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Abstract: Ship detection in large-scene offshore synthetic aperture radar (SAR) images is crucial in
civil and military fields, such as maritime management and wartime reconnaissance. However, the
problems of low detection rates, high false alarm rates, and high missed detection rates of offshore
ship targets in large-scene SAR images are due to the occlusion of objects or mutual occlusion among
targets, especially for small ship targets. To solve this problem, this study proposes a target detection
model (TAC_CSAC_Net) that incorporates a multi-attention mechanism for detecting marine vessels
in large-scene SAR images. Experiments were conducted on two public datasets, the SAR-Ship-
Dataset and high-resolution SAR image dataset (HRSID), with multiple scenes and multiple sizes,
and the results showed that the proposed TAC_CSAC_Net model achieves good performance for both
small and occluded target detection. Experiments were conducted on a real large-scene dataset, LS-
SSDD, to obtain the detection results of subgraphs of the same scene. Quantitative comparisons were
made with classical and recently developed deep learning models, and the experiments demonstrated
that the proposed model outperformed other models for large-scene SAR image target detection.

Keywords: large-scene SAR image; occlusion targets detection; small target detection; multi-attention
mechanism

1. Introduction

As an important target for maritime monitoring, maritime management, and wartime
tracking, the accuracy requirements for ship detection at sea are increasing [1]. Synthetic
aperture radar (SAR), which is not affected by weather, has a large imaging area and
a constant resolution when it is far away from the observed target, and has become an
important means of detecting ship targets at sea [2].

Most traditional ship detection methods are based on manually extracted features [3].
With the popularization and development of deep learning theory, deep learning models
have been widely used in ship detection based on SAR images [4]. Compared with the
general optical image target detection task, SAR images are usually acquired in bad weather
and complex marine environments, and there is a large amount of background interference
in the images. Additionally, in the application of SAR image target detection, the ship target
will exist near islands, offshore ports, and buildings. Owing to the complex environment,
there are varying degrees of occlusion, the occluded ship image shows irregular shapes,
and the detection accuracy is significantly reduced. To address the practical problems in
the application of SAR image ship detection, numerous scholars have conducted relevant
research. Wenxu et al. (2020) proposed a multi-scale feature fusion single-shot ship target
detection model that used deconvolution and pooling layers to enhance the accuracy of
feature extraction [5]. Using YOLOv5, Li et al. (2021) added feature refinements and multi-
feature fusion to reduce false-alarm rates [6]. Wenping et al. (2022) applied pixel-level
denoising and semantic enhancement to reduce missed and false detections [7], and Liu
et al. (2021) added a coordinate attention mechanism (AM) to YOLOv5 to handle high
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aspect ratios and dense arrangements and optimize its loss function [8]. Occlusions at sea
are problematic for deep learning object detection for these two reasons: multiple targets
may occlude one another, or they may be occluded by geographical features and other
interfering signals. Researchers have proposed several solutions. Tian et al. provided a
pool of convolutional neural network (CNN) components that act as subdetection networks.
The final integrated results were then characterized [9]. Ouyang et al. used pattern mining
to extract the local features of a target to further train the local feature detector. These
iteratively trained detectors can be embedded in a CNN to overcome occlusions [10].

Despite the progress in target detection research for the occlusion problem, a series of
problems, such as the unsatisfactory optimization effect and high time complexity of the
algorithm, remain. Ship detection in SAR images with a large number of small occluded
targets has a high false detection rate when the target is occluded by a building onshore
or port, or when there is mutual overlap between ships. If the scale of the occluded ship
is small (less than 100 × 100 pixels), it will likely not be detected accurately. To solve the
problem of small-scale ship detection in multi-scene SAR images, Jiao et al. introduced
a densely connected network for multi-scale feature fusion and reduced the weight of
non-small target samples in the loss function using focus loss [11]. Sun et al. added the
atrous convolutional pyramid module and the multi-scale attention mechanism module
for multi-scale marine ships’ description and segmentation, and the proposed category-
position module optimized position regression [12]. Yang et al. enhanced the RetinaNet
architecture for forecasting rotatable bounding boxes. They employed diverse techniques
to tackle challenges such as feature scale inconsistency, incongruity among distinct learning
tasks, and an imbalanced distribution of positive samples within SAR ship detection [13].

However, in practical engineering applications, ship detection in large-scene SAR
images is closer to the actual application of global ship surveillance, and the fast detection
of multi-scale, occluded ship targets derived from large-scene SAR images remains a
challenge. The aforementioned studies were only performed on small-scene datasets with
small SAR image slices, such as BBox-SSDD, SSDD, and the high-resolution SAR image
dataset (HRSID), which means that the detection models trained on these small-scene
datasets are difficult to directly apply to large-scene marine surveillance images with
wide mapping areas in real engineering applications, which affects model practicability.
Additionally, in large-scene marine surveillance SAR images with wide mapping areas,
ship sizes tend to be smaller; however, with the variety of ship sizes in other existing
datasets, they do not correspond to small-size scenarios in real-world scenarios, which can
lead to accuracy degradation of the detection model when migrating to generalization in
large scenes. Therefore, this study primarily focuses on the relatively difficult-to-detect,
occluded, and small-sized targets in large scenes and proposes a target detection model
that fuses multiple attention mechanisms. First, we establish the backbone network of
multi-feature fusion and the self-attention mechanism module, the transform attention
component (TAC), in the backbone network to deal with global information to obtain better
perceptual ability and target object feature abstraction ability. For the feature mapping
subgraph, a multi-scale feature complex fusion structure is used to integrate shallow
localization features with deeper semantic features, and the channel and spatial attention
component (CSAC) is added to integrate the feature space and channel information in two
dimensions. A GIoU-based loss function is also used. Finally, the model is tested on the
large-scale SAR image dataset LS-SSDD, high-resolution SAR image dataset (HRSID), and
multi-scale SAR-Ship-Dataset. The experimental results demonstrate that the improved
model can automatically recognize and detect small targets in SAR images under various
scenarios with high accuracy.

2. Related Work

With the increasing amount of available data and the rapid development of comput-
ing power, deep learning is playing an increasingly important role in SAR image target
detection. Scholars have continuously improved and optimized the algorithm and model
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structure based on CNNs to enhance the detection effect. In order to solve the problems
of multiple scales, small targets, occluded targets, and complex scenes in images, dif-
ferent attention mechanisms and methods are brought into the model. For illustration,
Dense Attention Pyramid Networks (DAPN) [14], the Attention Receptive Pyramid Net-
work (ARPN) [15], the Convolutional Block Attention Module R-CNN (CBAM Faster
R-CNN) [16], and the Quad Feature Pyramid Network (Quad-FPN) [17] adopt the attention
mechanism to enhance the local features, and Double-Head R-CNN [18] is used to focus on
the classification and localization tasks by utilizing the fully connected head and convolu-
tional head, respectively. Compare these to our model, which introduces both self-attention
and global attention mechanisms. Table 1 shows the descriptions of the state of the art.

Table 1. Descriptions of existing models and our method.

Models Characteristics

DAPN

DAPN utilizes a pyramid structure in which the Convolutional Block Attention Module
(CBAM) is densely connected to each concatenated feature map, creating a network that extends
from top to bottom. This design aids in the filtration of negative objects and the suppression of
interference from the surrounding environment in the top-down pathway of lateral connections.

ARPN

ARPN is a two-stage detector designed to improve the performance of detecting multi-scale
ships in SAR images. It represents the Receptive Fields Block (RFB) and utilizes it to capture
characteristics of multi-scale ships with different directions. RFB enhances local features with
their global dependences.

Double-Head R-CNN

R-CNN based detectors often use Double-Head R-CNN (fully connected head and
convolutional head) for classification and localization tasks. A Double-Head method is
proposed where one fully connected head is responsible for classification, while one
convolutional head is used for bounding box regression.

CBAM Faster R-CNN CBAM Faster R-CNN utilizes channel and spatial attention mechanisms to enhance the
significant features of ships and suppress interference from surroundings.

Quad-FPN

Quad-FPN is a two-stage detector designed to improve the performance of detecting ships in
SAR images. It consists of four unique Feature Pyramid Networks (FPNs). These FPNs are
well-designed improvements that guarantee Quad-FPN’s excellent detection performance
without any unnecessary features. They enable Quad-FPN’s excellent ship scale adaptability
and detection scene adaptability.

Our model
Unlike the previous model, we establish a backbone network of multi-feature fusion and a
self-attention mechanism module. We also introduce the transform attention component and
the channel and spatial attention component. Additionally, we use a GIoU-based loss function.

3. A Target Detection Model Incorporating Multiple Attention Mechanisms
3.1. Multi-Feature Fusion-Based Backbone Network

The fundamental idea of a multi-feature fusion backbone network is to fuse the features
extracted in the deep network at different scales to form a feature pyramid that makes the
models more receptive to multimodal target attributes. First, a backbone ResNet network is
used to obtain a feature map via bottom-to-top convolutions (C1, C2, C3, C4, C5). A feature
pyramid layer then upsamples the results in a top-down manner and laterally connects
them using a 1 × 1 convolution kernel (256 channels) to form a new feature map (M2, M3,
M4, M5), where

M5 = C5.Conv (256, (1, 1))
M4 = Upsampling (M5) + C4.Conv (256, (1, 1))
M3 = Upsampling (M4) + C3.Conv (256, (1, 1))
M2 = Upsampling (M3) + C2.Conv (256, (1, 1))

Finally, to eliminate several confounding effects, a 3 × 3 convolution is used to obtain
the feature maps from M2–M5, and a new feature map (P2, P3, P4, P5); the structure of the
multi-feature fusion backbone network is illustrated in Figure 1.
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Figure 1. Multi-feature fusion-based backbone network.

3.2. Transform Attention Component (TAC)

The self-attentive component transformer is a stacked model architecture of multiple
encoders and decoders that computes global correspondences between outputs and inputs
using a unique multi-head attention mechanism. The extracted feature map and position
encoding are used as inputs. The feature map is expanded into a one-dimensional sequence
of H × W (height × width) features to be passed to the encoder, and the target-level
information is extracted by the mechanism of mutual attention. This not only improves
attention to the target region but also reduces background interference by focusing on the
overall input information [19].

The working principle of TAC is to reconstruct image features and key matrices by
multiplying the input feature sequence with different weighting matrices. Q is the query
matrix, that is, the feature matrix of the image; K is the key matrix; and V is the value matrix.

Q = Feature ·Wq,
K = Feature ·Wk,
V = Feature ·Wv,

(1)

where Wq, Wk, and Wv are the learnable weights of different matrices. The feature matrix
Q and key matrix K are multiplied using the softmax method to obtain the attention matrix.
To further realize numerical aggregation weighted by the attention weights, the attention
matrix was multiplied by V to obtain the correlation between the targets in the SAR image.
Finally, it can be represented in the TAC by multiple heads of attention.

TAC(Q, K, V) =
M

∑
m=1

[(
Sso f t max

(
Q ·KT
√

dk

))
· V
]

. (2)

where M represents the number of attention heads and dk is the dimension of K. In the
feature extraction phase of the backbone network, the input image is segmented into
multiple subfeature maps. Some subfeature maps are selected for processing by the TAC
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module, which utilizes a self-attention mechanism to model the associations and extract
features from different regions in the feature maps. The TAC module can capture global
contextual information and learn the dependencies between different locations in the
feature maps, which can convert the input feature maps into more expressive subfeature
maps. As shown in Figure 2.
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3.3. Channel and Spatial Attention Component (CSAC)

Transformer-based attentional mechanisms with deep semantic features have a larger
sensory field; however, a larger downsampling factor results in a loss of positional informa-
tion. In addition to the transformer-based self-attention mechanism used to form a feature
map that focuses on interrelationships, attentional mechanisms include channel attention,
pixel attention, multilevel attention, and other methods of focusing on key features [8,20].

Channel attention is used to bring the attention of the CNN to the channel dimensions.
Hence, the input feature layer F (H ×W × C) provides the average pooling (Avg-Pool) and
maximum pooling (Max-Pool) operations, after which it is compressed into a vector (H ×
W × 1). Subsequently, using two fully connected (TFC) layers, the vector is mapped to the
weight and bias vectors. Finally, the corresponding weight of each channel is calculated
using the activation function, and a new feature map, Fc, is generated, which accounts for
the importance of different feature channels.

Favg = 1
H×W

H
∑

i=1

W
∑

j=1
Avg− Pool(F),

Fmax = 1
H×W

H
∑

i=1

W
∑

j=1
Max− Pool(F),

Fc = sigmoid(TFC
(
Favg)+TFC(Fmax))

(3)
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Based on the calculation results from the channel attention, the spatial attention
performs average and maximum pooling operations on Fc. The compressed feature layer is
then focused on the most useful data of the spatial region, and this vector is converted into
a weight matrix using TFC. A new feature map, Fs, indicates the importance of different
spatial positions. Figure 3 depicts the computation process of each attention map.

Fc_avg = 1
H×W

H
∑

i=1

W
∑

j=1
Avg− Pool(Fc),

Fc_max = 1
H×W

H
∑

i=1

W
∑

j=1
Max− Pool(Fc),

Fs = sigmoid(TFC
(
Fc_avg)+TFC(Fc_max))

(4)
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The CSAC module integrates feature space and feature channel information in two
dimensions by introducing spatial and channel attention, as shown in Figure 4. In the target
detection model, the feature mapping layers at various scales employ the channel attention
mechanism to determine the feature dependencies between different channel maps and
calculate the weighted values for all channel maps. The spatial attention mechanism was
used to weigh each spatial location in the feature mapping layer to strengthen the model’s
ability to perceive and utilize spatial location features.
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3.4. TAC_CSAC_Net

The backbone network of feature fusion is established in the TAC_CSAC_Net model,
which adopts a multi-attention mechanism to maximize the mining of target features
and their associations with each other in a large-scene image, whereas the GIoU loss
function is used to optimize the traditional target detection loss function. Its multi-attention
mechanism is primarily reflected in the use of TAC to process the global information and
obtain the correlation between different pixel points and in the use of CSAC to integrate
the feature space and feature channel information in two dimensions. The structure of
TAC_CSAC_Net is shown in Figure 5.
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TAC_CSAC_Net is designed with transformer self-attention component (TAC) and channel and
spatial attention component (CSAC) at the bottom of the encoder–decoder architecture to perform
integration of local features.

The overall loss of the model included Lclass and Lbox bounding-box losses. The cross-
entropy loss feeds the classification loss, and the bounding box loss includes the L1 loss
between the true value, bi, predicted b̂σ(i), and LGIoU losses.

Lclass = −
1
N

N

∑
i=1

(
pi log p̂σ̂i + (1− pi) log

(
1− p̂σ̂i

))
(5)

Lbox

(
yi, ŷσ(i)

)
=

N

∑
1

[
λ1

∥∥∥ bi − b̂σ(i)

∥∥∥ + λGIoU LGIoU

(
bi, b̂σ(i)

)]
(6)

The IoU reflects the intersection and concatenation ratio between the prediction frame
and the real frame; the larger the IoU, the greater the coincidence of the predicted and
real boxes. Hence, IoU can be used as an optimization function [21]. The GIoU describes
the minimum bounding box required for optimization when the gradient is zero (i.e., the
predicted and real boxes do not overlap). Assuming that the coordinates of the true box are
gt and the coordinates of the predicted box are pb, the IoU is obtained by Algorithm 1.
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Algorithm 1 Calculating the IoU and GIoU loss functions

Input: Coordinates of the prediction frame pb, and the real frame coordinates gt:

pb = (xp
min, xp

max, yp
min, yp

max),
gt = (xg

min, xg
max, yg

min, yg
max)

Output: IoU, LGIoU
1:

Ap = (xp
max − xp

min)× (yp
max − yp

min),
Ag = (xg

max − xg
min)× (yg

max − yg
min)

2: Ipg is the intersection of the prediction frame and the true frame, Upg is a union:

Ipg =

{ (
xI

2 − xI
1
)
×
(
yI

2 − yI
1
)

if xI
2 > xI

1, yI
2 > yI

1
0 otherwise

,

Upg = Ap + Ag − Ipg

Where,

xI
1 = max(xp

min, xg
min), xI

2 = min(xp
min, xg

min),
yI

1 = max(yp
min, yg

min), yI
2 = min(yp

min, yg
min)

3:

xc
min = min

(
xp

min, xg
min

)
, xc

max = max
(

xp
max, xg

max

)
,

yc
min = min

(
yp

min, yg
min

)
, yc

max = max
(

yp
max, yg

max

)
4:

Ac = (xmaxc − xminc )× (ymaxc − yminc )

5:
IoU =

Ipg
Upg

,

GIoU = IoU − |Ac−Upg|
|Ac |

6:

LGIoU = 1− GIoU

4. Results and Discussion
4.1. Experimental Procedure
4.1.1. Datasets

In this study, three public datasets—LS-SSDD [22], SAR-Ship-Dataset [23], and
HRSID [24]—were used as experimental test datasets.

(1) LS-SSDD adopts Sentinel-1 satellite data and contains a total of 30 large-scene SAR
images. The large-scene images were taken from 30 original large-scene satellite-based SAR
images. The polarization modes included two modes—VV and VH, and the IW—which has
the distinctive features of large-scene ocean observation, small-scale ship detection, a variety
of pure backgrounds, a fully automated detection process, and a variety of standardized
benchmarks. Figure 6 shows a sample large-scene image from the LS-SSDD dataset. The
large-scene image from the LS-SSDD dataset has a size of 24,000 × 16,000 pixels with
~250 km cover width, three-channel grayscale image format, 24-bit depth JPG, and XML
annotation format, which record the target position information. During the experiment,
the first 20 original large-scene SAR images were selected as the training set, and the
remaining images were selected as the test set. Each 24,000 × 16,000 pixel SAR image was
directly cropped into 800 × 800 pixels sub-images without processing.
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(2) The SAR-Ship-Dataset, created by Wang et al. and labeled by SAR experts, is
the most extensive publicly available dataset for multi-scale ship detection. It comprises
102 Chinese Gaofen-3 images and 108 Sentinel-1 images, totaling 43,819 ship chips. The
chips have a resolution of 256 pixels and contain ships of various scales and backgrounds.
The Gaofen-3 images were captured using Ultrafine Strip Chart (UFS), Fine Strip Chart
1 (FSI), Fully Polarized 1 (QPSI), Fully Polarized 2 (QPSII), and Fine Strip Chart 2 (FSII)
imaging modes, with resolutions ranging from 3 to 10 m. Sentinel-1 images were acquired
in S3 strip map (SM), S6 SM, and IW modes. The dataset also includes ships in complex
scenes such as offshore, island, and harbor environments. Furthermore, the dataset covers
scenarios with high ship densities and small target sizes (less than 15 × 15 pixels). Table 2
provides an overview of the dataset, with the training, validation, and test sets accounting
for 70%, 20%, and 10% of the dataset, respectively.

Table 2. SAR-Ship-Dataset division.

Datasets Total Number of Images Occlusion Small Target

Training set 21,420 12,840 8580
Verification set 6120 3660 2460

Testing set 3060 1836 1224

(3) The HRSID dataset is designed specifically for ship detection, semantic segmen-
tation, and instance segmentation tasks in high-resolution SAR images. It consists of a
total of 5604 images, including 99 Sentinel-1B, 36 TerraSAR-X, and 1 TanDEM-X images.
Within these images, there are 16,951 ship instances, with small target scenes accounting
for approximately 54.8% of all ships present. Similar to the construction process of the
Microsoft COCO (Common Objects in Context) dataset, the HRSID dataset incorporates
SAR images with varying resolutions, polarizations, sea states, sea areas, and coastal ports.
This diversity enables researchers to benchmark and evaluate their methods effectively.
The SAR images in the HRSID dataset have resolutions of 0.5 m, 1 m, and 3 m. To facilitate
the development of algorithms, the dataset is split into three subsets: a 70% training set, a
20% validation set, and a 10% test set. This partitioning allows researchers to train their
models, tune hyperparameters, and evaluate performance in a controlled manner. Figure 7
shows selected image samples from both the SAR-Ship-Dataset and HRSID datasets.
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4.1.2. Evaluation Metrics

The main evaluation metrics used in the detection model were precision, recall, and
F1-score, which are defined as follows:

P = NTD/N,
R = NTD/NGT ,

F1− score = 2×Precision×Recall
Precision+Recall .

(7)

where NTD denotes the number of correctly detected ship targets, NGT is the actual number
of ship targets, and N is the total number of detected ship targets. Different IoU thresholds
were used to calculate different numbers of ship targets P(R). This value represents the
precision–recall curve, and the purpose of the AP is to find the area under the precision–
recall curve because it is the core index used to measure detection accuracy. The mean
average precision (mAP) is the average value of all detection types. Because only one type
of ship target is detected, mAP and AP have the same value.

AP =
∫ 1

0
P(R)dR (8)

mAP =

n
∑

i=1
APi

n
(9)

4.2. Experimental Analysis

All the experiments in this study were performed on an NVIDIA Tesla V100 graphics
card. The number of training epochs was set to 200. Stochastic gradient descent (SGD)
served as the optimizer with a 0.1 learning rate, a 0.9 momentum, and a 0.0001 weight decay.
A soft non-maximum suppression (Soft-NMS) algorithm was used to suppress duplicate
detections with an intersection over union (IoU) threshold of 0.5. The experiments focused
on whether occluded targets as well as small targets in large-scene SAR images could
be detected correctly. Experiments were first conducted on SAR-Ship and HRSID with
numerous occluded scenes and small target objects to verify the effectiveness of the model.
The model was then tested on the real large-scene dataset LS-SSDD, and the detection
results of sub-images from the same scene during the detection process were directly
spliced into a large-scene image without any other human involvement.

First, the experiments verified the effects of different attention mechanisms on the
detection results. The TAC_CSAC_Net backbone network utilized Resnet50 and Resnet101
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for the ablation experiments. The results using the dataset SAR-Ship-Dataset are shown in
Tables 3 and 4. Taking the Resnet101 backbone network with better identification results,
the performance metrics F1-score and mAP were improved by 0.002 and 1.1% in small
target detection and 0.004 and 0.4% in occluded target detection, respectively, after the
introduction of the TAC module compared to the original model. The introduction of
the CSAC module improved the performance metrics F1-score and mAP by 0.005 and
2.1%, respectively, for small target detection and 0.005 and 1.6%, respectively, for occluded
target detection, compared to the original model. After fusing the TAC_CSAC multi-
attention mechanism, the F1-score of small target detection was improved by 0.012, mAP
was improved by 3.5% compared with the original model, the F1-score of occluded target
detection was improved by 0.026, and mAP was improved by 4.3%, which indicates that
the TAC mechanism can capture the correlation between the features efficiently in the small
target and occluded scenarios. Meanwhile, the complex background information blurs the
position information of the ship target. The localization information of the target is not
obvious after multilayer convolution, and it is very important to use CSAC to enhance
the position and feature information. With respect to the Resnet101 backbone network
with better recognition results, using the final improved model TAC_CSAC_Net versus
the original model, the small target evaluation metrics precision, recall, F1-score, and
mAP were improved by 2.6%, 0.7%, 0.017, and 3.7%, respectively, and the occlusion target
evaluation metrics precision, recall, F1-score, and mAP were improved by 7.0%, 0.3%, 0.037,
and 6.6%, respectively. Experimental results demonstrate that the proposed method is
effective in detecting both small and occluded targets.

Table 3. Detection results of SAR-Ship-Dataset in small targets scenes.

Backbone Network
(+Multi-Feature Fusion) Attention Mechanism P (%) R (%) F1-Score mAP (%)

Resnet50 92.7 95.4 0.940 92.3
Resnet50 TAC 92.9 96.2 0.945 92.9
Resnet50 CSAC 92.9 96.4 0.946 92.8
Resnet50 TAC + CSAC 93.9 96.5 0.952 93.5
Resnet50 TAC_CSAC_Net 94.5 96.9 0.957 94.2

Resnet101 93.0 96.3 0.946 91.6
Resnet101 TAC 93.3 96.4 0.948 92.7
Resnet101 CSAC 93.7 96.5 0.951 93.7
Resnet101 TAC + CSAC 95.1 96.5 0.958 95.1
Resnet101 TAC_CSAC_Net 95.6 97.0 0.963 95.3

Table 4. Detection results of SAR-Ship-Dataset in occluded targets scenes.

Backbone Network
(+Multi-Feature Fusion) Attention Mechanism P (%) R (%) F1-Score mAP (%)

Resnet50 90.5 97.0 0.936 90.5
Resnet50 TAC 90.9 97.1 0.939 90.9
Resnet50 CSAC 92.4 97.4 0.948 91.4
Resnet50 TAC + CSAC 94.2 97.4 0.958 94.2
Resnet50 TAC_CSAC_Net 97.5 98.0 0.977 97.3

Resnet101 90.7 98.0 0.942 91.1
Resnet101 TAC 91.2 98.3 0.946 92.5
Resnet101 CSAC 91.5 98.1 0.947 92.7
Resnet101 TAC + CSAC 95.4 98.3 0.968 95.4
Resnet101 TAC_CSAC_Net 97.7 98.3 0.979 97.7
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The results obtained using the HRSID are presented in Tables 5 and 6. Compared with
the original initial model, the F1-score and mAP of TAC_CSAC_Net increased by 0.004
and 0.7% in the small target scenario and 0.066 and 0.5% in the occluded target scenario,
respectively, indicating that both attentional mechanisms work accordingly and achieve
close detection performance in both the occluded target and small target scenarios.

Table 5. Detection results of HRSID in small targets scenes.

Backbone Network
(+Multi-Feature Fusion) Attention Mechanism P (%) R (%) F1-Score mAP (%)

Resnet50 88.2 92.1 0.901 88.2
Resnet50 TAC 88.7 93.0 0.907 88.7
Resnet50 CSAC 89.3 92.6 0.909 89.3
Resnet50 TAC + CSAC 89.2 93.2 0.911 89.2
Resnet50 TAC_CSAC_Net 89.2 93.4 0.912 89.2

Resnet101 89.1 93.0 0.910 89.1
Resnet101 TAC 89.3 93.0 0.911 89.3
Resnet101 CSAC 89.7 93.0 0.913 89.7
Resnet101 TAC + CSAC 89.6 93.1 0.913 89.6
Resnet101 TAC_CSAC_Net 89.6 93.3 0.914 89.8

Table 6. Detection results of HRSID in occluded targets scenes.

Backbone Network
(+Multi-Feature Fusion) Attention Mechanism P (%) R (%) F1-Score mAP (%)

Resnet50 81.2 88.7 0.851 81.7
Resnet50 TAC 82.6 87.9 0.852 79.6
Resnet50 CSAC 84.2 89.4 0.867 84.2
Resnet50 TAC + CSAC 84.5 89.8 0.871 84.5
Resnet50 TAC_CSAC_Net 84.5 89.9 0.871 84.5

Resnet101 81.2 88.8 0.848 81.2
Resnet101 TAC 81.7 88.0 0.847 80.1
Resnet101 CSAC 84.8 89.4 0.870 84.8
Resnet101 TAC + CSAC 89.5 93.1 0.913 89.5
Resnet101 TAC_CSAC_Net 89.6 93.3 0.914 89.6

The model was used on the real large-scene dataset LS-SSDD, and the best model
parameters from the training were used as the initial parameters to start the training by
migration learning. In the LS-SSDD, without any additional embellishments, the large-scale
images were fragmented into 9000 sub-images; that is, a large number of pure background
sub-images were simultaneously involved in the training at the same time. From the final
results, the direct-cut image was very close to the actual application. Table 7 presents the
evaluation metrics of the detection results of the TAC_CSAC_Net model for a large-scene
dataset. Compared with the SSDD and HRSID, the targets to be recognized in large scenes
are smaller and more difficult to detect when they are occluded. Referring to the detection
results graph in Figure 8, in the SAR image of the large scene, even at sea level where
the target is small, it can have a high detection accuracy. However, in the occluded scene,
owing to the double influence of the interference background and the small target in the
large scene, although the accuracy is obviously improved, missed targets increased, which
leads to the decline of the recall, as shown in Figure 9. The model evaluation metrics,
F1 and mAP, both gradually improved, indicating that the multi-attention mechanism
played an important role in feature capture. Taking the more effective Resnet101 backbone
network as an example, F1 with the introduction of TAC increased from 0.724 to 0.747,
an increase of 3.17%, and mAP increased from 70.9% to 72.2%, an increase of 1.83%; F1
with the introduction of CSAC increased from 0.724 to 0.766, an increase of 5.8%; mAP
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increased from 70.9% to 74.8%, with an increase of 5.8%; with the final TAC_CSAC_Net
model compared to the initial model, F1 increased from 0.724 to 0.822, with an increase of
13.5%; mAP increased from 70.9% to 78.6%, with an increase of 10.8%. Figure 10 shows the
partial recognition results for a large scene. A test was performed to determine whether the
target was included, and the final result was directly stitched as a large-scene SAR image.

Table 7. Detection results of LS-SSDD.

Backbone Network
(+Multi-Feature Fusion) Attention Mechanism P (%) R (%) F1-Score mAP (%)

Resnet50 73.1 65.8 0.693 63.0%
Resnet50 TAC 73.7 71.4 0.725 69.2%
Resnet50 CSAC 78.3 72.3 0.752 72.6%
Resnet50 TAC + CSAC 82.5 71.3 0.765 75.3%
Resnet50 TAC_CSAC_Net 83.8 73.6 0.784 76.4%

Resnet101 73.5 71.3 0.724 70.9%
Resnet101 TAC 75.1 74.4 0.747 72.2%
Resnet101 CSAC 78.4 74.9 0.766 74.8%
Resnet101 TAC + CSAC 83.5 72.7 0.777 75.3%
Resnet101 TAC_CSAC_Net 87.7 77.3 0.822 78.6%
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4.3. Comparative Experiments with Different Models

The models presented in this paper are compared with several classical and recently
developed deep learning models used on the real large-scene dataset LS-SSDD, all executed
on a Tesla V100. Iterations numbering 105 were performed on the SAR ocean dataset using
the same training strategy. The batch size was set to 32, and the initial learning rate was
set to 0.0001. The detection comparison results are listed in Table 8, which indicate that
the proposed model has more powerful feature extraction and better target detection in
large scenes. By evaluating the p-value, R-value, F1-score, and mAP-value of the respective
algorithms on the LS-SSDD dataset, the models proposed in this study exhibited the
highest detection accuracy. In the large scenario, the F1-score is higher than that of the
suboptimal model, CBAM Faster R-CNN, which also contains an attention mechanism,
by 0.019, which indirectly reflects the effectiveness of the proposed model with its global
attention mechanism. Meanwhile, the detection precision was 4.7% higher than that of the
suboptimal model, which indicates an improvement of the proposed model in terms of
small target detection performance. Moreover, the frames per second (FPS) rate is used to
measure the detection speed. Compared to other popular target detection algorithms for
real-life large-scene SAR images, it is more capable of recognizing small and edge-featured
fuzzy targets, which is a valuable contribution to practical applications in this field.

Table 8. Comparison of detection results from multiple models with the LS-SSDD dataset.

Models P (%) R (%) F1-Score mAP (%) FPS

Faster-RCNN (Ren et al., 2015) [25] 72.8 72.1 0.724 74.4 4.82
SER Faster R-CNN (Lin et al., 2018) [26] 73.5 71.6 0.725 75.2 7.15

PANET (Liu et al., 2018) [27] 72.9 73.2 0.730 72.9 9.45
Cascade R-CNN (Cai and Vasconcelos, 2018) [28] 74.0 72.8 0.733 74.1 8.83

DAPN (Cui et al., 2019) [14] 73.8 75.1 0.744 74.1 12.22
ARPN (Zhao et al., 2020) [15] 73.5 71.6 0.725 75.2 12.15

Double-Head R-CNN (Wu et al., 2020) [16] 81.4 77.7 0.795 79.9 6.25
CBAM Faster R-CNN [17] 83.0 77.9 0.803 75.2 7.39

Quad-FPN (Zhang et al., 2021a) [18] 80.1 78.9 0.794 77.1 11.37
YOLOv5 (Jocher et al., 2021) [29] 72.8 77.1 0.748 74.4 21.76
YOLOv7 (Wang et al., 2022) [30] 78.2 76.1 0.771 76.3 22.43

Our model 87.7 77.3 0.822 78.6 8.06

5. Conclusions

The proposed method for detecting occluded targets and small target ships in large-
scene SAR images focuses on the use of a multi-attention mechanism. By incorporating the
transformer self-attention mechanism into the backbone network, a better target feature
abstraction capability was obtained. Using channel attention and spatial attention to
integrate the feature space and feature channel information in two dimensions can enhance
the attention of the CNN in the channel dimension and strengthen the model’s ability to
perceive and utilize spatial location features. Experiments on publicly available multi-scale
and multi-scene ship detection datasets, the SAR-Ship-Dataset and high-resolution SAR
images, show that the improved model can significantly improve the detection performance
of SAR images in different complex scenes and at different scales. Different attentional
mechanisms can improve detection performance, and a model incorporating multiple
attentional mechanisms has better detectability. The experimental results on the large-scene
SAR images dataset show that the model can effectively improve ship detection accuracy in
large-scene SAR images with a strong large-scene migration generalization capability. The
experimental results also show that the proposed method has better detection performance
and can reduce false alarms. However, it cannot completely eliminate missed detections
in large-scene images. Further analysis and research on this topic are required, such as
incorporating speckle noise removal methods before applying the model.
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