = W̃p

T
(

Wp − W̃p

)
≤ − 1

2 W̃p
TW̃p +

1
2 Wp

TWp
(36)

In addition to using Young’s inequality, we also obtain the following:

εrS1 ≤
1
2

ε2
r +

1
2

S2
1 (37)

εuS2 ≤
1
2

ε2
u +

1
2

S2
2 (38)

Then, by combining Equations (35)–(38),
.

V can be developed as follows:

.
V ≤ −krS2

1 − kuS2
2 + 1

2 S2
1 +

1
2 S2

2 −
1
2 γr2W̃r

TW̃r − 1
2 γu2W̃u

TW̃u

+ 1
2 ε2

r +
1
2 ε2

u +
1
2 γr2Wr

TWr +
1
2 γu2Wu

TWu

= −KV + ∆

(39)

where K = min{2kr − 1, 2ku − 1, γr1γr2, γu1γu2} and ∆ = 0.5(ε2
r + ε2

u + γr2Wr
TWr+

γu2Wu
TWu). Then, the integration of Equation (39) yields the following:

0 ≤ V(t) ≤ ∆
K
+ [V(0)− ∆

K
]e−Kt (40)

By observing Equation (40), one can deduce that V(t) is UUB to the residual set ΩV :
[0, ∆

K ]. Moreover, according to the definition of V in Equation (33), we can further conclude
that the closed-loop signals S1, S2, ‖W̃u‖, and ‖W̃r‖ are all UUB to the residual set Ω1 :
[0,
√

2∆/K], Ω2 : [0,
√

2∆/K], Ω3 : [0,
√

2γu1∆/K], and Ω4 : [0,
√

2γr1∆/K], respectively.
In addition, after S1 and S2 converge to a small neighborhood of the equilibrium point, the
convergence of the yaw tracking error signals ϕe and ue can be realized. This completes the
proof. �

5. Simulation Verification

In this section, numerical simulations are conducted to verify the effectiveness and
robustness of the above-designed LOS guidance law and RBFNN-based adaptive controller.

5.1. System Configuration

In this section, a 7-meter planning boat is used as the simulation platform, and the
mass coefficient and dimensionless hydrodynamic coefficient information of the model are
given in Table 1. The factorization coefficient is H = 1

2 ρLdV2. Here, ρ is the fluid density, L
is the ship length, d is the average draft, and V is the 2-norm of the USV’s velocity vector.

Table 1. The USV’s model parameters.

Mass
Coefficient

Hydrodynamic Coefficient
First Order Second Order Third Order

mu = 4050.67,
mv = 4070.32,

mr = 14, 451.12

Yv = −0.47155,
Yr = −0.0716,
Nv = −0.1459,
Nr = −0.0557

Xvv = 0.0682, Xvr = −0.0025,
Xrr = 0.0039, Yvv = −0.4757,
Yvr = −0.2900, Yrr = −0.035,

Nvv = 0.0148, Nvr = 0.002,
Nrr = −0.0401

Yvvr = −0.51445,
Yvrr = −1.72674,
Nvvr = −0.34044,
Nvrr = −0.02524

In simulations, parameters of the guidance law are set as dt = 5deg, k1 = 0.05, and
k2 = 0.06. Parameters of the yaw angle controller are set as c1 = 1, kr = 0.05, γr1 = 0.0001,
and γr2 = 0.00003. Parameters of the velocity tracking controller are set as c2 = 1,
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ku = 0.013, γr2 = 0.00003, and γu1 = 0.000001. Parameters of RBFNNs are set as m = 30
and bj = 0.6, and ci is evenly spaced on [−20, 20]× [−5, 5]× [−2, 2].

In order to verify the robustness of the proposed control scheme, the ocean waves,
winds, and currents are considered in simulations, and the simulation methods of waves
and winds are given in [36] and [37], respectively. Three sets of ocean disturbances are
adopted for comparison, which are given in Table 2. All directions of the external distur-
bance are set as 45 degrees.

Table 2. Scenarios of ocean disturbances with their corresponding sea state level.

Scenarios Sea State
Level

Average Wave
Height (m) Wind Speed (kn) Current Speed (kn)

I Claim water 0 0 0
II Level 1 0.05 1 3
III Level 3 0.88 8 4

5.2. Simulation Results

Simulation results are shown in Figures 4–7. Figure 4 shows trajectories and the
transverse deviation SE of the USV under three scenarios. As shown in Figure 4, the path-
following error of the USV is less than 10 m for all three scenarios. The mean square error
(RMS) is calculated as an index to measure the performance of the path following. The RMS
values in the three different scenarios were 2.37 m, 5.63 m, and 8.96 m, separately. The USV
achieved a satisfactory path-following performance under the proposed controller. Figure 5
depicts the curves of the yaw angle error ϕe and the velocity error ue under different
disturbances. From Figure 5a,b, we can learn that tracking errors ϕe and ue can all converge
to a small neighborhood of zero in a short time and maintain a high robustness during
system steady tracking stages. Figure 6 shows the time evolution of control inputs, and the
norm of the adaptive update weight matrix is presented in Figure 7. By observing these
results, we can learn that all of these closed-loop signals are bounded.
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update ‖Ŵr‖ and (b) the adaptive update ‖Ŵu‖.

Under Scenario I, due to the absence of interference from the external disturbance,
the fluctuation of the transverse deviation is small, and the yaw and velocity can quickly
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respond to the expected value, which has a good tracking effect. Under Scenario II,
environmental factors have a certain impact on the movement of the USV. There is a
small overshoot and tracking deviation when the USV enters the circular path, but it soon
tends to stabilize. The velocity error is stable around a value of zero, and the yaw error
fluctuates 10 degrees up and down around the zero value. The circular path tracking effect
is good. Under Scenario III, due to the harsher sea conditions, the influence of external
environmental factors on the USV movement is more obvious. With the increase of velocity,
the USV crosses the resistance peak area, and the violent model perturbation makes the
USV have a certain overshoot and a tracking error of 20 m when it first enters the circular
path. However, under the adjustment of the guidance law and controller, USV can still
follow the desired path more accurately, and the tracking effect is tolerable. In summary,
the controller shows desirable robustness under ocean disturbances.

6. Conclusions

This study describes a neural network-based adaptive sigmoid circular path-following
control system for underactuated unmanned surface vessels under ocean disturbances.
To facilitate the circular path guidance objective, the look-ahead angle is introduced into
the guidance law to determine the LOS point of the circular path. Second, to enhance
the guidance performance under external disturbances and parameter adaptability under
different surge speeds, a sigmoid function-based compensator is subsequently constructed
in the guidance law. Then, using the neural networks, an adaptive dynamic tracking
controller is designed for the USV to realize the yaw angle tracking and speed tracking
objective. Finally, a set of simulation verifications are performed under different ocean
disturbances. The simulation results reveal that the presented scheme can effectively
realize the path-following control objective. In addition, these results also illustrate the
excellent control performance and robustness of the proposed control schemes with external
disturbances.
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