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Abstract: Recovering the waste heat of a marine main engine (M/E) to generate electricity was an
environmental way to minimize the carbon dioxide emissions for ships, especially with organic
Rankine cycle (ORC) technology. The M/E had variable loads and operating times during voyage
cycle, which directly affected the ORC thermodynamic potential. In this paper, a voyage cycle-based
waste heat utilization from the M/E was introduced to provide reliable evaluation for proposing
and designing ORC. The effect of various M/E loads and operating times on ORC performance
among three dry-type substances was analyzed. The environmental impact was presented based
on the data from one voyage cycle navigation of objective container ship. The results showed that
Cyclohexane was capable of net power while Benzene was more suitable for thermal efficiency. The
evaporator and condenser were the main irreversible components of the ORC system and required
further optimization. Taking the operational profile into consideration, the evaporation pressures
were 922–1248 kPa (Cyclohexane), 932–1235 kPa (Benzene) and 592–769 kPa (Toluene), respectively.
During the voyage cycle, the carbon dioxide emissions were 99.68 tons (Cyclohexane), 96.32 tons
(Benzene) and 60.99 tons (Toluene), respectively. This study provided certain reference for the design
and investigation of ORC application to further improve the energy efficiency for container ship.

Keywords: voyage cycle; waste heat recovery; organic Rankine cycle; working fluid

1. Introduction

The extensive use of fossil fuels had existed as an environmental problem caused by
marine vessels. The global warming effect was one of the most frequently stated environ-
mental problems. Several studies data from the International Maritime Organization (IMO)
Fourth 2020 Greenhouse Gas (GHG) [1] suggested that the share of vessel emissions in
global anthropogenic GHG emissions increased from 2.76% (2012) to 2.89% (2018). The
2023 IMO Strategy on Reduction of GHG Emissions from Ships aimed to reach net-zero
GHG emissions from international shipping close to 2050 [2]. Waste heat recovery for
power generation was an excellent approach to achieve net-zero GHG emissions from
shipping. The ORC reported the simple structure and high recovery efficiency in marine
applications [3,4].

Recently, a large amount of attention focused on the ORC analysis on ships with
exhaust gas (EG) waste heat sources. Battista et al. [5] studied the ORC at 50% of the M/E
load. They recovered 3.5 kW of mechanical energy, which was equivalent to 5% of the M/E
braking power. Baldi et al. [6] compared the optimization procedure of the ORC waste
heat recovery based on the collection from a two-year operational profile of a chemical
tanker. The results showed that the optimized installation of the ORC increased the vessel’s
fuel saving from 7.4% to 11.4%. Choi et al. [7] investigated an ORC system applied to
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exhaust gas discharged from the M/E of a 6800 TEU container ship. Yang et al. [8] reported
the thermodynamic and economic performance of an ORC. Nawi et al. [9] examined the
potential of an M/E exhaust waste heat recovery ORC system with bioethanol microalgae
as the working fluid. Zhang et al. [10] carried out an experimental study on the waste heat
recovery ORC under eight M/E operating conditions. He explored that various operational
parameters significantly influenced the system performance. A container ship was selected
for a case study about working fluid selection in ORC [11]. Geneidy et al. [12] studied the
environmental impact of an operation-based ORC system for M/E waste heat recovery
from an oil tanker. The results showed that the ORC system led to a 5.16% reduction in
the total fuel consumption of the vessel. Lummen et al. [13] analyzed an ORC system for a
passenger ferry, which operated on a short route.

Up to now, previous studies had highlighted factors such as the combination of heat
sources, working fluid selection and thermo-economic performance. Several articles were
performed by considering the different M/E load conditions. However, few studies applied
the potential of waste heat recovery from the M/E under a voyage cycle, considering both
the M/E load conditions and operating times. The investigation of waste heat recovery
from ships based on the voyage cycle had more practical significance. Container ships had
a variable operational profile during the voyage cycle, which directly affected the ORC
potential. The study novelty stems from a voyage cycle-based waste heat utilization from
the M/E was introduced to provide a reliable evaluation for proposing and designing
ORC. The energetic, exergetic and environmental performance of an ORC system was
estimated among different working fluid candidates. The voyage cycle of container ship
M/V ZHONGGU DONGHAI was included to compare the M/E load conditions’ and
operating times’ influence on the technical and environmental evaluation and working
fluid selection of ORC.

2. System Description
2.1. The M/E and Waste Heat Source of EG Information

The MV ZHONGGU DONGHAI, a 1900 Twenty Feet Equivalent Unit (TEU) container-
ship, was involved in this paper. The M/E for propulsion was QMD-WinGD 6RT-flex58T-E
from Qingdao Haixi Heavy-duty machinery Co., Ltd. (Qingdao, China). The technical data
of the marine M/E were represented in Table 1.

Table 1. Technical data of the marine M/E.

M/E Information at 100% Load

M/E type 6RT-flex58T-E
Turbocharger type A-165-L(ABB)
MCR Power (kW) 14,100
MCR Speed (rpm) 105
CSR Power (kW) 11,985
CSR Speed (rpm) 99.5

Piston Stroke (mm) 2416
Piston speed (m/s) 8.5

BSFC (g/kW h) 174
Scavenge air, mass flow (kg/s) 28.1

EG, mass flow (kg/s) 28.7
EG before the turbocharger, temperature (K) 752.15
EG after the turbocharger, temperature (K) 559.15

EG, density (kg/m3) 0.641

The EG after the turbocharger was selected as waste heat for its reliability and validity.
The 6RT-flex58T-E M/E output in terms of EG mass flow, temperature and BSFC with the
M/E load factor were taken from engine manufacturer WIN GD [14], which was shown in
Figures 1 and 2 and Table 2. The mass fraction compositions of the EG were O2 (14.83%),
N2 (74.61%), CO2 (4.36%) and H2O (6.2%). The NOX, SOX and CO were all ignored because
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the fraction was too small. According to a calculation using REFPROP, the specific heat
capacity of EG was approximately 1.089 kJ/(kg·K).
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Figure 1. EG flow and BSFC versus M/E loads.
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Figure 2. EG temperature versus M/E loads.

Table 2. Data of M/E and EG.

M/E Load
(%)

M/E Power
(kW)

Shaft Speed
(rpm)

tEbT
(K)

tEaT
(K)

mExh
(kg/s)

110 15,510 108.4 778.15 571.15 30.6
105 14,805 106.7 765.15 565.15 29.7
100 14,100 105 752.15 559.15 28.7
95 13,395 103.2 735.15 551.15 27.6
90 12,690 101.4 718.15 543.15 26.3
85 11,985 99.5 704.15 536.15 25.2
80 11,280 97.5 696.15 534.15 24.4
75 10,575 95.4 689.15 532.15 23.5
70 9870 93.2 680.15 532.15 22.2
65 9165 91 671.15 532.15 20.8
60 8460 88.6 663.15 534.15 19.4
55 7755 86 657.15 539.15 17.8



J. Mar. Sci. Eng. 2023, 11, 2029 4 of 18

Table 2. Cont.

M/E Load
(%)

M/E Power
(kW)

Shaft Speed
(rpm)

tEbT
(K)

tEaT
(K)

mExh
(kg/s)

50 7050 83.3 653.15 546.15 16.3
45 6345 80.5 651.15 556.15 14.6
40 5640 77.4 651.15 568.15 13
35 4935 74 618.15 544.15 12.2
30 4230 70.3 614.15 557.15 10.4
25 3525 66.1 608.15 567.15 8.7

2.2. Working Fluids Selection

Available working fluids for ORC had wide varieties and different characteristics. The
T–s diagrams of the different types of working fluids were shown in Figure 3, which was
based on the commercial thermodynamic library REFPROP [15]. The saturation vapor
curve was an important point that affected the suitability of the liquid, the arrangement of
the equipment and the efficiency. Based on the subcritical ORC model, the most important
criteria for the selection of the working fluid were critical temperature, high efficiency and
low heat and humidity losses, which were ultimately determined by the EG situation and
the thermodynamic properties of the working fluid.
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Figure 3. T–s diagram of the dry, wet and isentropic working fluids.

Yagli et al. [16] noted that the working fluids used in the ORC evaporated at a lower
temperature than water, such as refrigerants, pentane, Toluene and Benzene. Kocaman
et al. [17] discussed the performance of wet, isentropic and dry working fluids in the
ORC. It was seen that dry-type working fluids were more feasible. Toluene was used as a
working fluid in some high temperature ORC plants [18–20]. Siddiqi et al. [21] compared
the performance of alkanes with water, Benzene and Toluene in the ORC with three heat
source temperatures (773.15 K, 623.15 K and 523.15 K). The results show that hydrocarbons,
such as n-hexane, were promising at the temperature range 523.15 K.

In this study, the EG temperature was in the range of 534.15–559.15 K, which was
higher than the low temperature range in ORC systems. Due to this reason, the working
fluids selected were Toluene, Benzene and Cyclohexane. The T–s diagrams of the three
working fluids were shown in Figure 4 [15]. The slope of the saturation curve was positive,
and the fluids were dry type, which had higher efficiency than wet ones [22]. The properties
of the working fluids were listed in Table 3 [23–25].
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Table 3. Properties of the working fluids.

Name Chemical Formula GWP ODP Critical
Pressure (kPa)

Critical
Temperature (K) Fluid Type

Toluene C7H8 3 0 4126.3 591.75 Dry
Benzene C6H6 ~20 0 4907.3 562.02 Dry

Cyclohexane C6H12 ~20 0 4080.5 553.6 Dry

2.3. Voyage Cycle Overview

A 1900 TEU container liner involved in this work covered Thailand’s Laem Chabang,
Vietnam’s Vung Tau-Saigon and China’s Guangzhou-Ningbo-Shanghai, with about 20 days
voyage time. In the present study, the data during the voyage cycle were collected. To
increase the reliability of the navigation data, the Anchorage of Chang Jiang Kou was used
as the starting point of the specific route. The navigation data were presented in Table 4.
The shaft output power was inversely proportional to the third power of the ship at normal
speed [26]. In order to carry out the calculations more accurately, a novel methodology was
adopted. The shaft output power was converted from the M/E speed in the ship’s engine
log. The M/E power was equal to shaft output work.

Table 4. The navigation data.

Port Voyage
Time (h)

Shaft
Speed
(rpm)

M/E Load
(%)

Fuel
Consumption

(g/kWh)

Power
(kW)

EG
Temperature

(K)

EG Mass
Flow
(kg/s)

Changjiangkou - - - - - - -
Shanghai 28.9 70.3 30% 169.7 4230 557.15 10.4
Ningbo 10.5 97.5 80% 165.2 11,280 534.15 24.4

Vung Tau 104.4 101.4 90% 168.3 12,690 543.15 26.3
Saigon 4.1 97.5 80% 165.2 11,280 534.15 24.4
Laem

Chabang 44 99.5 85% 166.7 11,985 536.15 25.2

Guangzhou 110.3 97.5 80% 165.2 11,280 534.15 24.4
Shanghai 66.7 99.5 85% 166.7 11,985 536.15 25.2
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3. Thermodynamic Analysis of ORC System
3.1. Thermodynamic Model

In this investigation, the ORC system contained five parts: an evaporator, an expander
(turbine), a generator, a condenser and a pump. The layout of the ORC system was
presented in Figure 5. The T–s diagram of the ORC was shown in Figure 6. The construction
of Figure 6 was divided into three parts:
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1, Points 7–9 illustrated the EG heat transfer process at constant pressure.
2, Points 5–6–1–2–4–5 illustrated the working fluid thermodynamic process, which

consisted of preheating (5–6), boiling (6–1), expansion (1–2), condensation (2–4) and pump-
ing (4–5). Points 5 to 6 illustrated that the liquid organic working fluid could be preheated
with EG. From Points 6 to 1, the working fluid absorbed heat from the EG, which was
converted from a saturated liquid state to a saturated vapor or superheated vapor state.
Points 1 to 2 indicated that the expanding of working fluid and the expander shaft produced
power. Points 2 to 4 represented the process where the working fluid was cooled. Points
4–5 illustrated the compression process of the working fluid. Points 2’ and 5’ indicated the
status points of the actual thermal process. Point 6 identified the starting point for boiling
the working fluid. Points 8–6 indicated the pinch point temperature difference.
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3, Points 10–11 illustrated the cooling water thermodynamic process at constant
pressure.

At the vaporization start (Point 6) of the organic fluid, the difference between the
vaporization temperature of the organic fluid and the exhaust temperature was considered
to be the pinch point temperature difference (PPTD) [27]. The PPTD represented the limit
of heat exchanger performance, i.e., evaporator and condenser. The temperature difference
between Point 8 and Point 6 was assumed to be 6 K [28,29].

The first law analysis should be carried out to explore the energy balance. Moreover,
the exergy analysis method was employed to evaluate the exergy utilization and exergy
loss for low grade waste heat recovery.

The energy balance could be demonstrated in Equation (1).

Qin = Qout (1)

The exergy flow change of the substance in the ORC system could be considered as:

·
Ei = [(hi−in − hi−out)− T0(si−in − si−out)]•

·
mi (2)

The energy and exergy equation of each component of the ORC was shown in
Appendix A Table A1. The total energy rate flowing into the system was as follows:

·
Etot =

·
Egas−wf + Wpump (3)

The net power of the ORC could be calculated as follows:

Wnet = Wexp −Wpump (4)

The thermal efficiency of the ORC could be calculated as follows:

η1st =
Wnet

Qgas
(5)

The second-law efficiency of the power cycle, also referred to as exergy efficiency η2nd,
could be defined as follows:

η2nd =
Wexp
·
Etot

(6)

The total exergy that leaves the ORC system was defined as Equation (7).

·
Itot =

·
Igas−wf +

·
Iexp +

·
Icond +

·
Icw +

·
Ipump (7)

The expansion ratio of the expander was calculated as follows:

Rexp =
Pevp

Pcon
(8)

In order to evaluate the fuel saving from using ORC, Rrp was defined as the ratio be-
tween the recovered power from the ORC and the power of the M/E, which was calculated
by Equation (9).

Rrp =
Wnet

Wship
(9)

where Wship meant the power of the M/E.
The fuel saving from using ORC was calculated by Equation (10).

Mfs = Wnet × BSFC× H, (10)
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where H meant the running hours of the ORC system.
According to IMO MEPC (Marine Environment Protection Committee), the conversion

factor between fuel consumption and CO2 emission CF was defined as 3.114 g CO2/g
Fuel [30], which was suited for diesel ships and included HFO (heavy fuel oil) used in
practice.

MCO2 = Mfs × CF (11)

In particular, for those engines that did not have a test report included in the NOx
Technical File and that did not have the specific fuel consumption from the manufacturer,
carbon factor estimation accuracy was credible considering the real exploitation conditions.

3.2. Assumptions and Validation

Before the investigation, the systems were assumed to operate under steady-state
condition. The heat and resistance losses in components and piping were neglected. The
isentropic efficiency of the expander and pump was 0.8. The condensation pressure was
102 kPa. The pinch points in the heat exchanger were no less than 6 K, and the EG outlet
temperature was above 375 K. The dead state temperature was assumed to be 290 K (T0).

A comparison of the simulation results with the experimental data [31] was shown
in Table 5, which compared the performance of the system with Cyclohexane as the
working fluid. The results indicated that the maximum relative error was 3.7%, which
was within the permissible range. As a result, the rationality of the system model can be
effectively verified.

Table 5. The validation data with Cyclohexane as working fluid.

Parameters Experimental Data Simulation Data Error

The isentropic efficiency of the expander 0.8 0.8 -
The isentropic efficiency of the pump 0.8 0.8 -

PPTD (K) 6 6 -
The EG mass flow rate (kg/h) 7139 7139 -
The EG inlet temperature (K) 573.15 573.15 -

The specific heat capacity of the EG
(kJ/(kg·K)) 1.1 1.089 1%

The Evaporation temperature (K) 480.3 480.3 -
The condensation temperature (K) 355 355 -

Net power (kW) 64 65.47 2.2%
Thermal efficiency (%) 14.8 15.25 2.9%

Mass flow (kg/s) 0.8 0.77 3.7%

4. Results and Discussion
4.1. Net Power and the Exhaust Outlet Temperature

The waste heat EG had variable parameters under different M/E loads, and three
different working fluids were selected in this study; both were directly affected the ORC
potential. The first set of analyses examined the impact of an M/E load on the thermody-
namic performance of ORC. In particular, for going deeper in the physical interpretation of
different working fluid results by considering non-dimensional numbers, a correspondence
state parameter was defined as the ratio of evaporative pressure to critical pressure (RECP).

Figure 7a compared changes in the net power and RECP at 90% load. It could be seen
from the data in Figure 7a that a trend in the net power was increasing and decreasing with
RECP. Meanwhile, at an RECP of 16% (Toluene), 21% (Benzene) or 25.3% (Cyclohexane),
the highest net power was 373.4 kW (Toluene), 584.1 kW (Benzene) or 605.8 kW (Cyclo-
hexane). Several factors were known to play a role in determining the net power. When
the evaporation pressure of the working fluid increased, the enthalpy of the working fluid
also increased while the mass flow rate of the working fluid decreased, which changed at
an inconsistent rate. Therefore, the highest net power could be obtained with RECP. The
single most striking observation to emerge from the data comparison was that Cyclohexane
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had the highest net power of 605.8 kW, followed by Benzene and Toluene at the same
evaporation pressure. A closer inspection of Figure 7b showed that the highest net power
was 323.3 kW (Toluene), 513.2 kW (Benzene) and 530.5 kW (Cyclohexane).
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Figure 7. The changes in the net power and RECP versus different M/E loads (a) were the changes
in the net power and RECP at 90% load, (b) were the changes in the net power and RECP at 85%
load, (c) were the changes in the net power and RECP at 80% load and (d) were the changes in the
net power and RECP at 30% load.

The preliminary analysis of Figure 7a,b was validated by Figure 7c,d. A possible
explanation for these results may be that the EG mass flow rate decreased as the M/E’s
load decreased. Although the temperature of the EG increased at a 30% load, the mass
flow rate dropped significantly, which led to a decrease in the residual heat of the EG. This
finding was expected and suggested that the same characteristics of a positive correlation
were found between the highest net power and M/E load. Together these results provided
important insights into when the more significant the M/E load was, as it was then more
suitable for waste heat recovery.

To avoid acid dew points, the EG outlet temperature must be above 375 K. On the
other hand, the EG outlet temperature also represented the degree of waste heat utilization.
A positive correlation was found between the EG outlet temperature and the RECP, which
was shown in Figure 8. It could be seen from the data in Figure 8a that when the RECP
was 16% (Toluene), 21% (Benzene) or 25% (Cyclohexane), the EG outlet temperature was
429.3 K (Toluene), 402.7 K (Benzene) or 389.7 K (Cyclohexane).

These factors may explain the relatively good correlation between the EG outlet
temperature and the RECP. The evaporator could be divided into preheating and boiling
areas in the ORC cycle. As the evaporation pressure rose in the boiling section, the
evaporation temperature also rose correspondingly. The pinch point moved toward the EG
inlet. Since the flow rate of the EG remained constant, the working fluid flow rate decreased
according to Equation (2). In the preheating section, the temperature and pressure of the
condensed mass remained constant because the condensing pressure was assumed to be
102 kPa. After compression by the pump, the temperature and pressure of the working fluid
did not change. The reduction of the mass flow rate led to a reduction of the demanded
exhaust residual heat. They combined the above factors and the exhaust outlet temperature
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increased. Data from Figure 8a could be compared with the data in Figure 8b–d, which
showed two results: For a single working fluid, the exhaust outlet temperature was highest
at a 30% load and lowest at an 80% load. At the same M/E load, the exhaust outlet
temperature of Toluene was the highest, Benzene was the second and Cyclohexane was
the lowest.
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Figure 8. The correlation between EG outlet temperature and the RECP (a) was the correlation
between EG outlet temperature and RECP at 90% load, (b) was the correlation between EG outlet
temperature and RECP at 85% load, (c) was the correlation between EG outlet temperature and RECP
at 80% load and (d) was the correlation between EG outlet temperature and RECP at 30% load.

The ORC system parameters differed significantly when the different working fluid
was selected. For example, Cyclohexane had an advantage in net power, Benzene had an
advantage in thermal efficiency and Toluene had an advantage in the EG outlet temperature.
The sensitivity of ORC system performance parameters varied with the M/E load. The
most striking result from the data was that the net power was more sensitive than the
thermal efficiency and exhaust outlet temperature.

Appendix A Table A2 showed the results of the ORC system with three working fluids.
At a 90% load, the highest net power in the ORC system was 605.75 kW (Cyclohexane), the
highest thermal efficiency was 14.56% (Benzene) and the exhaust outlet temperature was
429.3 K (Toluene). At an 85% load, the highest net power in the ORC system was 530.48 kW
(Cyclohexane), the highest thermal efficiency was 14.14% (Benzene) and the exhaust outlet
temperature was 429.44 K (Toluene). At an 80% load, the highest net power in the ORC
system was 500.41 kW (Cyclohexane), the highest thermal efficiency was 14.01% (Benzene)
and the exhaust outlet temperature was 429.47 K (Toluene). At a 30% load, the highest net
power in the ORC system was 285.03 kW (Cyclohexane), the highest thermal efficiency was
15.43% (Benzene) and the exhaust outlet temperature was 428.38 K (Toluene).

4.2. Exergy Flow Losses and Exergy Efficiency

The exergy analysis was employed to recognize parts of the ORC system where
irreversibility occurs and was essential for a comprehensive evaluation of the ORC system.
Among the three working fluids, Cyclohexane was selected for the observation. Four items
of exergy flow losses of the ORC system at the 80% and 30% M/E load with Cyclohexane
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were shown in Figure 9. They were, sequentially, (1) Evaporator
·
Igas−w f , (2) Expander

·
Iexp,

(3) Condenser
·
Icond, (4) Pump

·
Ipump.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 12 of 20 
 

 

system was 500.41 kW (Cyclohexane), the highest thermal efficiency was 14.01% (Benzene) 
and the exhaust outlet temperature was 429.47 K (Toluene). At a 30% load, the highest net 
power in the ORC system was 285.03 kW (Cyclohexane), the highest thermal efficiency 
was 15.43% (Benzene) and the exhaust outlet temperature was 428.38 K (Toluene). 

4.2. Exergy Flow Losses and Exergy Efficiency 
The exergy analysis was employed to recognize parts of the ORC system where irre-

versibility occurs and was essential for a comprehensive evaluation of the ORC system. 
Among the three working fluids, Cyclohexane was selected for the observation. Four 
items of exergy flow losses of the ORC system at the 80% and 30% M/E load with Cyclo-

hexane were shown in Figure 9. They were, sequentially, (1) Evaporator gas wfI −


, (2) Ex-

pander expI


, (3) Condenser condI


, (4) Pump pumpI


. 

 
Figure 9. Four items of exergy flow losses. 

The exergy flow loss in the evaporator gas wfI −


 showed a decreasing trend as the 

evaporation pressure increased while the others remained a slight constant. Due to the 
growth of the evaporation temperature, the temperature difference between the EG and 
working fluid gradually decreased, reducing the irreversibility of the evaporator. The 
mass flow rate decreased simultaneously with the increase in evaporation pressure. While 
the entropy difference between the expander and the pump increased, the exergy flow 

loss expI


 and pumpI


 did not change much. Meanwhile, the condensing pressure of the 
system was set at 102 kPa, and the cooling water inlet temperature was set at 333.15 K. 
The temperature difference and flow rate difference of the condenser changed simultane-

ously, and the condI


 remained stable. At an evaporation pressure of 922 kPa under an 
80% load, the above four items of exergy flow losses of the ORC system were 159.8 kW, 

94 kW, 91 kW and 1.7 kW, respectively. Among the ORC items, gas wfI −


 was the highest, 

400 600 800 1000 1200 1400

0

50

100

150

200

250

300
 Evaporator（30% load）
 Evaporator（80% load）
 Expander（30% load）
 Expander（80% load）
 Condenser（30% load）
 Condenser（80% load）
 Pump（30% load）
 Pump（80% load）

Ex
er

gy
 F

lo
w

 L
os

se
s (

kW
)

Evaporating Preesure (kPa)

Figure 9. Four items of exergy flow losses.

The exergy flow loss in the evaporator
·
Igas−w f showed a decreasing trend as the

evaporation pressure increased while the others remained a slight constant. Due to the
growth of the evaporation temperature, the temperature difference between the EG and
working fluid gradually decreased, reducing the irreversibility of the evaporator. The mass
flow rate decreased simultaneously with the increase in evaporation pressure. While the

entropy difference between the expander and the pump increased, the exergy flow loss
·
Iexp

and
·
Ipump did not change much. Meanwhile, the condensing pressure of the system was

set at 102 kPa, and the cooling water inlet temperature was set at 333.15 K. The temperature

difference and flow rate difference of the condenser changed simultaneously, and the
·
Icond

remained stable. At an evaporation pressure of 922 kPa under an 80% load, the above four
items of exergy flow losses of the ORC system were 159.8 kW, 94 kW, 91 kW and 1.7 kW,

respectively. Among the ORC items,
·
Igas−w f was the highest, followed by

·
Icond,

·
Iexp and

·
Ipump. Consequently, it was indispensable to optimize the evaporator and condenser to
reduce the exergy flow losses.

Compared to the energy analysis, exergy efficiency and flow losses could provide
a deeper understanding in the effectiveness of an energy resource utilization system.
The influence on system exergy efficiency and flow losses under different M/E loads
and evaporating pressures was presented in Figure 10. The arrow pointing to the left
represented the exergy efficiency, the arrow pointing to the right represented the total
exergy flow loss.
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Figure 10. Exergy efficiency and total Exergy flow loss variation with Cyclohexane.

First, the drop in the M/E load (from 90% to 30%) led to the reduction in the waste
heat of the EG, and as a consequence, the total exergy flow loss of the ORC system fell.
Second, the exergy efficiency presented a non-significant trend, which was due to the fact
that the EG was adopted as waste heat resources in this investigation after the turbocharger,
and its temperature was respectively 543.15 K (90% M/E load), 536.15 K (85% M/E load),
534.15 K (80% M/E load) and 557.15 K (30% M/E load). According to Equation (6), the
regularity of exergy efficiency was based on expansion power and the total exergy flow
loss under certain conditions by comparing Figure 8. Third, the EG temperature played a
vital role in the exergy efficiency, which was highest at a 30% M/E load, followed by a 90%,
85% and 80% M/E load.

4.3. Working Fluids Performance during the Voyage Cycle

The EG temperature and flow rate changed during the voyage cycle. It was essential to
refine the parameters of the ORC system to obtain the highest net output power. According
to Ref. [32], the evaporation pressure and flow rate of the ORC system could be controlled
by adjusting the frequency and displacement of the pump. However, the time of the route
changed in different routes. It was significant to analyze the evaporation pressure and mass
flow rate of the ORC system during the voyage cycle, which would help to discover the
regulation of ORC in the actual voyage of the vessel.

The evaporation pressures of different routes were presented in Figure 11. The evapo-
ration pressures in the first route were 1248 kPa (Cyclohexane), 1235 kPa (Benzene) and
769 kPa (Toluene), which was the highest of the seven routes. A possible explanation
for this might be that the EG temperature was highest at 30%M/E load. Based on the
PPTD, the working fluid could be optimized to a higher evaporation temperature and
pressure. Nevertheless, the optimal evaporation pressures in the second route were 922 kPa
(Cyclohexane), 932 kPa (Benzene) and 592 kPa (Toluene), which were the lowest of the
seven routes. Another possible explanation for this was that the M/E load was 80% and the
temperature of the EG was 534.15 K. With the limitation of the temperature difference of
the pinch point, very high evaporation temperatures and pressures could not be obtained.
The same pattern was shown in the other routes. A further analysis showed that the
evaporation pressures need to be adjusted to keep the ORC system performing optimally
at different M/E loads.
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Figure 11. The evaporation pressures of different routes.

The mass flow rates of different routes were shown in Figure 12. The mass flow
rates in the first route were 3.64 kg/s (Cyclohexane), 3.35 kg/s (Benzene) and 2.99 kg/s
(Toluene), which was the lowest of the seven routes. It may have something to do with
the EG temperature and EG flow rate due to the fact that the M/E load was 30%. On the
one hand, the higher EG temperature led to a higher evaporation pressure. On the other
hand, the lower EG flow rate led to a lower total EG heat. When the M/E load was 90%,
the EG temperature and flow rate both increased substantially so that the flow rate of the
working fluid also increased significantly. Overall, these results indicated that the mass
flow rates of the working fluid should be consistent with the M/E load, which would
provide a reference for the application of ORC technology on a real vessel.
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Figure 12. The mass flow rates of different routes.
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4.4. Environmental Performance

The CO2 emissions in different routes were compared in Figure 13. The CO2 emissions
in the first route were 4.33 tons (Cyclohexane), 4.15 tons (Benzene) and 2.72 tons (Toluene),
respectively. It seems possible that these results were due to the max net power and were
285.03 kW (Cyclohexane), 272.73 kW (Benzene) and 178.79 kW (Toluene), and the route time
was 28.9 h. The CO2 emissions in the second route were 2.69 tons (Cyclohexane), 2.61 tons
(Benzene) and 1.63 tons (Toluene). These results were likely to be related to the max net
power was 500.4 kW (Cyclohexane), 484.57 kW (Benzene), 429.48 kW (Toluene) and the
route time was 10.5 h. Data from the first route could be compared with the data in the
second route, which showed a positive correlation between CO2 emission and route time.
The CO2 emissions in the third route were 32.99 tons (Cyclohexane), 31.82 tons (Benzene)
and 20.34 tons (Toluene), which were the max among the seven routes. The max net power
was 605.75 kW (Cyclohexane), 584.14 kW (Benzene) and 373.45 kW (Toluene), and the route
time was 104.4 h. However, the CO2 emissions in the fourth route only were 1.05 tons
(Cyclohexane), 1.02 tons (Benzene) and 0.64 tons (Toluene). It could be assumed that route
time played an important role in addressing the issue of CO2 emissions. According to
these data, it was more profitable to use the ORC system on long routes during voyage
cycle. It was interesting to note that the total CO2 emissions were 99.68 tons (Cyclohexane),
96.32 tons (Benzene) and 60.99 tons (Toluene) in all seven routes in this study. Detailed
parameters during the voyage cycle were shown in Appendix A Table A3.
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Figure 13. The CO2 emission of different routes.

5. Conclusions

In this paper, a voyage cycle-based waste heat utilization from the M/E was introduced
to provide reliable evaluation for proposing and designing a thermodynamic ORC model.
The effect of various M/E loads on the energy and exergy performance of ORC was
analyzed among three dry-type substances. The environmental analysis was presented
based on the measurement data from one voyage cycle navigation of an objective container
ship. The conclusions could be gained as follows:

1. The ORC system parameters had significant differences versus the different working
fluids. The highest net power in the ORC system was 605.75 kW at a 90% M/E load
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(Cyclohexane), the highest thermal efficiency was 15.43% at a 30% M/E load (Benzene)
and the exhaust outlet temperature was 429.5 K at an 80% M/E load. Cyclohexane had an
advantage in net power, Benzene had an advantage in thermal efficiency and Toluene had
an advantage in the EG outlet temperature. The sensitivity of ORC system performance
parameters varied when the M/E load changed.

2. The exergy flow losses of the ORC system were 159.8 kW (evaporator), 94 kW
(condenser), 91 kW (expander) and 1.7 kW (pump) at an evaporation pressure of 922 kPa
under an 80% M/E load with Cyclohexane. The evaporator was the highest, followed by
the condenser, expander and pump. It was indispensable to optimize the evaporator and
condenser to reduce the irreversibility of ORC systems.

3. The evaporation pressures of ORC during the voyage cycle were 922–1248 kPa (Cy-
clohexane), 932–1235 kPa (Benzene) and 592–769 kPa (Toluene). The evaporation pressure
needed to be adjusted to keep the ORC system performing optimally at different M/E
loads. The working fluid flow rates in the ORC were from 3.64–8.47 kg/s(Cyclohexane),
3.35–7.79 kg/s (Benzene) and 2.99–6.85 kg/s (Toluene). The mass flow rates of the working
fluid should be consistent with the M/E load, which would provide a reference for the
application of ORC technology on the real vessel.

4. The CO2 emissions during the voyage cycle were 99.68 tons (Cyclohexane), 96.32 tons
(Benzene) and 60.99 tons (Toluene). The route time played an important role in addressing
the issue of CO2 emission.

The optimization for the system’s evaporator and condenser must be conducted
to reduce the irreversibility of ORC systems in the future. Working fluid selection and
designing parameters shall be carried out to further improve the energy efficiency for
container ships. Moreover, the experiment with ORC technology on board shall be taken
to achieve a more reliable assessment of the application of ORC systems based on the
voyage cycle.
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Nomenclature
Acronyms Subscripts
BSFC Brake specific fuel consumption boil Boiling process
CSR Continuous service rating con Condenser
C Carbon factor exp Expander
EG Exhaust gas eva Evaporation process
GWP Global warming potential gas Exhaust gas

MCR Maximum Continuous Power PPTD
Pinch point temperature
difference

M/E Main engine pre Preheating process
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ORC Organic Rankine cycle the Thermal
ODP Ozone depletion potential tot Total

RECP
Ratio between evaporation pressure and
critical pressure

wf Working fluid

R Ratio fs Fuel saving

tEbT
Temperature of exhaust gas
before turbocharger

rp Recovered power

tEaT
Temperature of exhaust gas
after turbocharger

H Hour
Nomenclature Greek symbols
Cp Specific heat capacity (kJ/(kg·K)) η Efficiency
·
E Exergy (kW)
I Exergy loss (kW)
h Specific enthalpy (kJ/kg)
ṁ Mass flow rate (kg/s)
P Pressure (kPa)
Q Heat power (kW)
S Entropy (kJ/K)
T Temperature (K)
W Power (kW)
M Mass (t)

Appendix A

Table A1. The Energy and Exergy Equation of Each Component of the ORC.

Components Energy Exergy Isentropic Efficiency

EG Qgas =
·

mgas · cP,gas ·
(
Tgas,7 − Tgas,9

) ·
Egas =

[(
hgas,7 − hgas,9

)
− T0

(
sgas,7 − sgas,9

)]
• ·mgas

Evaporator preheating Qpre =
·

mwf · (h6 − h5′)
·
Igas−wf =

( ·
Egas,7 −

·
Egas,9

)
−

( ·
E1 −

·
E5′

)
Evaporator boiling Qboil =

·
mwf · (h1 − h6)

Expander Wexp =
·

mwf · (h1 − h2′)
·
Iexp = T0(s2′ − s1)•

·
mwf ηexp = h1−h2′

h1−h2

Condenser Qcon =
·

mwf · (h2′ − h4)
·
Icond = (E2′ − E4)−

( ·
E11 −

·
E10

)
Cooling water Qcw =

·
mcw · (h11 − h10)

·
Icw =

·
Ecw = [(h11 − h10)− T0(s11 − s10)]•

·
mcw

Pump Wpump =
·

mwf · (h5′ − h4)
·
Ipump = T0(s5′ − s4)•

·
mwf ηpump = h5−h4

h5′−h4

Table A2. The Main Characteristics of the ORC Systems.

Load 90% Load 85% Load 80% Load 30% Load

working fluid Cyclohexane Benzene Toluene Cyclohexane Benzene Toluene Cyclohexane Benzene Toluene Cyclohexane Benzene Toluene
evap (kPa) 1033 1038 655 945 955 605 922 932 592 1248 1235 769
conp (kPa) 102 102 102 102 102 102 102 102 102 102 102 102
exp ratio 10.13 10.18 6.42 9.26 9.36 5.93 9.04 9.14 5.80 12.24 12.11 7.54

Rrp 4.7% 4.6% 2.9% 4.4% 4.2% 2.7% 4.4% 4.2% 2.7% 8% 7.7% 5%
RECP 25% 21% 16% 23% 19% 14.8% 23% 19% 14% 31% 25% 19%

Net power (kW) 605.8 584.1 373.4 530.5 513.2 323.3 500 484.6 303.9 285 272.7 178.7
EG outlet tem (K) 389.7 402.7 429.3 391.6 403.3 429.4 392.1 403.4 429.5 384.9 401 428.4
Thermal efficiency 13.8% 14.6% 11.4% 13.4% 14% 11% 13.3% 14% 11% 14.6% 15.4% 12.3%

Mass flow rate
(kg/s) 8.47 7.79 6.85 7.76 7.13 6.22 7.42 6.81 5.93 3.64 3.35 2.99

Table A3. Detailed Parameters during Voyage Cycle.

Parameters Fluid Changjiangkou–
Shanghai

Shanghai–
Ningbo

Ningbo–
Vung Tau

Vung
Tau–Saigon

Saigon–Laem
chabang

Laem
chabang–
Guangzhou

Guangzhou–
Shanghai

Expander ratio
Cyclohexane 12.24 9.04 10.13 9.04 9.26 9.04 9.26
Benzene 12.11 9.14 10.18 9.14 9.36 9.14 9.36
Toluene 7.54 5.8 6.42 5.8 5.93 5.8 5.93
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Table A3. Cont.

Parameters Fluid Changjiangkou–
Shanghai

Shanghai–
Ningbo

Ningbo–
Vung Tau

Vung
Tau–Saigon

Saigon–Laem
chabang

Laem
chabang–
Guangzhou

Guangzhou–
Shanghai

Mass flow rate
(kg/s)

Cyclohexane 3.64 7.42 8.47 7.42 7.76 7.42 7.76
Benzene 3.35 6.81 7.79 6.81 7.13 6.81 7.13
Toluene 2.99 5.93 6.85 5.93 6.22 5.93 6.22

Thermal
efficiency (%)

Cyclohexane 14.6 13.3 13.8 13.3 13.4 13.3 13.4
Benzene 15.4 14 14.6 14 14.1 14 14.1
Toluene 12.3 11 11.5 11 11.1 11 11.1

Voyage Time
(h)

Cyclohexane 28.9 10.5 104.4 4.1 44 110.3 66.7
Benzene 28.9 10.5 104.4 4.1 44 110.3 66.7
Toluene 28.9 10.5 104.4 4.1 44 110.3 66.7

Net power
(kW)

Cyclohexane 285.03 500.41 605.75 500.41 530.48 500.41 530.48
Benzene 272.73 484.57 584.14 484.57 513.24 484.57 513.24
Toluene 178.79 303.89 373.45 303.89 323.32 303.89 323.32

Fuel saving
(tons)

Cyclohexane 1.4 0.87 10.64 0.34 3.89 9.12 5.90
Benzene 1.34 0.84 10.26 0.33 3.76 8.83 5.71
Toluene 0.88 0.53 6.56 0.21 2.37 5.54 3.59

CO2 (tons)
Cyclohexane 4.33 2.69 32.99 1.05 12.06 28.27 18.29
Benzene 4.15 2.61 31.82 1.02 11.67 27.37 17.69
Toluene 2.72 1.63 20.34 0.64 7.35 17.17 11.14
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