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Abstract: Data-driven predictions of marine environmental variables are typically focused on single
variables. However, in real marine environments, there are correlations among different oceanic
variables. Additionally, sea—air interactions play a significant role in influencing the evolution of the
marine environment. Both internal dynamics and external drivers contribute to these changes. In
this study, a data-driven model is proposed using sea surface height anomaly (SSHA), sea surface
temperature (SST), and sea surface wind (SSW) in the Bohai Sea. This model combines multivariate
empirical orthogonal functions (MEOFs) with long and short-term memory (LSTM). MEOF analysis
is used on the multivariate dataset of SSHA and SST, considering the correlation among sea surface
variables. SSW is introduced as a predictor to enhance the predictability of the multivariate sea
surface model. In the case of the Bohai Sea, the comparative tests of the model without wind field
effect, the fully coupled model, and the proposed prediction model were carried out. MEOF analysis
is employed in comparative experiments for oceanic variables, atmospheric variables, and combined
atmospheric and oceanic variables. The results demonstrate that using wind field as a predictor can
improve the forecast accuracy of SSHA and SST in the Bohai Sea. The root mean square errors (RMSE)
for SSHA and SST in a 7-day forecast are 0.016 m and 0.3200 °C, respectively.

Keywords: data-driven model; sea surface multivariate prediction; Bohai sea; sea surface wind

1. Introduction

Changes in SSHA and SST may lead to some climate extremes [1,2]. Therefore, accu-
rate prediction of SSHA and SST is of great scientific significance [3]. Traditional oceanic
numerical models often rely on complex physical parameters and require significant com-
putational resources, which may limit the accuracy of predictions. However, with the
continuous enrichment of ocean data types and volumes, data-driven prediction has grad-
ually become a research hotspot [4-6]. Data-driven approaches are primarily based on
objective data itself, free from the constraints of physical equations, and they greatly reduce
the influence of parameter uncertainties. This allows for more accurate predictions and less
reliance on complex physical modeling.

Data-driven methods can effectively use historical data to extract valuable information
from them and make forecasts. There are two primary classifications of data-driven fore-
casting techniques: conventional statistical forecasting techniques and neural network pre-
diction methods. Common statistical forecasting techniques include empirical orthogonal
function (EOF) decomposition [7], multivariate empirical orthogonal functions (MEOF) de-
composition [8], linear regression (LR) techniques [9,10], conventional correlation analysis
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methods [11], and support vector machines (SVM) [12,13]. Neural network prediction meth-
ods encompass various types, including artificial neural networks (ANNSs) [14,15], gated
recurrent unit (GRU) neural network [16], memory in memory (MIM) neural network [17],
deep neural networks (DNNs) [18], LSTM network [19-21], and back propagation (BP)
neural networks [22]. Additionally, there is the transfer learning model [23].

Recent studies have utilized data-driven approaches to predict various oceanic vari-
ables. For example, Zhang et al. used a long-short memory (LSTM) network to predict the
SST in the Bohai Sea [24]; Wei et al. used a multilayer perceptron (MLP) model to predict
the SST in the South China Sea [25]; Xie et al. combined deep learning with the attention
mechanism to construct an adaptive model for SST prediction in the Bohai Sea region [26];
Xie et al. proposed a method to predict the SST in the Bohai Sea by combining the convo-
lutional gated recurrent unit (GRU) and the multilayer perceptron (CGMP) [27]; Zhang
et al. developed a model based on gated recurrent unit (GRU) neural networks to predict
SST over the medium- and long-term and used multiple time-scale datasets; researchers
conducted experiments in the Bohai Sea [28]; Gao et al. proposed a global spatio-temporal
graph attention network (GSTGAT) in combination with a graph neural network (GNN);
and multiple time-scale datasets in the Bohai Sea were used to conduct experiments [29].

However, most of the above studies construct prediction models for single variables
under single scale conditions and ignore the influence of external drivers. This may limit
the improving of forecasting accuracy. To enhance the consistency between data-driven
models and actual physical variation processes, it is important to consider the correlation
between different ocean variables. In this study, we adopt a similar data-driven forecasting
framework as previous studies [30-33]. However, it is worth noting that our previous
study is based on the South China Sea (SCS) region with a mean water depth of 1200 m. In
this region, the internal dynamical mechanisms dominate the oceanic evolution process,
and the influence of external drivers is relatively small. Hence, the combined forecasting
technique for oceanic variables proves to be efficient in the South China Sea. Regarding the
study area of this study, which is the Bohai Sea, it has an average depth of only 18 m. In
the oceanic evolution process of the Bohai Sea, meteorological driving factors and internal
dynamic mechanisms have comparable roles. Thus, it is necessary to introduce external
drivers into the coupled model and examine the results obtained through different coupling
methods. In addition, the interaction between the atmosphere and the ocean drives us to
think about how to introduce atmospheric information into the data-driven models.

A data-driven forecasting model for SSHA and SST in the Bohai Sea is constructed by
using MEOF analysis and an LSTM neural network. In particular, the sea surface wind field
is introduced into the model as a predictor to improve the forecast accuracy. This method
not only considers the dynamical coordination relationship between different variables in
the ocean but also takes into account the role of the atmosphere on the ocean, which can
improve the forecast accuracy of marine environmental variables.

The remaining portion of this document is structured in the following manner:
Section 2 provides an explanation of the data and methodologies employed in this re-
search. In Section 3, the model prediction experiments and results for SSHA and SST in the
Bohai Sea are presented. Finally, Section 4 gives the conclusions.

2. Data and Methodology
2.1. Study Area and Data Collection

In this study, the proposed model performance is assessed by analyzing long-term
satellite remote sensing data for SSHA, SST, and SSW (U and V component) within the
geographical coordinates of 116° to 124° E and 36° to 42° N, specifically in the Bohai Sea
of China. SSHA and SST are two important variables in the ocean environment that can
directly reflect the changes generated by the ocean. SSW is one of the ways for the exchange
of heat between the ocean and the atmosphere and acts as a medium for their interaction.
In the subsequent construction of the prediction model, SSW represents an external driver,
enabling the model to better simulate real evolution in the ocean environment.



J. Mar. Sci. Eng. 2023, 11, 2096

3of 14

The SSHA here are daily 1/4° data provided by Copernicus Marine and Environmental
Monitoring Service (CMEMS). The SST data used are the 1/4° daily best interpolated sea
surface temperature (OISST) from National Oceanic and Atmospheric Administration
(NOAA). The SSW (U and V component) is the Cross-Calibrated Multi-Platform (CCMP)
wind field, which is obtained from NASA Earth Science Enterprise (ESE). The data used in
this study span a time length of 28 years, from January 1993 to December 2020. The training
dataset includes data from 1993 to 2015, while the model validation adopts independent
experimental samples from 2016 to 2020, with a time span of 5 years.

2.2. Proposed Model

This study presents a forecasting model for predicting SSHA and SST in the Bohai
Sea, utilizing MEOF analysis and an LSTM neural network. Figure 1 provides a visual
representation of the model, highlighting its three primary components: the MEOF analysis
phase, the LSTM neural network prediction phase, and the data reconstruction phase.

(a) MEOF

Multiple original
variables

(b) LSTM (c) Reconstruction

> Dense3
—————— Dropout3

/ \ L 4 Dense2
| Training set | I Testing set | Denset

#——— Concatenate Ou tpug Prediction
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LSTM
PC1 —
PC2 I 89% Input
P total ——>
HE variance Prediction Value
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Figure 1. Framework of the prediction model.

In the stage of MEOF analysis, the preprocessed satellite data variables are separated
into a training set and a testing set. The orthogonal spatial patterns and principal com-
ponents (PCs) of the training set are obtained by MEOF decomposition. The orthogonal
spatial patterns are called EOFs. The PCs of the testing set can be obtained by projecting
onto the EOFs. Section 2.3 summarizes the MEOF analysis process.

In the prediction stage of the LSTM neural network, PCs with a certain variance ratio
are selected from the previous step and used as the input of the LSTM neural network. The
predictive value of PCs is obtained by using an LSTM neural network. Section 2.4 describes
the LSTM network used in this study.

During the data reconstruction stage, the reconstructed field is achieved by combining
the prediction values of the PCs with the EOFs.

2.3. MEOF Analysis

MEQF analysis is a valuable tool for examining the spatial and temporal distribution
characteristics of variables within the ocean and atmospheric domains. In this study, MEOF
analysis is adopted to decompose the multivariate sample matrix composed of SSHA and
SST. The U and V components of SSW (referred to as Uwind and Vwind) are also subjected
to the same decomposition. Additionally, the MEOF analysis is employed to decompose
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the multivariate sample matrix consisting of SSHA, SST, Uwind, and Vwind. The specific
expressions are as follows.

1 m M
Xy = XSiQHA o XGopga e XS?/IHA (1)
m
XSST e XSST e XSST
Myl m M )
X, = Xllwind Xllwind e X%{wind 2)
xI ce. m- .o XM
L“*Vwind Vwind Vwind
ryl m M 7
XslsHA o Xospga o XS7SV1HA
m
X3 = %SST e XSST e %ST 3)
m
Xlllwind Xllwind " X%%uind
m
—XVwind XVwind T XVwind—

where X¢g,; 4 is the SSHA sample on the mth day. SST, Uwind, and Vwind are expressed in
the same way. The spatial dimension of each variable is denoted by N. The time dimension
of each variable is represented by M. The spatial dimension of the four variables is uniform,
so the dimension of each sample matrix is N x M. In this study, N and M are 257 points
and 8395 days, respectively.

In this study, we are more concerned with the variation of the anomalies of variables,
which are constructed by subtracting the climatology.

X=X - X (4)

where X] denotes the anomaly sample matrix, and X; denotes the climatology mean.
The covariance matrix Conx2n of matrix X can be expressed as follows:

1
Consan = 37X1 % X7 ®)

It is important to mention that Conxon effectively takes into account the relationship
between various variables. Expression of eigenvalues and eigenvectors as:

Conxan X Vonson = Vansxon X Eanxon (6)

The arrangement of eigenvalues is in descending order. In Eyn 2N, each non-zero
eigenvalue corresponds to an eigenvector; Vonxon is also known as orthogonal spatial
patterns. The orthogonal spatial patterns are called EOFs. EOFs can be projected onto the
total sample matrix to obtain the principal components (PC), expressed as:

This study utilizes a limited quantity of orthogonal spatial patterns exhibiting significant
variance to reconstruct the primary attributes of the spatial composition for each component.
The data in PCyp « um represent the PC corresponding to each column of eigenvector.

We retained the top 15 EOFs, accounting for 89% of the total variance. Currently, the
primary challenge lies in enhancing the analysis and forecasting of these temporal sequences.

2.4. LSTM

In this study, we utilize LSTM networks, which are an improved type of recurrent
neural network (RNN). While traditional neural networks are unable to retain information
over time, RNNs with a recurrent structure can do so. However, they face the challenge
of vanishing gradients when the information is too distant from the current prediction
task. This results in the loss of previous information and the inability to handle long-term
dependencies. All recurrent neural networks have a chain-like structure consisting of
repeating neural network modules. Standard RNNs, such as single-layer RNNs, have a
simple repeating module structure, typically a single tanh layer. However, LSTM networks
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have a special chaining structure that enables information to be looped. By storing both
relevant and long-term information, LSTM networks can effectively address the problem
of long-term dependencies and predict longer time series [34].

LSTM networks have the ability to store both short and long-term learning information
and can selectively add or delete information. This is achieved through the use of gates that
carefully regulate the flow of information. Each gate contains a sigmoid neural network
layer, which determines the discarding of useless information, and a point multiplication
operation. An LSTM network utilizes three gates to safeguard and regulate the cell state, as
depicted in Figure 2.

() X (d)

Figure 2. (a) Forget Gate; (b) Input Gate; (c) Cell state; (d) Output Gate.

The formula of the forget gate is expressed as Formula (8), the formula of the input
gate is expressed as Formulas (9) and (10), the formula of the cell state is expressed as
Formula (11), and the formula of the output gate is expressed as Formulas (12) and (13).

fr =0(Wg - [h4-1,x:] + by) 8)
iv = o(W; - [hy—1, %] + by) ©)
Ct = tanh(We - [l;_1, x¢] + bc) (10)
Cr = fr*Cr1 +irxCy (11)

0r = 0(Wp - [ly—1, x¢] + by) (12)
hi = o % tanh(Cy) (13)

In these formulas, the forget gate f; combines the previous hidden layer state value
hi_1 with the current input x;. Decide to discard the original information through sigmoid
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function . Input gates i; and tanh determine which information to save in k;_1 and x;, and
obtain the cell state candidate value ét. Cell state C; indicates the state of discarding and
storing information. Finally, the output gate combines tanh to determine which information
in hy_q, x¢, and C; is output as the hidden layer state value h; at this time. W and b are
weights and deviations.

In this research, the LSTM model consists of multiple layers, comprising a convolu-
tional layer, a pooling layer, a bidirectional LSTM layer, a concatenate layer, three dropout
layers, and three dense layers. This research introduces a one-dimensional convolutional
layer that enhances the extraction of input data features. The convolutional layer solely
performs temporal convolution, as the Principal Components (PCs) acquired during the
MEOF phase inherently encapsulate spatial information. The duration for input is 40 days,
while the duration for output is 7 days. It is worth noting that in this study, each day’s
forecast is individually modeled, which results in fewer model parameters and makes it
easier to train. Throughout the experiments, we meticulously chose the model hyperparam-
eters. After conducting a comprehensive analysis and assessment, we have established the
following parameters: the learning rate is assigned as 0.001, the number of training epochs
is defined as 300, the batch size is designated as 128, and the dropout rate is configured
to be 0.2. To optimize the model globally, we employed Adam’s algorithm, which is a
popular optimization algorithm used in deep learning. For the LSTM, the software used is
Python 3.10.6.

2.5. Performance Metrics

To evaluate and compare the performance of the models, the metrics of mean square
error (MSE), root mean square error (RMSE), anomaly correlation coefficient (ACC) and
skillscore (SS) are used in this study. The RMSE is calculated using the following formula:

Y
MSE = 3{1_21 (True; — Pred;)* (14)
RMSE = vMSE (15)

The calculation formula for ACC is as follows:

Y _
Y. (ATrue;; — ATrue;) (APredij — APredj>
=)

Y Y
, <ATrue]- = lZ:ATrue,-/-,APredj = 1EAPred,-j> (16)
Y [— ——\2 Y Y
Y. (ATrue;j — ATrue;)” ¥ (APredij - APredj)
=1 i=1
The calculation formula for SS is as follows:
MSE(Pred, True)
§S=1- 17
MSE(Reference, True) A7)

In these formulas, Y is the number of samples, NN is the number of spatial grid points,
Pred; is the predicted value of the ith sample, True; is the true value of the ith sample, APred
is the predicted abnormal value relative to the climate state, ATrue is the true anomaly
value relative to the climate state, and Reference represents the comparison field.

3. Results
3.1. Model Selection

In order to enhance the precision of predicting SSHA and SST, we employ the conven-
tional MEOF-ANN [29-32] approach. The features of element values are obtained through
MEQF decomposition, and a portion of the features are used as inputs for prediction using
ANN. We use atmospheric variables as predictors. This approach takes into account the
impact of external forcing fields on oceanic processes. Some experiments are designed for
comparison: (a) Considering only the interactions between ocean variables. This model is
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called the MEOF-LSTM-Sea model. (b) Complete coupling between ocean and atmosphere.
This model is called the MEOF-LSTM-Sea-Air model. (c) Atmosphere and ocean are cou-
pled separately. This model is called the MEOF-LSTM-D model. Figure 3 displays the flow
chart for these models.

Prediction

SSHA Reconstruct [ Prediction Value
(a) SST —Dl MEOF Sea I—bl PCs Sea |—>I LSTM I—D \gac!ls.lesg: of SSHA and SST

SSHA s
Prediction soae
SST = = Reconstruct | prediction Value
(b) Uwind —>| MEOF _Sea_Air |—>| PCs_Sea_Air l—b[ LSTM |—> Value of of SSHA and SST
Vwind PCs_Sea Air

SSHA
et [ MEOF Sea |—»] PCs Sea

—— Prediction

rediction | peconstruct| value of

@ Value of SSHA and
. reeenaenas : PCs Sea

Vwind : = :

Figure 3. Flowchart depicting the algorithm for three different experimental approaches. (a) MEOF-
LSTM-Sea model, (b) MEOF-LSTM-Sea-Air model, and (¢) MEOF-LSTM-D model.

The MEOF-LSTM-Sea approach solely concentrates on marine components by utiliz-
ing MEOF to break down the combined factors of SSHA and SST. This process yields the
principal components of marine elements (PC_Sea) for LSTM forecasting, ultimately using
reconstruction to obtain the predicted value. The MEOF-LSTM-Sea model is driven by its
internal dynamic mechanisms and considers the interrelation among marine components.
In the MEOF-LSTM-Sea-Air model, SSW is introduced. Using MEOF to decompose the
joint factors of the ocean and atmosphere, the principal components of the joint factors
of the ocean and atmosphere (PC_Sea_Air) are obtained for LSTM prediction, and finally,
reconstruction is used to obtain the predicted value. This method is strongly coupled,
considering both the internal dynamic mechanisms of the ocean itself and the influence of
external driving forces. Similarly, in the MEOF-LSTM-D model, the SSW is also introduced.
MEOF is used to decompose ocean and atmospheric elements separately, obtaining the
principal components of ocean elements (PC_Sea) and the principal components of atmo-
spheric elements (PC_Air). PC_Air is used as a predictor and LSTM is used for prediction,
ultimately reconstructing the predicted values. The MEOF-LSTM-D model, in contrast to
the MEOF-LSTM-Sea-Air model, is a model with weak coupling that introduces external
driving forces using different methods. Through these experimental scenarios, our aim is
to evaluate the impact of different coupling methods and external driving factors on the
predictive accuracy of sea surface height anomaly (SSHA) and sea surface temperature
(SST). This comprehensive analysis allows us to assess the feasibility and effectiveness of
each method in capturing the complex dynamics of the ocean-atmosphere system.

Here, we adopted a rolling forecast scheme for multi-day forecasting; therefore, the
forecast accuracy on the first day is crucial for model evaluation. Based on this consider-
ation, the accuracy of the three models mentioned above is measured using the forecast
values of the first day. It is worth mentioning that we pay more attention to the anomalies
of variables. The anomalies of variables are obtained through variable removal climatology,
which is introduced in Section 2.3. In this study, the statistical results are based on the
anomalies of variables.

Figure 4 illustrates the spatial forecast RMSE of SSHA and SST for three models. It
is evident that the MEOF-LSTM-D model exhibits superior forecasting performance in
comparison to both the MEOF-LSTM-Sea model and the MEOF-LSTM-Sea-Air model. The
RMSE of the MEOF-LSTM-D model is significantly lower than that of the other two models,
especially as shown in the black box area in Figure 4c. This is because the coastal waters are
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42°N

shallower and more susceptible to external driving forces, which makes the MEOF-LSTM-D
model a more suitable choice for predicting coastal waters. Additionally, the MEOF-LSTM-
D model outperforms the other two models when it comes to predicting SSHA and SST in
nearshore waters. The MEOF-LSTM-D model has a significant improvement, particularly
for the coastal region. The RMSE of these three models were 0.0150 m, 0.0154 m, and
0.0111 m for SSHA, and 0.3226 °C, 0.2753 °C, and 0.2244 °C for SST, respectively.

SSHA RMSE

40°N

38°N

v

42°N

40°N

-

v 38°N

36°N
116°E

118°E  120°E
(a)

: 36°N 36°N
122°E 124°E 116°E 118°E 120°E 122°E 124°E 116°E 118°E 120°E 122°E 124°E
(c)

SST RMSE

40°N

38°N

42°N 42°N
»

40°N g

36°N / 36°N

36°N
116°E

118°E 120°E

(d)

6° i o)
122°E 124°E 116°E 118°E 120°E 122°E 124°E 116°E 118°E 120°E 122°E 124°E

(e) (f)

Figure 4. The spatial forecast RMSE of SSHA (top panels) and SST (bottom panels) for three models
with a forecast time horizon of 1 day. (a,d) MEOF-LSTM-Sea model, (b,e) MEOF-LSTM-Sea-Air
model, and (c,f) MEOF-LSTM-D model.

It should be emphasized that the MEOF-LSTM-Sea-Air model exhibits significantly
inferior predictive performance compared to the MEOF-LSTM-D model. This is because the
atmospheric and oceanic variables have different temporal scales of variation and different
response times to each other’s interactions.

The Bohai Sea is shallow in water, and the contributions of external atmospheric
driving and internal dynamic mechanisms of seawater to the evolution of marine elements
in the Bohai Sea are generally equivalent. Therefore, it is necessary to consider the contribu-
tion of external atmospheric driving. Nevertheless, the interaction between the atmosphere
and the ocean does not occur immediately but rather experiences a delay. The mentioned
MEOF-LSTM-Sea-Air model is a strongly coupled method, while the MEOF-LSTM-D
model is a weakly coupled method. The strong coupling method forcibly decomposes the
joint elements of the atmosphere and ocean to obtain a joint EOF. This approach assumes
that the exchange between the atmosphere and the ocean occurs instantly and without ra-
tionality. The method of weak coupling breaks down atmospheric and oceanic components
individually, in accordance with the hysteresis of the interaction between the atmosphere
and the sea. Therefore, the weak coupling method is more suitable for the Bohai Sea.
Additionally, if a strong coupling method is used, more factors need to be considered, such
as the physical relationship between oceanic and atmospheric variables, and more variables
may be involved. This is an issue worth considering.
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3.2. Evaluation of MEOF-LSTM-D Model
3.2.1. RMSE and ACC Evaluation

To assess the effectiveness of the MEOF-LSTM-D model, we employed the persistence
prediction (PER) model and climatology to forecast the SSHA and SST in the Bohai Sea
spanning 2016 to 2020. The persistence forecast is a widely recognized standard for com-
paring and predicting atmospheric and oceanographic phenomena. It assumes that the
initial state of the ocean will remain unchanged during the prediction period. Similarly,
the climatology forecasts are used for comparison, with the forecast based on the average
historical data spanning from 2016 to 2020. Figure 5 displays the root mean square errors
(RMSE) of SSHA and SST predictions for forecast windows of 1, 3, 5, and 7 days. The
findings indicate that the MEOF-LSTM-D model outperforms the PER model for predicting
a 7-day period. As the forecast time horizon was increased from 1 to 7 days, the SSHA
RMSE of the MEOF-LSTM-D model increased from 0.011 m to 0.016 m, and the SST RMSE
predictions increased from 0.2244 °C to 0.3200 °C. Additionally, the error in the PER model
increases at a faster rate than that of the MEOF-LSTM-D model throughout the entire fore-
cast period, and the MEOF-LSTM-D model exhibits a gradual and slow increase in error,
whereas the PER model rapidly loses its relevance. The diagram illustrates that the spatial
arrangement of RMSE for SSHA and SST forecast by the MEOF-LSTM-D model remained
stable throughout the entire prediction period, resulting in outstanding forecast outcomes
for both deep and shallow water situations within the examined region. However, the PER
model exhibits a noteworthy rise in RMSE in shallow water regions, particularly in the
Bohai Bay area, providing additional evidence of the MEOF-LSTM-D model superiority
in forecasting shallow water conditions. The MEOF-LSTM-D model exhibits a significant
improvement over the PER model, highlighting its exceptional predictive capability.

MEOF —-LSTM-D (SSHA)

3th day 42N 5th day

(a)

36°N __ H 36°NL 1)
116°E 118°E 120°E 122°E 124°E  116°E 118°E 120°E 122°E 124°E

PER (SSHA)

42°N

36°N 36°N 36°N 36°N
116°E 118°E 120°E 122°E 124°E  116°E 118°E 120°E 122°E 124°E  116°E 118°E 120°E 122°E 124°E

MEOF —-LSTM-D (SST)
(b)

1.2

11
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36°N 36°N 36°N
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0.7
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O U
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Figure 5. Spatial map of RMSE. (a) and (b) for SSHA (m) and SST (°C), respectively.
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Temporal RMSE for the MEOF-LSTM-D model, PER model, and climatology is dis-
played in Figure 6. Additionally, Figure 6 also presents the temporal ACC for the MEOF-
LSTM-D model and PER model. These values are computed using the forecasts made for
every 7 days in the 5-year testing set.
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Figure 6. RMSE of MEOF-LSTM-D model, PER model and climatology; ACCs of MEOF-LSTM-D
model and PER model; Calculated based on forecasts made every 7-day interval during the period
from 2016 to 2020. (a,c) represent SSHA (m), while (b,d) represent SST (°C).

The RMSE of SSHA and SST are shown in Figure 6a,b, while their ACCs are displayed
in Figure 6¢,d. Figure 6 clearly demonstrates that both the MEOF-LSTM-D model and the
PER model outperform the climatology results in RMSE across the entire forecast period.
This is primarily because the climatology results, being multi-year averages, fail to capture
the dynamic changes in oceanic multiscale processes over the short and medium term.
Additionally, the MEOF-LSTM-D model significantly enhances the performance of the PER
model across the entire prediction period. At the conclusion of the prediction period, the
MEOF-LSTM-D model demonstrates an RMSE of approximately 0.016 m and 0.32 °C for
SSHA and SST forecasting, correspondingly. The ACC stands at roughly 0.95 and 0.97,
respectively. Additionally, the MEOF-LSTM-D model exhibits increases slowly and steadily
in prediction error over the 7-day forecast period, highlighting its predictive advantage.
Nevertheless, the PER error grows at a faster rate compared to the MEOF-LSTM-D model.

Figure 7 displays the results of the Skill Score (SS) experiments for both models. If SS
is greater than 0, it indicates that the prediction result surpasses the PER. A value of 1 for
SS signifies a perfect prediction. On the other hand, if SS is less than 0, it implies that the
prediction result is inferior to the PER. By referring to Figure 7, it becomes evident that the
MEOQOF-LSTM-D model exhibits SS values above 0 for both SSHA and SST during the entire
prediction period. This outcome suggests that the MEOF-LSTM-D model outperforms the
PER model in terms of prediction accuracy.
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Figure 7. The MEOF-LSTM-D model forecasting skill score (in comparison to PER forecasts).

3.2.2. Case Study

Ultimately, the MEOF-LSTM-D prediction model predictive performance is demon-
strated through the provision of examples. In the study area, Figure 8 displays a snapshot
of MEOF-LSTM-D predictions and the corresponding truth fields for anomalous SSHA and
anomalous SST. In the time series of the original dataset for testing, they represent 4 June, 6
June, 8 June, and 10 June 2019, respectively.
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Figure 8. Snapshots of anomalous SSHA (m) and anomalous SST (°C) forecasts for the 1st day,

3rd day, 5th day, and 7th day, respectively, corresponding to 4 June, 6 June, 8 June, and 10 June 2019.

(a) represents anomalous SSHA, and (b) represents anomalous SST.
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In Figure 8a,b, the observed and predicted results for SSHA and SST are presented. The
MEOF-LSTM-D model integrates external and internal drivers. As evident from the figure,
the MEOF-LSTM-D model has produced accurate predictions for the SSHA and SST in
the Bohai Sea region, and there exists a significant correlation between the true values and
the predicted values of the model. However, in regions of the study area with high (low)
variable values, an unavoidable error exists between the prediction of the MEOF-LSTM-D
model and the true value. For the construction of the prediction field, we choose the PC
whose variance accounts for 89%, but this inevitably leads to the loss of some information.
It is noteworthy that the MEOF-LSTM-D model exhibits a good level of prediction accuracy
in regional evolution. In comparison to the current situation, the MEOF-LSTM-D model
excellently portrays the evolving patterns of SSHA and SST.

4. Discussion

In this study, we consider the coordination between different variables in the real
marine environment and the forcing from the atmosphere to the ocean. Using remote
sensing data for the Bohai Sea region from January 1993 to December 2020, we focus
on the interactions between oceanic variables and the feasibility of using atmospheric
variables as predictors. In order to adequately assess the model performance, we utilize the
initial 23 years of data for training the model, while the remaining 5 years of data serve as
independent experimental samples for forecasting SSHA and SST for seven days.

The average water depth in the Bohai Sea is shallow, and the influence of external
driving factors can not be ignored. To improve the prediction accuracy of oceanic variables,
we considered introducing atmospheric variables into the model. Additionally, we designed
three comparative experiments, one modeled without the influence of wind field and the
other two modeled with the introduction of an external wind field, to simulate the strong
and weak coupling of atmospheric and oceanic variables. Through these experiments,
we identified a weak coupling approach that considers the interactions between oceanic
variables and utilizes atmospheric variables as predictors.

Therefore, the MEOF-LSTM-D model utilizes MEOF analysis to examine the multivari-
ate predictions for the sea surface, which includes SSHA and SST. The U and V components
of SSW are employed as predictors to establish the prediction model for SSHA and SST.
The MEOF-LSTM-D model achieves an RMSE of 0.011 m and 0.32 °C for SSHA and SST
in the Bohai region, respectively, at the conclusion of the prediction period. The RMSE
prediction for SSHA and SST is improved in the MEOF-LSTM-D model compared to the
PER model and climatology results. Additionally, the model yields accuracy scores of
approximately 0.95 for SSHA and 0.97 for SST, surpassing the performance of both the PER
model and climatology results significantly. Throughout the prediction window, both the
MEOQOF-LSTM-D model and PER model exhibit SS values that are above 0. The effectiveness
of sea surface wind as a predictor for predicting SSHA and SST in the Bohai Sea was
demonstrated by the MEOF-LSTM-D model consistently outperforming the PER model for
SSHA and SST in the case study of the Bohai Sea.

In this study, our contribution lies in enhancing the accuracy of oceanic environmental
variable prediction by incorporating the correlation between different variables within the
real oceanic environment and accounting for atmospheric forcing on the ocean. This novel
approach provides valuable insights and opens up new avenues for future research in the
field of oceanic variable prediction.
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