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Abstract: Maritime ship detection plays a crucial role in smart ships and intelligent transportation
systems. However, adverse maritime weather conditions, such as rain streak and fog, can significantly
impair the performance of visual systems for maritime traffic. These factors constrain the performance
of traffic monitoring systems and ship-detection algorithms for autonomous ship navigation, affecting
maritime safety. The paper proposes an approach to resolve the problem by visually removing rain
streaks and fog from images, achieving an integrated framework for accurate ship detection. Firstly,
the paper employs an attention generation network within an adversarial neural network to focus
on the distorted regions of the degraded images. The paper also utilizes a contextual encoder to
infer contextual information within the distorted regions, enhancing the credibility of image restora-
tion. Secondly, a weighted bidirectional feature pyramid network (BiFPN) is introduced to achieve
rapid multi-scale feature fusion, enhancing the accuracy of maritime ship detection. The proposed
GYB framework was validated using the SeaShip dataset. The experimental results show that the
proposed framework achieves an average accuracy of 96.3%, a recall of 95.35%, and a harmonic
mean of 95.85% in detecting maritime traffic ships under rain-streak and foggy-weather conditions.
Moreover, the framework outperforms state-of-the-art ship detection methods in such challenging
weather scenarios.

Keywords: ship detection; adverse weather; image restoration; improved YOLOv5; intelligent
maritime transportation

1. Introduction

With the rapid advancement of artificial intelligence and computer vision technolo-
gies, the traditional navigation methods of maritime ships are undergoing a process of
transformation and elevation. Intelligent maritime traffic monitoring systems and auto-
mated ship navigation are gradually becoming tangible realities (Liu et al., Cheng et al.,
Volden et al. [1–3]). Therefore, it is imperative to accurately detect maritime traffic entities
(such as ships, buoys, etc.) based on ship vision navigation or port surveillance videos in
order to make precise navigational control decisions. This plays a pivotal role in enhancing
the safety of automated ship navigation and maritime ship passage within waterways
(Forti et al. [4]). To detect maritime navigating ships, various types of sensors, such as
cameras and radar, are commonly employed in automated ship navigation. However, the
unique maritime weather conditions and locations often expose these systems to adverse
weather, such as fog and rain streaks, resulting in the deterioration of ship-monitoring
video data (Bahnsen and Moeslund, and Li et al. [5,6]). The presence of rain streaks and
fog in the atmosphere severely impacts the visibility of monitoring scenes. Low visibility
is inefficient for accurately detecting maritime ships and increases the risk of maritime
traffic accidents. Consequently, the development of effective image restoration techniques
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becomes crucial to achieve improved visual appearance or distinctive features. Provid-
ing clear maritime images to detection systems can significantly enhance the detection
performance of maritime ships at sea (Fu et al., Lu et al. [7,8]).

Computer vision technology has become a crucial method for autonomous ship nav-
igation (autonomous driving) and intelligent transportation applications. It can detect
and recognize target objects in various scenarios with high precision, while also providing
data support for intelligent control decision-making in the transportation field (Yu et al.,
Yao et al. [9,10]). Previous research has primarily focused on capturing high-quality mar-
itime traffic video data. Wang et al. proposed a rapid and accurate ship detection algorithm
based on YOLOv4, which incorporates K-means clustering, model structure refinement,
and the Mixupfan method (Wang et al. [11]). Li et al. utilized a background filtering
network for rapid filtering of background areas and employed a fine-grained ship classi-
fication network for the detection and classification of ship targets (Li et al. [12]). Fence
et al. proposed a fast ship detection method based on multi-scale gradient features and
a multi-branch support vector machine (Feng et al. [13]). Similar studies can be found
in (Shao et al., Lv et al. and Chen et al. [14–16]). For some scenarios where video data
cannot be directly obtained, previous research relied on limited exploration using radar
data and multi-source data fusion. Chen et al. proposed a study similar to Radar-YOLONet
that uses radar images for object detection (Chen et al. [17]). Wang et al. proposed a
deep radar object-detection method called RODNet based on cross-fusion supervision of
radar–camera data (Wang et al. [18]). Xu et al. used a multiple linear rescaling scheme to
quantize the original satellite images into 8-b images, and proposed an adaptive weighting
scheme to detect the loss between ships (Xu et al. [19]). Similar studies can be found in
(Guo et al., Bai et al. [20,21]). The acquisition of multi-source data usually depends on
special physical sensors, which are highly susceptible to the water environment and have
high maintenance costs (Shang et al., Lin et al. [22,23]). With the development of deep
learning, feature enhancement has been used to strengthen the perception of low-feature
targets in low-visibility scenes. This addresses the issues of low accuracy and efficiency
in traditional object-detection algorithms. Wang et al. constructed a new feature enhance-
ment module (FEM) and utilized an attention mechanism to achieve real-time accurate
detection of multiple targets in foggy conditions (Wang et al. [24]). M. Hassaballah et al.
utilized an image enhancement scheme to achieve robust detection and tracking of vehicles
(Hassaballah et al. [25]). While these methods can effectively detect target objects, they
may not fully address the unique characteristics of maritime traffic environments, such
as tides, water currents, and channel divisions. Therefore, they may not guarantee the
safety of maritime traffic. It is important to consider these factors when developing and
implementing object-detection algorithms for maritime traffic environments.

To address these problems, the paper presents an integrated framework for maritime
ship detection under adverse weather conditions using computer vision techniques. This
framework leverages adversarial neural networks to generate attention maps that focus on
distorted regions within the images. These attention maps guide the contextual autoen-
coder in performing local feature inference, achieving a rational and effective restoration of
distorted areas in low-visibility images. Moreover, the restored images are concurrently fed
into the discriminative network to facilitate the evaluation of the restored regions in the gen-
erated images. This process serves as feedback to guide the generative network in achieving
optimal results for the enhancement of low-visibility images. Next, a weighted bidirectional
feature pyramid network (BiFPN) is introduced to achieve rapid multi-scale feature fusion,
enhancing the accuracy of maritime ship detection (Tan et al. [26]). This involves iteratively
applying top-down and bottom-up multi-scale feature fusion to enhance the accuracy of
ship detection in repaired low-visibility images. Our proposed framework is evaluated on
the synthetic SeaShip dataset, which includes challenges related to low-visibility conditions
such as rain streaks and fog, as well as small-target detection. Experimental results show
that the model framework we proposed exhibits effectiveness and superiority over existing
algorithms. The main contributions of this work are summarized as follows:
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• The paper has proposed a novel integrated framework for detecting and recognizing
ships navigating in low-visibility maritime environments.

• The paper has proposed the use of a weighted BiFPN in the YOLOv5 detector, achiev-
ing top-down and bottom-up multi-scale feature fusion to improve the accuracy of
ship detection in low-energy image restoration.

• The paper’s proposed framework achieves an average accuracy of 96.3%, a recall of
95.35%, and a harmonic mean of 95.85% in detecting maritime traffic ships under rain
streak and foggy weather conditions.

2. Materials and Methods

The proposed framework for ship detection in low-visibility maritime images in this
paper consists of two main logical steps: image restoration for maritime traffic and ship
detection in maritime traffic, as shown in Figure 1. Firstly, an attention map is generated
in the recurrent network within the generative network to identify low-visibility areas in
the image that are disturbed by rain streaks and foggy weather. Meanwhile, the context
autoencoder within the generative network performs local inference and restoration on
the rain streaks and fog areas, enabling them to generate more realistic local images. More
specifically, firstly, an attention map is generated in the recurrent network within the
generative network to identify low-visibility areas in the image that are disturbed by rain
streaks and foggy weather. Meanwhile, the context autoencoder within the generative
network performs local inference and restoration on the rain streaks and fog areas, enabling
them to generate more realistic local images. More specifically, firstly, images of rainy and
foggy weather are input into the model framework. The images, after passing through the
generative attention map network (Residual Block and LSTM + Convs modules), generate
an attention map for the rain streaks and fog (low-visibility) areas of the two-dimensional
image. This enhances the perceptibility of the distorted areas and provides guidance for
subsequent image restoration. Secondly, the generated attention map and the original
image are passed into the generative contextual autoencoder (Convs + ReLu, Dilated
Convs + ReLu, and Deconv + avgpool + ReLu modules). This allows for the extraction
of surrounding structure and feature information from the distorted areas. By combining
these extracted features, contextual information is inferred and restored, resulting in the
generation of relatively intact images. Meanwhile, the restored images are input into the
discriminator for image quality assessment. Finally, the restored images are input into
the detection model. Since some areas may have lower restoration quality during the
image restoration process, a multi-scale fusion method is used to achieve detection and
recognition of low-resolution ships. The discriminative network evaluates whether the
images generated by the generative network are realistic, and provides feedback to the
generative network. Next, the detection model incorporates BiFPN into YOLOv5 for multi-
scale feature fusion, further enhancing the accuracy of ship detection in the low-visibility
image restoration regions.

2.1. Rain-Streak and Fog Imaging Modeling

Rain streaks and fog in images can affect the detection performance of ships in both
human and computer vision. Therefore, removing rain streaks and fog, which means
restoring blurry images to clean images, is an important problem in computer vision. To
better remove rain streaks and fog, we first mathematically model the rain streaks and
foggy scenes. The widely used rain streaks model scene (Quan et al., Luo et al. and
Li et al. [27–29]) modeling formula is shown in Equation (1):

C = Fimg − S (1)

where Fimg represents the rain streak image, C represents the background of clean water
transportation and S represents the rain streaks. Therefore, we need to remove the rain
streaks S.
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Figure 1. Schematic overview for ship detection framework for distorted image restoration under
adverse weather.

For the simulation of foggy conditions, we have found that the most realistic methods
predominantly utilize depth-based techniques to synthesize their own datasets. The widely
used foggy model scene (Nayar and Narasimhan, Narasimhan and Nayar [30,31]) modeling
formula is shown in Equation (2):

N(y) =
H(y)− L
e−ϕd(y)

+ L (2)

where N(x) represents the clean image, H(y) represents the fog image, and L represents the
global atmospheric light. e−ϕd(y) is the transmission map. ϕ is the attenuation coefficient
and d(y) refers to the image scene depth.

2.2. Generative Adversarial Network

Generative adversarial networks (GAN) (Goodfellow et al. [32]) have gained widespread
application in the field of image restoration in recent years, and have yielded significant
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results (Qian et al. [33]). A GAN network consists of two components: a generator and a
discriminator. The generator takes random noise as input and produces a feature vector
representing the target as output. The discriminator is a classifier that takes a vector as
input and outputs a judgment on whether that vector is real or fake. More specifically,
the generator takes low-visibility ship images as input and generates the restored image
after passing through the attention map and context autoencoder within the generator.
Furthermore, the restored image is used as input to the discriminator to distinguish between
the generated images and real images, thereby guiding the generator to produce more
realistic images. Finally, the sigmoid function outputs 1 or 0, indicating real or fake for the
restored image. To make the model more efficient, the generator and discriminator evolve
in a minimax game, where they mutually constrain and encourage each other to achieve
more realistic image outputs. The optimization objective function of the GAN model is
shown in Equation (3):

min
G

max
D

V(D, G) = ET∼Rimgnoise [log(D(T))] + EB∼Pimgdrop [log(1− D(G(B)))] (3)

where G represents the generator, D represents the discriminator, and B represents the low-
visibility image input to the generator adversarial network. T represents the clear image
sample corresponding to the low-visibility image of B. E represents the expected value.
D(T) is the output of the discriminator for the real clear image T, which is a probability
value. D(G(B)) represents the output of the discriminator for the restored images generated
by the generator G(B).

2.3. Generative Attention Map Network

Rain streaks and fog in the atmosphere can significantly reduce the visibility of the
maritime background in monitoring equipment, and cause image distortion. The dis-
torted regions are perceptible to the human eye, but not explicitly delineated in computer-
generated images. To address this problem, the paper proposes a method to identify the
distorted regions by generating attention maps using adversarial neural networks. The
generation of attention maps in this context is inspired by the principles of recurrent neural
networks (RNNs) and residual networks. More specifically, as shown in Figure 1, the
recurrent network consists of five layers of ResNet network layers and LSTM + Convs.
The ResNet network is responsible for pre-extracting global features from the image
(He et al. [34]). After passing through the LSTM + Convs module, both global and lo-
cal features of the distorted image are fed back into the convolutional layers to generate the
attention map.

The generated attention map is then concatenated with the original image and fed into
the next identical module. In this process, the attention map from the previous layer guides
the subsequent layer of the same network to focus more on the distorted regions. This
iterative process is repeated in a loop. The attention map is essentially a two-dimensional
array of the same size as the original image, where each element’s value ranges from
0 to 1. The attention map is a non-binary mapping, signifying that attention gradually
increases from non-raindrop regions to raindrop regions, with values varying even within
the raindrop regions. This gradual increase in attention is meaningful because the areas
around raindrops also need attention, and the transparency within the raindrop regions
varies in reality. Therefore, a higher value in a specific region of the array indicates more
attention from the attention map to that area, enabling focused restoration of the distorted
regions in the image.

2.4. Generative Context Autoencoder

The framework obtains the distorted regions of the image through attention maps, but
the original image information collected is missing (distorted) under the interference of rain
streaks and fog. Therefore, the network uses a context autoencoder to help the generator
produce a clear and complete image guided by the attention map, which is equivalent to
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restoring and repairing low-visibility images. Figure 1 shows the architecture of the context
autoencoder. The network introduces a dilated convolution network to increase the size
and perception ability of the receptive field, so as to better capture the global features of the
input attention map and the context information of the distorted regions. At the same time,
the generative network ensures the restoration of high-resolution in the distorted regions
by introducing the Deconv + avgpool module. Since we need to extract image feature
information from different network layers to infer more context information, we set up
two loss functions in the context encoder: multi-scale loss and perceptual loss. The multi-
scale loss can effectively extract image features to obtain context information on different
scales and form outputs of different sizes to capture the details and structure information
in the image. The use of multi-scale loss is effective in extracting image features to obtain
context information on different scales and generating outputs of varying sizes to capture
fine-grained details and structural information in the image. The objective function for the
multi-scale loss is shown in Equation (4):

εM({F}, {R}) =
M

∑
i=1

WiεMSE(Fi, Ri) (4)

where Fi represents the i-th output extracted from the context autoencoder, and Ri rep-
resents the i-th output ground-truth image information, which has the same scale as the
Fi. εMSE represents the mean squared error between the output at different scales and
the corresponding ground-truth image, and {W}M

i=1 represents the weight magnitudes for
different scales.

To generate more realistic images, the generative network needs to pay attention to the
high-level structure and content of the image, rather than pixel-level noise. This approach
prioritizes the perceptual features of the image over subtle pixel variations. Besides the
pixel-based multi-scale loss in our image-based approach, the generative network also uses
perceptual loss to ensure visual consistency and feature fidelity between the generated
image and the target image. The objective function for the perceptual loss is shown in
Equation (5):

εP(O, T) = εMSE(VGG(O), VGG(T)) (5)

where O represents the output image of the generative network, which is the image after
the restoration process. O is obtained by the generator G using the input image I and the
attention map. VGG(O) represents the image features extracted from O using a pre-trained
VGG-16 network, while VGG(T) represents the image features extracted from T. εMSE
represents the mean-squared-error loss function, which calculates the difference between
the features of the reconstructed image and the ground-truth image after the restoration
process. The VGG-16 mentioned in this paper refers to a pretrained convolutional neural
network (CNN) that is solely used for feature extraction from images. To summarize, the
loss function for low-visibility image restoration is shown in Equation (6):

εG = εM({F}, {R}) + 10−2εP(O, T) + εGAN(O) + εA∼M (6)

where εA∼M represents the loss value of the attention map with the distortion region mask
and εGAN(O) = 1− D(G(O)). To verify the authenticity of the repaired distorted images,
the generative network utilizes attention maps to guide the discriminator’s focus on the
restored regions, evaluating the quality of the generated images based on both global- and
local-image content. Additionally, the generative network employs fully connected layers
to determine the authenticity of the restored low-visibility images.

2.5. Detection Method

Considering the navigation control decisions of maritime ships, the ability to detect
other ships at sea in real time and accurately handle emergency situations (such as colli-
sion avoidance and locating missing vessels) is crucial. The YOLO model, as a one-stage
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detection model, has certain advantages in this regard. While two-stage object-detection
models may offer superior accuracy, they do not stand out in terms of real-time perfor-
mance. Furthermore, the equipment and monitoring devices on intelligent unmanned
ships typically lack the computational capacity to support higher-precision target-detection
algorithms. Moreover, this model not only detects the positions of ships but also classifies
different types of ships. Therefore, choosing YOLOv5 for improvement can be effectively
deployed in the ship’s driving system to enhance the efficiency of maritime traffic man-
agement. YOLOv8 is the latest model-detection framework in the YOLO series. Although
YOLOv8 has better accuracy and speed on GPU devices than YOLOv5, making it a better
choice for real-time object detection, it is important to consider the device limitations of
the ship perception system and the lack of GPU support. YOLOv5, with its smaller model
parameters and ease of training, becomes a more suitable solution for such problems while
maintaining a certain level of accuracy.

In this section, the detailed specifics of the YOLOv5 detector will be introduced. The
network structure of YOLOv5 consists of three main components: backbone, neck and
head. As shown in Figure 1, first, the restored low-visibility ship image is preprocessed
(scaling the input ship image to a uniform size), and then sent to the backbone network,
which transforms the original input image into multi-layer feature maps. The backbone
network of YOLOv5 consists of CBL, CSP1_X and SPPF modules. The CBL module is
composed of a convolutional layer, a batch normalization layer and an activation function.
This module is mainly used to extract the local spatial information of the ship features
and normalize the feature information. The CSP1_X convolutional module splits the input
feature map into a backbone convolutional layer and a branch convolutional layer. The
backbone convolutional layer uses 1*1 convolution to reduce the channel number and
the parameter amount. The branch convolutional layer further extracts feature extraction
on the feature map. This design effectively reduces the computational load by reducing
the parameter count while enhancing the feature extraction capability. Additionally, this
module adopts a residual approach, which further enhances the model’s expressive power.
The detection model employs spatial pyramid pooling (SPPF) to pool features from input
feature maps of different scales, enabling the model to capture maritime ship objects at
various scales. Then, the detection model introduces the BiFPN feature pyramid structure
in the neck network to handle the ships of different scales and sizes that are distorted by
image restoration.

In order to recognize different types of ships, the key is to collect image features
of different ships (including color, shape, etc.) through supervised learning for further
processing. Therefore, by inputting the annotated dataset into the model training, anchors
of different sizes and aspect ratios are preset. The setting of these anchors can effectively
divide the prediction box space into several subspaces, thereby reducing the difficulty of
recognizing different types of ships. Through down-sampling by factors of 32, 16, and 8,
different sizes of feature maps (20 × 20, 40 × 40, and 80 × 80) are produced. And these
feature maps are input into the neck, where deep semantic features and low-level semantic
features are fully fused. Each feature region is then input into the prediction head. Finally,
the obtained feature maps are input into the head for feature regression and classification,
fitting the best bounding boxes and positions for different types of ships.

2.6. Introduce the BiFPN Structure

Due to the attention adversarial network in the restoration process of low-visibility
images, the distortion in the restoration of target ships in the images and the uneven
distribution of small ships cause the image features of such target ships to be insignificant.
Due to issues such as image distortion and occlusion, during the later stages of model
training, the features extracted from the restored normal regions are significantly more
prominent than those from the un-restored normal regions. The features of the restored
normal area are found to be more significant than those of the un-restored normal area
during the subsequent feature extraction, leading to a selective focus on the significant
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features. Therefore, to solve such problems, the YOLO series previously adopted the
FPN (feature pyramid network) structure. As shown in Figure 2a, this network structure
adopts a top-down approach to aggregate multi-scale features, allowing the high-level
feature map to be transmitted to the low-level feature map (different square colors represent
different feature maps, the arrow direction represents the direction of feature transmission.)
and aggregating features on different scales. However, this information transmission
can only be unidirectional, and cannot be reversed. More specifically, as the number of
down-sampling or convolution operations increases, the receptive field of the high-level
feature map gradually increases, and the overlap area between the receptive fields also
continues to increase. At this time, the information represented by the pixel points is the
information for a region, which has stronger semantic information and is more conducive to
the classification of different ships. The low-level feature map can utilize more fine-grained
feature information, ensuring that the network can capture more details. It has stronger
positional information, which is more conducive to the positioning of ships. Then, the
process of transmitting high-level features can lead to the loss and degradation of feature
information. Therefore, a unidirectional FPN cannot effectively solve such problems.
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(b) PANet, and (c) BiFPN.

To better solve the FPN problem, it is necessary to create a new path from bottom
to top, transmitting the positional information to the predicted feature map as well, so
that the predicted feature map simultaneously possesses higher semantic information and
positional information (which is beneficial for object detection). As shown in Figure 2b,
PANet proposes a bidirectional feature network from top to bottom and from bottom to
top, and generates a new feature map from bottom to top. This is followed by adaptive
feature pooling in the later stages. This network structure enhances the feature expression
capability of the backbone network, allowing different target ships to choose different
feature maps. This avoids the one-to-one matching between ship size and network depth.
However, the ROI of this network structure can only rely on a single layer of features,
leading to the problem of information loss from other feature layers. Then, the dual
transmission paths can also lead to insufficient information transmission.

Therefore, in order to better solve the above problems, this study introduces the BiFPN
weighted bidirectional (top-down + bottom-up)-feature pyramid network structure as a
multi-scale feature-fusion method, and combines the idea of multi-level feature fusion.
This is an effective bidirectional cross-scale weighted feature-fusion method, which enables
the fusion and transfer of features from high-resolution ship images and low-resolution
ship images. This further avoids the problems of erroneous ship detection and recognition
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caused by occlusions and image restoration distortions between ships of different sizes,
and better balances the feature information on different scales under different circum-
stances. As shown in Figure 2c, the feature pyramid network structure is shown in the
diagram, where the left part represents the input section consisting of feature maps from
the backbone network. These feature maps have different levels and scales of information.
Typically, lower-level feature maps have higher resolution but relatively less semantic
information, while higher-level feature maps have lower resolution but contain more se-
mantic information. The input feature maps are fused and propagated through various
paths. The top-down path starts from higher-level feature maps and gradually increases the
resolution of the feature maps through upsampling or interpolation operations to obtain
higher-resolution feature maps. The bottom-up path starts from lower-level feature maps
and gradually decreases the resolution of the feature maps through pooling or convolution
operations to capture broader receptive fields and more detailed information. The lateral
connections are used to fuse the feature maps from the top-down and bottom-up paths. By
using 1 × 1 convolution operations, the channel dimensions of the feature maps from the
bottom-up path are matched to be added to or concatenated with the feature maps from
the top-down path. Multiple iterations are performed to enrich and diversify the levels
of the feature pyramid. Finally, the fused and propagated feature map is output on the
right side of the image. More specifically, the blue lines are the top-down pathways, which
convey the semantic information of the high-level features; the red lines are the bottom-up
pathways, which convey the location information of the low-level features; the purple lines
are the newly added edges between the input nodes and the output nodes at the same level
(N4, N5, N6), which fuse more image features without adding too much cost. Meanwhile,
In the BiFPN network, nodes with only a single input edge are eliminated. This is because
a node with just one input edge that does not perform feature fusion contributes minimally
to the feature network that integrates different features. Therefore, removing such a node
has a negligible impact on our network, while it simplifies the bidirectional network. This
is applicable to the first node on the right of N7. If the original input node and the output
node are at the same level, the network will add an extra edge between the original input
node and the output node. This allows for the fusion of more features without significantly
increasing costs, thereby improving the efficiency of ship detection and recognition.

3. Experimental Design
3.1. Data Description

To validate the proposed maritime ship detection framework for low-visibility sce-
narios at sea, it is essential to consider all influencing factors in the maritime environment
to ensure the reliability and authenticity of the model validation. The SeaShip dataset is
acquired by the monitoring cameras in a deployed coastline video-surveillance system. This
dataset includes labels for various types of ships and high-precision bounding boxes, and
covers all possible imaging variations, such as different scales, parts of the hull, lighting,
viewpoints, backgrounds, and occlusions. This dataset comprises 7000 images, which are
divided into two subsets: one simulates rain-streak conditions, and the other simulates
foggy weather. Both datasets are split into training, testing, and validation sets, in a 2:1:1
ratio. The dataset encompasses six types of ships, namely ore carriers, bulk cargo carriers,
container ships, general cargo ships, fishing boats, and passenger ships (Shao et al. [35]).

This dataset has collected maritime ship navigation data under forty-five different
background conditions. Ship detection accuracy is often affected by background changes
which pose challenges for separating foreground target ships from complex background
environments. Note that the datasets also involved image distortion, occlusions, hull parts
and small-target detection (i.e., small ship imaging size) interferences. Details for the
datasets can be found in Table 1. The proposed method was implemented with PyTorch
1.7.1 framework and Python 3.7. The operating system is Ubuntu 20.04 OS, and the CPU
is Intel(R) Xeon(R) Gold 6230R CPU @ 2.10 GHz. The GPU used for the experimental
platform is Quadro RTX 5000.
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Table 1. Information from Marine ship data.

Ship Category Resolution Image Distortion Small Target Detection Ship Obstruction Hull Parts

Ore carrier 1920 × 1080
√ √ √ √

Bulk cargo carries 1920 × 1080
√ √ √ √

Container ship 1920 × 1080
√

/
√ √

General cargo ship 1920 × 1080
√ √ √ √

Fishing boat 1920 × 1080
√ √ √ √

Passenger ship 1920 × 1080
√

/
√ √

(Symbol
√

indicates the situation that exists in the dataset.)

3.2. Evaluation Indicators

To validate the performance of the GYB framework proposed in this study, our ap-
proach involved five metrics: recall (R), F1-score, precision (P), and the average precision
AP0.5 and AP0.5:0.95 to quantitatively evaluate the performance of the framework. the per-
formance of the framework. Firstly, we need to introduce some common variables. TP (true
positive) represents the positions and labels of the ships detected by different algorithms
consistent with the ground truth. TN (true negative) represents that both the ground truth
and detected ship labels are negative (which correctly predict the negative samples). FN
(false negative) means that the different detection algorithms recognize the correct ship
positions and labels as wrong (this sample is a positive sample). FP (false positives) means
the different detection algorithms predict the wrong ship positions and labels as correct
(this sample is a negative sample). Precision is the ratio of correctly predicted ship positions
and labels among all predicted true ship labels within the range of [0, 1]. Recall represents
the percentage of correctly predicted true ship labels among the total actual true ship labels,
and lies within the range of [0, 1].

To better evaluate the performance of different algorithms, the F1-score, which is
the harmonic mean, precision (P) and recall (R) are introduced. The F1-score reaches its
optimum only when both precision and recall tend toward their maximum values. The
average precision (AP) can be obtained by calculating the area under the precision–recall
(P-R) curve, which is bounded by the horizontal and vertical axes. AP0.5 and AP0.5:0.95
are commonly utilized metrics, respectively signifying average precision values at an IOU
(intersection-over-union) threshold of 50% and the mean values across IOU thresholds,
ranging from 50% to 95%. In this study, the detection performance of the proposed method
was assessed using AP0.5 and AP0.5:0.95. In accordance with Equations (7)–(10), the positions
of the detected ships are closer to the ground truth when the values of P, R, F1, AP0.5 and
AP0.5:0.95 are larger. The frames-per-second (fps) is introduced as a performance criterion
to assess the real-time performance of this framework, for which the calculation formula is
shown in Equation (11):

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

F1 = 2
P× R
P + R

(9)

AP =
∫ 1

0
P(r)dr (10)

f ps =
1

COT
(11)

where COT represents the average time consumed per frame in the ship validation dataset.
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4. Discussion and Result
4.1. Discussion

To illustrate the entire workflow, we provide a descriptive output of each step within
the proposed framework in this paper. In the context of maritime surveillance video imag-
ing, the interference caused by rain streaks and fog leads to reduced visibility in monitoring
video data. Furthermore, the complexity and diversity of maritime ship navigation envi-
ronments exacerbate this issue. Existing ship-detection algorithms tend to exhibit abnormal
detection behavior in such scenarios, often resulting in missed detections, where they fail
to accurately fit bounding boxes around navigating ships.

As shown in scenario one in Figure 3, under the interference of rain streaks and the
complex water traffic environment, SSD and Faster_Rcnn failed to correctly distinguish
the features of water obstacles and ships, resulting in false and missed detections of ships
(purple dashed box). As shown in scenario two in Figure 3, the interference of rain streaks
reduced the visibility, and the sailing ships were far from the monitoring equipment,
resulting in YOLOv3 and SSD missing the detection of small-ship targets. Meanwhile, the
YOLOv3 detector failed to generate the correct ore-carrier bounding box. The significant
difference between the edge features of the general cargo ship and the edge features of
the cargo on board caused Faster_Rcnn to generate multiple incorrect candidate regions
(proposal regions), resulting in fishing boats and general cargo ships being generated
(i.e., a single ship corresponds to multiple bounding boxes).
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of ships in typical water transportation under different weather disturbances.

As shown in scenario three in Figure 3, the visibility of the video image data collected
under the interference of fog is significantly reduced, and the ships are occluded by each
other; the features of small ships are similar to those of large ships, resulting in SSD,
YOLOv3 and Faster_Rcnn being unable to distinguish fine-grained ship features, causing
ship misdetection (i.e., multiple ships correspond to only one bounding box). As shown in
scenario four in Figure 3, the small-target fishing boats in this scene are confused with the
surrounding environmental features, and SSD, Faster_Rcnn and YOLOv3 cannot identify
effective regions, resulting in some small ships being missed (purple dashed box).

By restoring the low-visibility images and obtaining a clear image as the input of the
enhanced YOLOv5 detector, our proposed algorithm framework can effectively address
the challenges of low-visibility detection in the aforementioned scenarios and achieve
multi-scale fusion for water ship detection. Then, the restoration of the distorted area of
the image becomes more important. As shown in Figure 4, the visualization of the low-
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visibility region attention-map learning process in the proposed framework is presented.
This process focuses on the low-visibility regions by using the attention maps generated
by the adversarial neural network, while understanding the structure and edge features
around the low-visibility regions. And by guiding the context encoding encoder with
the attention map, the global and local features and relations of the low-visibility regions
are captured, generating high-quality image regions. In this way, we can ensure that the
detector can extract more realistic and effective ship image features. In order to better
quantify the effects of image dehazing and deraining, the PSNR (peak signal-to-noise
Ratio) and SSIM (structural similarity) are introduced as performance criteria to assess the
results after image restoration. PSNR (peak signal-to-noise ratio) is a reference value for
evaluating image quality, while SSIM (structural similarity) is an indicator for measuring the
similarity between the restored image and the real clear image. The evaluation indicators
are summarized in Table 2. It can be observed that the PSNR metrics of the framework for
image deraining and defogging are 30.32 and 32.68, respectively, and the SSIM metrics are
0.9289 and 0.9360, respectively. Overall, it has achieved a good quality of image restoration,
providing an important foundation for subsequent ship detection and recognition.
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Table 2. Quantitative evaluation results of image deraining and dehazing.

Datasets
Evaluation Indicators

PSNR SSIM

Rain streaks 30.32 0.9289

Fog 32.68 0.9360

4.2. Results

By calculating the data difference between the real position and the detected position
of each type of ship in low-visibility maritime surveillance videos, we further quantified
the experimental data regarding the framework’s performance. The evaluation results are
summarized in Table 3. For rain streak scene, the evaluation metrics (P,R,F1) of our proposed
GYB framework model are 95.2%, 94.3%, 94.8%. AP0.5 and AP0.5:0.95 are 0.970 and 0.701,
respectively, which are more than 10% higher than the traditional algorithms YOLOv3,
SSD and Faster_Rcnn models. Similarly, for the fog scene, the evaluation indicators of
the GYB model are more than 20% higher than traditional algorithms, while also meeting
the real-time requirements. Simultaneously, we find that the framework proposed in this
paper achieves a fps of 28.67 frames and 29.06 frames in the rain streak and fog scenes by
calculating the fps of different models. Therefore, this framework ensures the accuracy of
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ship detection and classification while meeting the real-time requirements of ship systems.
At the same time, in order to further verify the accuracy and reliability of the framework
for recognizing different types of ships, we conducted a separate indicator evaluation for
the detection and recognition of individual ships, and summarize the evaluation indicators
in Tables 4 and 5. It can be seen that, whether in rainy or foggy weather, the P, R, and F1 of
single-ship detection and recognition are all above 92%, especially due to the obstruction
of ship structures of different sizes and limited visibility in rainy and foggy weather. In
summary, the experimental results show that the proposed framework can effectively solve
the problem of ship detection and recognition problems, even in low-visibility conditions.

Table 3. Performance statistics of ship detection for waterborne navigation in different weather conditions.

Data Model
Evaluation Indicators

P R F1 AP0.5 AP0.5:0.95 fps

rain streaks

GYB 95.2% 94.3% 94.8% 0.970 0.701 28.67
YOLOv3 71.7% 48.4% 57.8% 0.578 0.256 11.98

SSD 83.5% 79.4% 81.4% 0.822 0.434 6.47
Faster_Rcnn 60.6% 59.7% 61.0% 0.614 0.294 3.26

fog

GYB 97.4% 96.4% 96.9% 0.984 0.742 29.06
YOLOv3 69.9% 58.9% 60.6% 0.867 0.268 12.68

SSD 89.8% 84.9% 87.3% 0.867 0.408 7.03
Faster_Rcnn 61.2% 63.5% 62.3% 0.655 0.317 3.78

Table 4. Performance statistics of detection and recognition of different types of ships under rain
streak weather conditions.

Rain Streaks
Evaluation Indicators

P R F1 AP0.5 AP0.5:0.95

ore carrier 94.8% 92.6% 93.7% 0.971 0.660

passenger ship 94.4% 92.9% 93.6% 0.971 0.656

container ship 99.9% 100% 99.9% 0.995 0.783

bulk cargo carrier 92.8% 92.1% 92.4% 0.949 0.696

general cargo ship 95.9% 95.1% 95.5% 0.971 0.737

fishing boat 93.5% 93.0% 93.2% 0.963 0.662

Table 5. Performance statistics of detection and recognition of different types of ships under foggy
weather conditions.

Fog
Evaluation Indicators

P R F1 AP0.5 AP0.5:0.95

ore carrier 98.4% 90.7% 94.4% 0.985 0.714

passenger ship 98.3% 96.5% 97.4% 0.966 0.715

container ship 96.7% 99.0% 97.8% 0.995 0.786

bulk cargo carrier 97.2% 97.7% 97.4% 0.99 0.766

general cargo ship 99.2% 97.7% 98.4% 0.992 0.771

fishing boat 94.7% 96.7% 95.7% 0.974 0.703

In order to gain a deeper understanding of the roles and importance of each part in
the model framework, we conducted a series of ablation experiments. In these experiments,
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we sequentially added the image restoration module and the BiFPN module, observing
their impact on the performance of the model framework. The image restoration method
has been renamed as GY and compared with the GYB framework proposed in Table 6
for the aforementioned experiments. The evaluation metrics of the control experiment
results are summarized in Table 6. We found that after adding image restoration and the
BiFPN module, the detection and recognition metrics of different ships have improved to
some extent. Under the conditions of rain streak weather, the YOLOv5 model with the
added BiFPN module has seen improvements in its P, R, and F1 score by 9.1%, 7.5%, and
8.6%, respectively, compared to the original model. The GY model framework has seen
improvements in its P, R, and F1 scores by 15.3%, 51.2%, and 38%, respectively, compared
to the original model. Meanwhile, both AP0.5 and AP0.5:0.95 have improved to varying
degrees. In combination with the model framework proposed in this paper, all evaluation
metrics of the model have seen a significant improvement. This ensures that the accuracy
of the model is improved without reducing the speed of model inference. Similarly, under
the conditions of foggy weather, after adding different modules to the model all evaluation
metrics of the model have seen a significant improvement.

Table 6. Comparison of experimental results of different modules.

Data Model
Evaluation Indicators

P R F1 AP0.5 AP0.5:0.95 fps

Rain streaks

YOLOv5 65.0% 34.1% 44.7% 0.405 0.216 33.37

YOLOv5 + BiFPN 74.1% 41.6% 53.3% 0.503 0.288 31.75

GY 80.3% 85.3% 82.7% 0.887 0.516 30.45

GYB 95.2% 94.3% 94.8% 0.970 0.701 28.67

Fog

YOLOv5 70.8% 55.5% 62.2% 0.622 0.368 35.37

YOLOv5 + BiFPN 75.9% 49.1% 48.1% 0.580 0.351 30.85

GY 83.6% 70.0% 76.2% 0.786 0.509 29.78

GYB 97.4% 96.4% 96.9% 0.984 0.742 29.06

The experimental results show that the proposed framework can effectively solve the
problem of ship detection and recognition problems, even in low-visibility conditions. It
can be seen that, under the conditions of low-visibility small-target ship detection, large-
area distortion of the image, and the challenge of area occlusion between ships, the new
ship-detection framework (GYB) proposed in this paper has more robust performance than
the traditional algorithms in the real complex low-visibility sea environment.

5. Conclusions

The detection of ships in maritime traffic navigation is of paramount practical signifi-
cance for safeguarding navigation safety and facilitating intelligent control decision-making.
In this paper, we propose an integrated framework for the detection and recognition of
maritime ships under low-visibility conditions. This framework achieves accurate detection
and recognition of ships in distorted maritime video data. The proposed framework utilizes
adversarial neural networks to generate attention maps, which enable the identification of
rain streaks and fog areas within the images. These attention maps guide the contextual
autoencoder to selectively restore the low-visibility regions of the images, based on the
surrounding information. Then, the restored images are input into the YOLOv5 detector,
which incorporates multi-scale feature fusion, to achieve accurate detection and classifica-
tion of navigating ships in the video images. We validated the performance of the proposed
GYB framework using the SeaShip dataset. Experimental results showed that the proposed
framework can achieve satisfactory performance for maritime ship detection under rainy
and foggy weather conditions, with an average precision of 96.3%, an average recall of
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95.4%, an average harmonic mean of 95.9% and an average fps of 28.87 frame. The average
precision AP0.5 and AP0.5:0.95 are 0.977 and 0.722. The experimental results demonstrate
that the proposed framework significantly improves the precision of ship detection and
classification under adverse weather conditions.

The following directions can be expanded to further enhance the model applicability
in the future. First, the SeaShip dataset exhibits a limited diversity in ship categories. It
is advisable to augment the dataset with additional ship types, including small fishing
boats, to enhance the model’s robustness. Second, the density of maritime ships collected is
not particularly high, and it is worthwhile for us to further investigate the validation of
maritime ship detection in high-density scenarios. Last, but not least, we can also add the
detection of ships with different rotation angles to further verify the performance of the
model under different water transportation scenarios.
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