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Abstract: The southward propagation of cold-air frontal boundaries into the Gulf of Mexico region
initiates a cascade of coupled air–sea processes that manifests along the coastlines as an apparent
brightness anomaly in the ocean color signals. Our hypothesis is that the color anomaly is largely
due to the turbulent resuspension of sedimentary particles. Initially, there is significant wind-driven
ocean turbulence as the frontal boundary passes, followed by the potential for sustained convective
instability due to significant heat losses from the ocean surface. These cold front events occur during
boreal autumn, winter, and into early spring, and the latter episodes occur in the context of the
seasonally recurring thermal stratification of shelf waters. Here, we show that as stratification
reasserts thermal stability in the waning days of a cold front episode, daily to hourly ocean color
patterns are temporally coherent with the air–sea heat flux changes and the resulting impact on water
column stability. Concomitant results from a nested, data-assimilative, and two-way coupled ocean-
atmosphere numerical modeling system provides both corroboration and insight into how surface
air–sea fluxes and in-water turbulent mixing manifest as hourly changes in apparent surface water
turbidity due to the potential excitation and settling of reflective particles. A simple model of particle
mixing and settling driven by the simulated turbulence mimics patterns seen in the satellite image
sequences. This study offers a preview of potential application areas that may emerge following the
launch of a dedicated ocean color geostationary sensor.
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1. Introduction

The cold air masses originating over the North American continent penetrate south
across the Gulf of Mexico with increasing frequency from approximately November through
to April [1–5]. These high-frequency meteorological events (~50 or more episodes each
year) are characterized by an initial increase in wind velocity towards the south followed
by a sustained drop in air temperatures (>10 ◦C) [6]. Referred to as cold-air outbreak (CAO)
events [1,7], or nortes [8], these episodes have a significant impact upon the oceanography
of the region—the principal effect being the destruction of thermal stratification [9]. Thus,
CAO events play an important role in the seasonal oceanographic transition from warm,
stratified to cool and well-mixed surface waters, particularly in shallower areas over the
continental shelves (<100 m depth).

In a previous paper, it was demonstrated that over the West Florida continental shelf
(WFS) in late autumn/early winter, CAO events may result in discoloration of surface
waters over wide areas of the shelf that may persist for two to five days [10]. Under
the hypothesis that the brightness anomaly was driven by highly reflective, inorganic
sedimentary particles, as supported by examination of satellite-derived Inherent Optical
Properties (IOPs), the temporal and spatial persistence of the discoloration appeared to be
sustained through convective water column turbulence. Hindcast numerical simulations of
the air–sea interactions indicated continuing heat losses from the ocean for the duration
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of the CAO event that rendered the water column dynamically unstable precisely where
sustained surface water discoloration was persistent. The combined remote sensing and
numerical modeling analysis suggested that a sustained coastal brightness anomaly during
a CAO event indicates continuing surface ocean heat losses and an accompanying dynamic
instability that penetrates to the sea floor.

In this paper, later season CAO events (March 2018) are examined wherein the spatial
and temporal extent of the ocean color brightness anomaly over the WFS is comparatively
restricted. Concomitant numerical simulations of the ocean’s response to CAO events in
the setting of seasonal warming and increasing thermal stratification are used here to test
the hypothesis that optical signals (and the manifest ocean color images) indicate where
turbulent mixing consumes the water column down to the ocean bottom and when thermal
stratification has reestablished hydrologic stability.

2. Materials and Methods
2.1. Ocean Color Images and Buoy Data

Satellite data were obtained from the Ocean and Land Colour Imager (OLCI) on
board the Sentinel-3A/B satellites, the Visible Infrared Imaging Radiometer Suite (VIIRS)
on the Suomi-National Polar-Orbiting Partnership (NPP) and NOAA-20 satellites, and
the Advanced Baseline Imager (ABI) on the Geostationary Operational Environmental
Satellite (GOES)—East satellite. True color images derived from OLCI and VIIRS sensor
data were obtained from NOAA STAR Ocean Color Science Team Ocean Color Viewer
website (OCView: https://www.star.nesdis.noaa.gov/ (accessed on 7 June 2022)) and
were rendered from the intermediate surface reflectance products that may include land
and clouds in the images. OLCI and VIIRS data were further processed to remove atmo-
spheric contamination and yield surface Level-3 products (IOPs) using the Naval Research
Laboratory’s (NRLs) Automated Optical Processing System (AOPS) [11].

In this paper, we also examine visible band data from the geostationary GOES-ABI
sensor. The ABI sensor is not intended for ocean color applications; however, some coastal
ocean scenes may be rendered due to the very high reflectivity signals from suspended
sediments. GOES-ABI Level 1B conus data (~500 m horizontal resolution for the 640 nm
band) were obtained from the NOAA Comprehensive Large-Array Data Stewardship
System (CLASS) and processed using the AOPS system to produce ocean surface reflectance
fields [ρs] [12]. A method to convolve GOES-ABI data with dedicated ocean color sensor
information is described in Jolliff et al. [13], and was used to create true color image
sequences from GOES-ABI data.

Meteorological and oceanographic buoy data were obtained from NOAA’s National
Data Buoy Center (https://www.ndbc.noaa.gov (accessed on 6 May 2022)).

2.2. COAMPS and Sediment Models

The Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) is the U.S.
Navy’s operational two-way coupled ocean-atmosphere numerical modeling system [14–16].
The nested atmospheric and ocean models exchange information on fluxes of thermal energy
and other data via the Earth System Modeling Framework (ESMF). The Navy Coastal Ocean
Model (NCOM) [17] was used as the ocean model component and configured at 3 km horizon-
tal resolution for the northern Gulf of Mexico encompassing the WFS. Initial and boundary
conditions were obtained from the global application of the Hybrid Coordinate Ocean Model
(HYCOM) [18]. The ocean grid consisted of 50 vertical levels, with 36 terrain-following sigma
layers between the surface and 190 m depth, and 14 fixed-depth layers between 190 m and
the maximum depth of 5500 m. The Navy’s two-minute-resolution Digital Bathymetric Data
Base (DBDB2) provided bathymetric data. The atmospheric model’s inner nest was at 6 km
horizontal resolution and had 60 vertical levels. Atmospheric boundary conditions for each of
the forecasts were provided by the Navy Operational Global Atmospheric Prediction System
(NOGAPS) model [19]. Additional details on model coupling, information exchange, and
ocean-atmosphere data assimilation may be found elsewhere [20,21].

https://www.star.nesdis.noaa.gov/
https://www.ndbc.noaa.gov
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Vertical eddy diffusivities (Kv, m2 s−1) from the COAMPS simulations were saved at
hourly increments and then interpolated to a regular vertical grid of 1 m depth increments
for each model grid location over the mid- to inner-continental shelf (<60 m total depth). The
diffusivities were used to solve, via implicit numerical solution, for the vertical movement
of particles over a time step of 360 s. Particles were subjected to a constant sinking velocity
(3.5 × 10−4 m s−1) over the same time step interval. The designated sinking velocity
was appropriate for very fine suspended particles in a marine environment [22–24]. The
bottom-most vertical grid cell was initialized with a constant value (for the domain) of
100 g m−3 erodible sediment. This can also be interpreted as a percentage, and the bottom
grid is at an initial 100% of the suspended particulate matter within the bottom boundary
layer. A more rigorous treatment of sediment would include the resuspension process
from the seafloor. However, the emphasis here is upon the surface expression of any
potential particulate materials already suspended in the water column. The simulation was
performed iteratively across the spatial domain as a series of one-dimensional computations.
The deliberate lack of horizontal advection was intended to isolate the potential impact of
vertical turbulence-driven water column overturn and the competing influence of particle
settling upon the apparent optical manifestation of suspended particle scattering during
the CAO events.

3. Results
3.1. Buoys and Ocean Color Sensors

The Pulaski Shoals Light (NDBC buoy PLSF1, 24.693◦ N, 82.773◦ W) is located in the
extreme southern end of the WFS, and thus provides a meteorological record of southerly
penetration of cold fronts, their frequency, and relative intensity. For March 2018, four
episodes are evident in the meteorological record as intensified north winds (Figure 1A)
and a simultaneous decline in lower air temperatures (Figure 1B). In the latter two events,
lower air temperatures drop > 8 ◦C in less than 48 h. These are prototypical CAO events,
and it is reasonable to assume that the intense north winds and the significant drop
in air temperatures would have a deleterious impact on any developing upper ocean
thermal stratification, despite the background seasonal trend towards increased surface
ocean temperatures.
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C-MAN Station, ARES payload, 24.693◦ N 82.773◦ W. (B) Air temperatures (blue line) PLSF1.
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Examination of ocean true color images obtained during these CAO events reveal
a concomitant discoloration of nearshore waters that is obvious when contrasted with
the color signals during the interval periods. For example, a warm interval (11 March,
Figure 1B) corresponds to a typical ocean color scene for the WFS and along the West Florida
coastline (Figure 2A). However, as the north winds strengthen and the air temperature
drops over 13–14 March (Figure 1A,B), a distinct whitish brightness in the true color
images develops along the Florida coastline and over a large portion of the southern
WFS (Figure 2B,C).
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Figure 2. (A) VIIRS (SNPP) true color/surface reflectance, West Florida Shelf, 11 March 2018;
(B) 13 March 2018; (C) 14 March 2018. Images obtained from NOAA STAR Center for Satellite
Applications and Research (http://star.nesdis.noaa.gov (accessed on 7 June 2022)).

In the previously examined late autumn to early winter CAO examples, the coastal
brightness anomaly extended west from the Florida coastline to the ~60 m isobathymetric
contour [10]. In this case, however, the discoloration pattern extends out to approximately
the ~25 m isobathymetric contour. Mid-latitude continental shelves undergo seasonal
transitions from relatively well-mixed surface waters to the establishment of the seasonal
thermocline [25], and in the Gulf of Mexico the seasonal thermocline is often found in the
~30 m depth range [26–28]. Thus, the apparent turbidity initiated by these late winter/early
spring CAO events results in a more spatially restricted coastal pattern as the shelf water
column is more dynamically stable.

The following CAO event on 21–25 March (Figure 3) reveals a similar discoloration
pattern with the apparent brightness pattern extending seaward from the coastline. Note
the cloud indicating the frontal boundary as it penetrates south on 20 March (Figure 3A).
The brightness pattern is most conspicuous in the southern portion of the shelf, where
there is a relatively shallow plateau extending along the Florida Keys (Figure 3B,C). Our
prevailing hypothesis is that the discoloration is due to the vertical mixing of highly
reflective particles, and the spatial extent of the discoloration is indicative of where ocean
turbulence has penetrated to the seafloor. Hence, as the CAO-induced turbulence subsides
and thermal stratification ensues, the particles will settle and the discoloration will recede.

The color images suggest there is both a day-to-day as well as a diurnal trend in the
particle excitation/settling sequence (Figure 4). On 23 March, winds are diminishing and
air temperatures begin increasing (as shown in Figure 1). Over the southern portion of
the WFS, the Sentinel 3A OLCI image captured at 15:44 UTC (10:44 local, CDT) shows a
brightness discoloration over much of the southwest shelf (Figure 4A). A subsequent image
from VIIRS (NPP, 18:14 UTC; Figure 4B) indicates some dissipation of the brightness signal
(setting aside the smoke from a nearby Everglades wildfire), and the final VIIRS image

http://star.nesdis.noaa.gov


J. Mar. Sci. Eng. 2023, 11, 2118 5 of 17

(NOAA-20, 19:06 UTC; Figure 4C) is substantially different from the earlier OLCI image,
with much of the apparent brightness pattern having faded over the intervening ~4 h.
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Figure 3. (A) VIIRS (SNPP) true color/surface reflectance, West Florida Shelf, 20 March 2018;
(B) 21 March 2018; (C) 22 March 2018. Images obtained from NOAA STAR Center for Satellite
Applications and Research (http://star.nesdis.noaa.gov (accessed on 7 June 2022)).
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Figure 4. True color images obtained on 23 March 2018 over the southern portion of the WFS: (A) OLCI
Sentinel A, 15:44 UTC; (B) VIIRS SNPP, 18:14 UTC; (C) VIIRS NOAA-20, 19:06 UTC. Images were
obtained from NOAA STAR Center for Satellite Applications and Research (http://star.nesdis.noaa.gov
(accessed on 7 June 2022)).

The potential inferences made from surface reflectance-based true color images are
further supported by the level-3, fully processed surface optical properties. The Quasi-
Analytic Algorithm (QAA) [29] total backscattering coefficient is an appropriate potential
indicator of elevated particle backscattering. There is a significant contrast between the
OLCI backscattering field (Figure 5A), captured at 15:44 UTC, and the NOAA-20 VIIRS
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product (Figure 5B; 19:06 UTC). In both fields, smoke from the nearby wildfire prevents
processing beneath the atmospheric contamination. In the OLCI product field, additional
atmospheric correction failure prevented product retrievals farther west. However, enough
information was retrieved to show, in cross-shelf transect, an apparent elevation in backscat-
tering values along ~25.15◦ N latitude in the OLCI products (Figure 5C) compared to the
VIIRS products retrieved ~4 h later. This pattern in the retrieved level-3 optical products
suggests a potential diurnal cycle of turbidity excitation and relaxation that was suggested
in the true color images (Figure 4).
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Figure 5. (A) QAA backscattering coefficient (560 nm) level-3 product, OLCI Sentinel 3A,
23 March 2018, 15:44 UTC; (B) QAA backscattering coefficient (555 nm) level-3 product, VIIRS NOAA-
20, 23 March 2018, 19:06 UTC; (C) comparison of products shown in (A,B) along 25.15◦ N latitude,
(OLCI-red, VIIRS-black).

The optical property product fields also suggest a pattern of an initial disturbance, the
CAO event, which leads to turbidity in the water column that is progressively diminished
over a period of days (Figure 6). The backscattering coefficient products obtained from
the same sensor (VIIRS, NOAA-20) appear to diminish in magnitude over the southern
shelf area from a maximum on 22 March (Figure 6A), through a progressively diminishing
signal intensity (Figure 6B,C), arriving at much lower values on 25 March (Figure 6D).
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Simultaneously, there is also an apparent diurnal pattern that suggests particles are settling
as daily warming ensues and thermal stratification begins to reestablish.
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3.2. COAMPS Results

Overall patterns seen in the color satellite images appear consistent with the ocean
model results from COAMPS. Simulated lower air and upper ocean temperatures for
a central point on the southern portion of the WFS (25.21◦ N, 81.56◦ W,) are indicative
of alternating conditions between CAO outbreaks and seasonal warming during March
(Figure 7). For example, as simulated air temperatures drop on 21 March (Figure 7A), the
air–sea temperature difference approaches −4 ◦C (Figure 7B). The temperature difference
is indicative of an ensuing period of elevated heat losses from the ocean to the atmosphere.
Air temperatures then rapidly increase on 23 March as the air–sea temperature difference
diminishes. Simulated sea surface temperatures diminish from 22 to 24 March, and then
increase thereafter.

Simulated water column temperatures indicate repeated cycles of surface warming,
water column mixing, and ocean cooling during the same period (Figure 8). The mid-March
CAO event (13–17) leaves the water column in the 21–22 ◦C range, but surface warming
ensues as the CAO event recedes. Evidence of surface warming resumes on 19 March and
extends into 21 March (Figure 8) with surface waters > 23 ◦C. However, as the initial onset
phase of the next CAO event begins at midday on 21 March, the diurnal surface warming
is mixed down into the water column as the upper water column thermal stratification
pattern is destroyed. The ocean then enters a period of heat loss for the next few days,
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and water temperatures descend back into the 21–22 ◦C range. A return to diurnal surface
warming becomes more prominent on 25 and 26 March (Figure 8).
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The model’s estimate of the vertical eddy diffusivity coefficient (Kv, m2 s−1; based
on the Mellor–Yamada turbulence closure scheme [30]) at the same location is informative
about the simulated cycle of mixing and stratification, and how it is disrupted by the CAO
event (Figure 9). Vertical eddy diffusivities become maximal throughout the water column
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at the end of 21 March, and then maintain these elevated values (~9 × 10−2 m2 s−1) that are
progressively disrupted by a diurnal relaxation pattern. Note that Kv values of order 10−2

(red areas in the contour plot) imply vigorous, rapid mixing for a water column of only
22 m depth. The mixing pattern with a diurnal relaxation (indicated by lower Kv values
following sunrise, dashed white line in Figure 9) becomes more obvious on 23 March, and
becomes progressively larger thereafter. Progressively reduced periods of vigorous water
column mixing each day following 22 March would be consistent with the inference of
vertical particle movements inferred from the ocean color products (Figures 5 and 6).
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Figure 9. COAMPS results for water column vertical eddy diffusivity for 25.15◦ N, 82.20◦ W, from 21
to 27 March. White dashed lines indicate the approximate local time for sunrise and the black dashed
lines are for local sunset.

The eddy diffusivity results are also consistent with the COAMPS simulated surface
air–sea fluxes. Net surface heat fluxes are positive during the day (surface warming) and
negative during the night (surface cooling; Figure 10). However, the 24 h smoothed net
flux (dashed line Figure 10) indicates a net heat loss from the ocean during the CAO event
from 21 to 24 March (Figure 10). The smoothed air–sea flux trend is consistent with the SST
pattern in Figure 9. The length of time each day during which net heat flux is positive also
increases during that time interval, corresponding to reduced intervals of vertical mixing.

In summary, the COAMPS air–sea simulation corroborates the inferences made from
the buoy data and the ocean color image sequence: the CAO event destroys the developing
thermal stratification along the coasts and significant heat losses induce mixing (overturn)
of the water column. Consistent with our hypothesis, this process has the potential to
bring near-bottom sediments to the surface and result in the brightness anomaly seen in
reflectance-based true color images as well as the elevated backscattering coefficients in
the level-3 IOP product fields. As the CAO event wanes, the diurnal cycle of heating and
cooling tips towards the balance of net heating over a 24 h period, and vertical mixing is
curtailed as thermal stratification is restored. For the flux of resuspended particles that may
contribute to the observed surface water discoloration, the return of stratification results in
their settling to the ocean bottom or near-bottom turbidity layers. This would potentially
explain the color discrepancy seen in ocean color reflectance images separated by mere
hours on 23 March (see in Figure 4).
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Figure 10. Simulated air–sea heat fluxes for the location 82.20◦ W and 25.15◦ N, as in Figures 8 and 9.
Solid red line is the total heat flux, the black line is the turbulent and longwave fluxes, and the dashed
red line is the 24 h smoothed total flux.

3.3. GOES-R Image Sequences

GOES-R ABI image sequences were available for the period of hours depicted in the
dedicated ocean color sensor frames shown in Figure 4. The surface reflectance (ρs) product
for the ABI red band (centered at 640 nm) is a useful proxy indicator of suspended sediment
because variance in the red band for other radiometers has been used to develop algorithms
for surface suspended sediment concentration [31,32]. Scaling of ρs-640 may be used as
a qualitative indicator of surface sediment concentration in ocean areas. The sequence of
ABI images (Figure 11) corroborates the ocean color sequence: beginning at 15:30 in the
southern section of shelf, the apparent sediment signal begins to diminish. Nearly 150 min
later, the reflectance signal has substantially diminished (18:02 UTC, Figure 11).
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Figure 11. Red band surface reflectance from GOES-R ABI on 23 March 2018, times (UTC) are
indicated in each respective panel.

Geostationary satellite image brightness may vary throughout the daily sequence
due to bidirectional reflectance distribution function (BRDF) artifacts [33–35], and this is
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a consequence of the changing geometry between the sensor viewing angle and the solar
illumination angle. To identify potential BRDF contamination in the image, the reflectance
values were normalized by the 15:32 red band signal on 23 March (Figure 12). In panel 18:37
(Figure 12D), diminished brightness over land indicated some BRDF impacts on brightness
due to the changing sun-to-target-to-sensor geometry. However, brightness values for the
entire scene generally increase with increasing solar zenith angle (overhead at 0◦ and the
horizon at 90◦ for convention), and the contrast between the normalized reflectance images
for 16:02 and 18:37 over the shelf suggest a diminished signal beyond any BRDF impacts.
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Figure 12. GOES-R (ABI) band 2 (640 nm) surface reflectance normalized by the reflectance values
obtained on image 15:32 on 23 March; displayed times (UTC) are (A) 16:02, (B) 16:32, (C) 18:02, and
(D) 18:37.

The color-enhanced GOES-R images, based upon surface reflectance (Figure 13), in-
dicate a diminished color brightness signature that is not commensurate with changes in
other features that appear in the sequence. Both the ABI blue and red reflectance data
show a diminishing signal over the shelf that is consistent with the multi-sensor true color
comparison on 23 March and the backscattering product comparison on the same date
(Figures 4 and 5). The image sequence, at ~5 min intervals, confirms the change in bright-
ness is occurring within 4 h between 11:00 and 16:00 local time. An animation of the GOES
color-enhanced sequence for this time period is provided in the Supplementary Materials.
This interval corresponds to the interval of simulated positive heat flux (Figure 10), and
reduced vertical eddy diffusivity (Figure 9). Thus, a relaxation of vertical mixing corre-
sponds to (1) a change in air–sea heat flux from negative to positive, and (2) a potential
dominance of particle settling that may result in a reduced apparent brightness pattern
in ocean color images. This hypothesis is tested in the following section with an explicit
sediment mixing/settling numerical model.
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Figure 13. Color-enhanced image sequence on 23 March 2018 from GOES-R ABI. The color-
enhancement technique takes information from both ABI band 1 (470 nm) and band 2 (640 nm)
to generate a true color reflectance image, using an estimated value for the green reflectance; times
(UTC) shown are (A) 15:32, (B) 16:32, (C) 17:32, and (D) 18:37. An animation of the entire sequence is
provided in the Supplementary Materials.

3.4. Sediment Model

Results from the sediment model, driven by simulated vertical eddy diffusivities from
COAMPS and a constant settling velocity, mimic patterns seen in the ocean color images
(Figure 14). Surface expression of potential resuspended sediments is not evident until the
CAO event late on 21 March. Thereafter, settling briefly interrupts the vigorous mixing during
diurnal warming for progressively larger intervals, consistent with the patterns seen in the
vertical diffusivities (Figure 9) and the surface heat fluxes (Figure 10). This pattern can be seen
in the surface sediment results as well (Figure 14). On 22 March, there is a slight diminishment
in the surface sediment concentration during daylight hours (to the right of the white dashed
line in Figure 14). On 23 March, there is a comparatively increased interval of diminished
surface sediment at 21:00 UTC compared to 16:00 UTC (16:00 and 11:00 local, CDT). Since we
initialize the bottom layer at a value of 100, the surface expression can be also considered a
percent of the erodible materials from near-bottom. The following day, 24 March, the diurnal
collapse of the surface sediment expression is even more pronounced (Figure 14), and the
diurnal interval enlarges over the following two days (25 and 26 March, Figure 14).

The pattern shown for the water column may be visualized over the larger shelf
region (Figure 15). Each day forward from 22 March, the diurnal interval of reduced
mixing and net surface ocean warming results in less potential for the surface expression
of near-bottom sediments. The model suggests a diurnal pattern where surface warming
leads to diminished mixing and diminished surface sediments as sinking becomes the
dominant term in the sediment model. The contrast becomes evident between 16:00 and
21:00 UTC time, and mimics the diurnal patterns shown earlier (Figures 4, 5 and 13). The
sediment model also reproduces the day-to-day diminished reflectance signal onward from
22 March. As the period of diurnal warming increases and intensifies, so surface sediment
expression is progressively diminished. Finally, on 25 March, the surface expression of
sediment appears to collapse in the afternoon simulation (Figure 16).
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Figure 14. Results from the sediment model showing the concentration of sediment (g m−3) in the
water column for the location 25.15◦ N and 82.20◦ W, as in Figures 8–10. White dashed lines indicate
the approximate local time for sunrise and the black dashed lines are for local sunset. High values in
the lower left-hand corner of the plot saturate to a maximum value of 23.3 g m−3.
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Figure 15. Results from the sediment model. Surface sediment concentrations (g m−3) (or percent of
bottom boundary initial condition) are mapped for the surface distribution (2 m) for (A) 23 March
16:00 UTC, (B) 23 March 21:00 UTC, (C) 24 March 16:00 UTC, and (D) 24 March 21:00 UTC. The white
triangle indicates the position for Figures 8–10 and 14.
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Figure 16. Results from the sediment model. Surface sediment concentrations (g m−3) (or percent
of bottom boundary initial condition) are mapped for the surface distribution (2 m) for (A) 25 March
16:00 UTC, and (B) 25 March 21:00 UTC. The white triangle indicates the position for Figures 8–10 and 14.

4. Discussion

During boreal late winter and early spring, the WFS undergoes a seasonal transition
from wintertime well-mixed shelf waters to summertime thermal stratification [36–38].
CAO events nonetheless persist into this transitional period [39,40], though the impact
of the wind stress and ensuing heat losses manifest differently in both the physical and
optical characteristics of the shelf. In the spring transitional period, heat losses appear not
to overturn the water column over as wide a shelf area as during earlier in the year and the
brightness anomaly seen in the ocean color images is more restricted to shallower depths.
A salient feature of the spring transition is the formation of a seasonal thermocline due
to reduced winds and increased surface heating [41,42], and in the Gulf of Mexico, the
seasonal thermocline forms at ~30 m depth [43]. Thus, CAO events during this transitional
period appear as a fluctuation (heat loss event) during conditions trending in the opposite
direction (a warming ocean) [44]. The spatial extent and duration of sustained heat losses
from the surface ocean appear to correspond to the model’s estimates of vertical eddy
diffusivities, and these, in turn, correspond to brightness patterns seen in ocean color
images. Thus, our hypothesis is that the ocean color pattern is likely indicative of where
vertical overturn has penetrated to the seafloor. Moreover, the dissipation of the brightness
signal may be indicative of where heat losses have diminished and vertical stability is
being reestablished.

A number of simplifying assumptions were made during the performance of this anal-
ysis. First and foremost, the focus herein has been on a singular aspect of a very complex
optical environment that manifests as radiant signals detected via satellite. Phytoplankton
population dynamics [45], chromophoric detrital materials [46], and river/estuarine efflu-
ent [47] are making material contributions to the total IOPs and the resulting water-leaving
radiance signals [48]. Moreover, in very shallow areas (<~10 m depth), the satellite may
indeed be detecting the ocean bottom [49], which may be covered in sea grasses [50] or
carbonate sands [51,52]. Nonetheless, our hypothesis is that the very high reflectivity
signals are due to the transient manifestation of marine sediments that are additive, or
superimposed, upon the background optical signals. A comparatively simple model of
sediment mixing and settling appears to capture the diurnal to weekly patterns seen in the
ocean color images.

The presumption of a vertical dominance for sediment dynamics, and the discussion
of it in an entirely one-dimensional context across the shelf, is overly simplistic, but de-
liberately so. Northerly winds during the CAO outbreak along the West Florida coastline
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are upwelling favorable [53–55] and will stimulate cross-shelf advection of near-bottom
materials towards the shoreline [56]. Moreover, an excited sea state will induce vertical
mixing through Langmuir circulation [56,57], as well as near-bottom wave orbital velocities
and stress radiation gradients in shallower areas of the shelf [58,59]. In this paper, these ad-
ditional processes were omitted from the numerical sediment simulations that nonetheless
were able to mimic diurnal patterns (Figure 14) apparent in ocean color images (Figure 4)
and products (Figure 5). This suggests that, to first order, the brightness anomaly in the
ocean color images is an approximate indicator of water column stability over the shelf.

The particle composition, variable size distributions, optical properties, and the dy-
namics of sediment mobilization from the seafloor are also aspects of this integrated
physical-optical-geochemical phenomenon that are beyond the scope of this paper. Here,
the correspondence between the simulated mixing and settling tendencies, the air–sea
flux changes, and the spatiotemporal patterns seen in satellite image sequences, provide a
mechanistic framework for understanding this process. Specifically, the color brightness
pattern and its subsequent dissipation in time closely aligns with changes in the surface
heat flux and the resulting impact on vertical water column stability. A more detailed
analysis will require in situ observations during a CAO event that include collocated optical
and physical observations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jmse11112118/s1, Animation S1: Jolliffgoescolor.gif.
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